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On α-close-to-convex functions

By HERB SILVERMAN (Charleston) and E. M. SILVIA (Davis)

Abstract. For |α| < π

2
, let Gα denote the class of functions f , f(0) = f ′(0)−1 =

0, for which Re eiαf ′(z) > 0 in ∆ = {z : |z| < 1}. In this note, we discuss extremal,
containment and convolution properties of Gα.

1. Introduction

Let A denote the class of functions of the form f(z) = z +
∞∑

n=2
anzn

that are analytic in ∆ = {z : |z| < 1}. The subclasses of A consisting of
functions that are univalent, starlike with respect to the origin, and convex
will be denoted by S, St, and K, respectively. A function f ∈ A is close-

to-convex, f ∈ C, if there exists a function g(z) = c1z +
∞∑

n=2
cnzn, |c1| = 1,

convex in ∆ such that Re
f ′(z)
g′(z)

> 0, z ∈ ∆. Goodman and Saff [3]

classified subclasses of C in terms of the argument of c1. To emphasize
this distinction, we say a function f ∈ A is α -close-to-convex , denoted by
f ∈ Cα, for α real with |α| < π

2
, if there exists a g ∈ K such that

(1.1) Re
eiαf ′(z)

g′(z)
> 0, z ∈ ∆.

Mathematics Subject Classification: Primary 30C45; Secondary 30C50.
Key words and phrases: close-to-convex, convex, convolution, extreme points.
This paper was completed while the authors were visiting scholars at the University
of California at San Diego. The authors would like to acknowledge many helpful and
enthusiastic discussions with Professor Carl FitzGerald.



306 Herb Silverman and E. M. Silvia

That C is a subset of S was shown by Kaplan [4]. In addition to illustrating
that taking α = 0 in (1.1) excludes functions that have the geometric prop-
erties shown by Kaplan [4], Goodman and Saff [3] obtained coefficient
bounds for Cα that were sharp only for n = 2.

Although our work was inspired by the paper by Goodman and
Saff [3], most of our discussion is concerned with the more manageable
subclasses of α-close-to-convex functions that correspond to the convex
function g(z) = z in (1.1). For α real, |α| < π

2
, a function f is said to be

in the class Gα if

(1.2) Re eiαf ′(z) > 0, z ∈ ∆.

In the next two sections, we discuss extremal, containment, and convo-
lution properties of the classes Gα. In addition, we show that any function
f that is in Cα for all α satisfying either π

2 −ε < α < π
2 or −π

2 < α < −π
2 +ε

must be convex.

2. Extremal properties

Extremal information concerning Gα follows from its relationship to

the class P of functions in the form p (z) = 1 +
∞∑

n=1
cnzn that satisfy

Re p (z) > 0 for z ∈ ∆. From (1.2), f ∈ Gα if and only if there exists a
p ∈ P such that

(2.1)
eiαf ′(z)− i sinα

cos α
= p (z).

This observation yields the extreme points for Gα.

Theorem 1. The function f is in Gα if and only if f can be expressed

as

(2.2) f(z) =
∫

X

[−e−2iαz − (2e−iα cosα)x̄ log(1− xz)
]
dµ(x)

where µ is a probability measure defined on the unit circle X. The extreme

points of Gα are the unit point masses

fx0(z) = −e−2iαz − (2e−iα cos α)x̄0 log(1− x0z), |x0| = 1.



On α-close-to-convex functions 307

Proof. From Herglotz’s Theorem [2], p ∈ P if and only if

p (z) =
∫

X

1 + xz

1− xz
dµ(x)

for some probability measure µ on the unit circle X. In view of (2.1),
f ∈ Gα if and only if

(2.3) f ′(z) = e−iα


(cos α)

∫

X

1 + xz

1− xz
dµ(x) + i sin α




for µ a probability measure on X. We conclude that

f(z) =

z∫

0




∫

X

(
−e−2iα +

2e−iα cos α

1− xζ

)
dµ(x)


 dζ

which yields (2.2) upon reversing the order of integration and integrating
with respect to ζ.

Remark 1. From (2.3), we note that the derivatives of the extreme

points for Gα are the point masses f ′x(z) =
1 + e2iαxz

1− xz
, for |x| = 1.

Several extremal properties are immediate.

Corollary 1. If f(z) = z +
∞∑

n=2
anzn ∈ Gα, then

(i) |an| ≤ 2
n

cosα, n = 2, 3, 4, · · · ,

(ii)
1− (2 cos α)r + (cos 2α)r2

1− r2
≤ Re f ′(z) ≤ 1 + (2 cos α)r + (cos 2α)r2

1− r2
,

|z| = r < 1.

(iii) Re f ′(z) > 0 for |z| < 1
cosα + |sin α| .

All bounds are sharp.

Proof. The coefficient bounds are realized by the extreme points for
Gα. We have

fx(z) = z +
∞∑

n=2

2e−iα cosα

n
xn−1zn, |x| = 1,
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from which (i) follows. To show (ii), it also suffices to consider the extreme
points. The bilinear transformation

f ′x(z) = −e−i2α + (2 cos α)
e−iα

1− xz

maps the disk |z| ≤ r onto the disk having center −e−i2α +
2 (cos α) e−iα

1− r2

and radius
2r cos α

1− r2
. Thus, for any x, |x| = 1,

(− cos 2α) +
(2 cos α)(cos α− r)

1− r2

≤ Re f ′x(z) ≤ (− cos 2α) +
(2 cos α)(cos α + r)

1− r2

as needed.
Because 1−(2 cos α)r+(cos 2α)r2 > 0 whenever r < (cos α+ |sin α|)−1,

(iii) follows from (ii).

Corollary 2. For each α, 0 < |α| <
π

2
, there exists an f ∈ Gα such

that min
|z|=r

Re f ′ → −∞ as r → 1−.

This follows from the sharpness of the bound in the left side of the in-
equality given in (ii) because the numerator approaches −2 (cos α)(1− cosα)
as r → 1−.

Remark 2. The bounds given in (ii) also follow from Robertson’s dis-
cussion of extremal problems over P [9].

Next, we will show that no Gα is contained in Gβ for β 6= α.

Theorem 2. For each α, |α| <
π

2
, there exists f ∈ Gα such that

f /∈ Gβ for β 6= α.

Proof. For the extreme point of Gα given by

(2.4) g(z) = −e−2iαz − (2e−iα cosα) log(1− z),

we have

eiβg′(z) = ei(β−α)

(
(cos α)

(
1 + z

1− z

)
+ i sin α

)
.
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Setting z = eiθ, we get eiβg′(z) = iei(β−α)
[
(cos α) sin θ

1−cos θ + sin α
]

and

(2.5) Re eiβg′(eiθ) = − sin(β − α)
(

(cosα)(sin θ)
1− cos θ

+ sin α

)
.

Since
sin θ

1− cos θ
→ ∞ when θ → 0+ and

sin θ

1− cos θ
→ −∞ as θ → 0−, the

right side of (2.5) tends to −∞ as θ → 0+ or θ → 0− when β > α or
β < α, respectively. Hence, g ∈ Gα − Gβ for β 6= α.

Theorem 2 tells us that the classes Gα are different from each other.
On the other hand, we know that the function f(z) = z is in Gα for all
α, |α| <

π

2
. Our next observation is a kind of converse to this result;

expecting a function to be in all the Gα for a “small” range of α will force
the function to be f(z) = z.

Theorem 3. Suppose that for some ε, 0 < ε <
π

2
, the function f is in

Gα for all α satisfying either

π

2
− ε < α <

π

2
or
−π

2
< α <

−π

2
+ ε.

Then f(z) = z.

Proof. Suppose 0 < ε <
π

2
and f ∈ Gα for

π

2
− ε < α <

π

2
. If

f ′(z) = u(z) + iv(z), then Re eiαf ′(z) = u(z) cos α − v(z) sin α. For fixed
z ∈ ∆, let α → π

2
. Then Re eiαf ′(z) → −v(z) ≥ 0 which implies that

v(z) ≤ 0. Since z was arbitrary, we conclude that v(z) ≤ 0 for all z ∈ ∆.
Since v(0) = 0, the maximum principle yields that v(z) ≡ 0 throughout ∆.
Thus, f ′(z) = u(z) and f ′ is constant. From f(0) = 1, we have f(z) = z.
A similar argument, using the minimum principle, leads to the result when
−π

2
< α <

−π

2
+ ε.

On the other hand, we can have many f ∈ Gα for ranges of α bounded
away from ±π

2
. Namely, we have the following

Theorem 4. For each ε in the interval
(
0,

π

2

)
, there exists a function

f such that f ∈ Gα for all |α| ≤ π

2
− ε and f /∈ K.

Proof. It is well known that h(z) = z + λzn ∈ K if and only if |λ| ≤
1
n2

. For fixed ε, 0 < ε <
π

2
, choose an integer n such that n > (sin ε)−1.
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Since

Re eiαf ′(z) = Re
{
eiα(1 + (sin ε)zn−1

} ≥ cosα− |sin ε|
≥ cos

(π

2
− ε

)
− sin ε = 0,

f ∈ Gα. On the other hand,
sin ε

n
>

1
n2

implies that f /∈ K. Therefore,
f ∈ Gα −K as needed.

Goodman and Saff [3] remarked that if f ∈ Cα for all α, |α| <
π

2
,

then f is convex. Next, we will show that not the entire range of α is
needed. The same small range of |α| near

π

2
that restricted f to the

identity function in Theorem 3 for f ∈ Gα also requires f ∈ Cα to consist
only of convex functions. Note that the arbitrary function in K that defines
Cα is replaced by the identity function in the definition of Gα.

Theorem 5. Suppose that for some ε, 0 < ε <
π

2
, the function f is in

Cα for all α satisfying either

π

2
− ε < α <

π

2
or
−π

2
< α <

−π

2
+ ε.

Then f ∈ K.

Proof. Without loss of generality, for some fixed ε, 0 < ε <
π

2
,

suppose that f ∈ Cα for all α such that π
2 − ε < α < π

2 . Then there exists

a sequence of reals {βn}∞n=1,
π

2
− ε < βn <

π

2
, converging to

π

2
, and a

corresponding sequence of functions {gn}∞n=1 convex in ∆ such that

Re
eiβnf ′(z)

g′n(z)
> 0, z ∈ ∆, n = 1, 2, 3, . . . .

Since K is a compact family [1], there exists a subsequence of {gn}∞n=1,
{gnk

}∞k=1, that converges uniformly on compacta of ∆ to some g ∈ K. It
follows that

Re
eiβnk f ′(z)

g′nk
(z)

→ Re
if ′(z)
g′(z)

≥ 0 as k →∞.

Since Re
if ′(0)
g′(0)

= 0, an application of the minimum principle shows that
if ′(z)
g′(z)

is constant in ∆. Therefore, f = g.
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Since the moduli of coefficients of functions in Gα get small as α ap-
proaches

π

2
, it is natural to ask if the classes Gα satisfy any other nice

geometric properties that are enjoyed by other classes having similar co-
efficient restrictions. In the next section, we discuss how the classes Gα

relate to other subclasses and obtain some convolution results.

3. Inclusion properties

For fixed α, |α| < π

2
, and g given by (2.4), we have

(3.1) 1 +
zg′′(z)
g′(z)

=
1

1− z
+

e−2iαz

1 + e−2iαz
.

When z0 = −re2iα,

Re
{

1 +
z0g

′′(z0)
g′(z0)

}
=

1 + r cos 2α

|1 + re2iα|2 −
r

1− r
→ −∞

as r → 1−. Thus, g /∈ K. The determination of the radius of convexity for
the classes Gα is a very difficult problem. The solution for G0 was obtained
by the first author [13]. The next theorem gives a bound on the radius of
convexity for f ∈ Gα.

Theorem 6. If RCV denotes the radius of convexity for the class Gα,

then
(√

2− 1
)

(cosα + |sin α|)−1 ≤ RCV ≤ √
1 + cos α−√cos α.

Proof. For the lower bound, the radius of convexity of G0 is known
[7] to be

√
2− 1. By (iii) of Corollary 1, we have that f ∈ Gα implies that

f(λz)
λ

∈ G0 for λ = (cos α + |sin α|)−1. It follows that f ∈ Gα is convex at

least for |z| < (
√

2− 1)(cos α + |sin α|)−1. From (3.1), we have that

1 +
zg′′(z)
g′(z)

= 0 if and only if z2 − 2z − e2iα = 0

which gives the root
√

1 + cosα−√cos α as an upper bound on the radius
of convexity.



312 Herb Silverman and E. M. Silvia

Remark 3. For α = 0 in the theorem, RCV =
(√

2− 1
)

which agrees
with the result obtained earlier by the first author [13].

Krzyz [6] gave an example of a function that was in G0 and not
starlike. It is natural to ask if Gα ⊂ St for some α. To see that this is not
the case, we again consider the extreme points of Gα, α 6= 0. For g given
in (2.4) and 0 < θ < 2π,

(3.2) Re
g(eiθ)

eiθg′(eiθ)
=

sin θ
2

cos
(

θ−2α
2

) [sinα + (2 cos α)G(θ)]

where G(θ) = (sin θ) ln
∣∣2 sin θ

2

∣∣ +
(

π − θ

2

)
cos θ. When θ = π + 2α and

0 < |α| < π

2
, we have that sin

θ

2
= cos α > 0 and

G(θ) = (− sin 2α) ln |2 cos α|+ α cos 2α.

As θ → (π + 2α)+, cos θ−2α
2 → 0− and, as θ → (π + 2α)−, cos θ−2α

2 → 0+.
Thus, for α 6= 0, we may choose a value of θ > π + 2α when sin α +
2(cos α)G(π+2α) > 0 and a value of θ < π+2α when sin α+2(cos α)G(π+
2α) < 0 to show that the right side of (3.2) can be negative. Thus, for any
α, 0 < |α| < π

2
, g /∈ St.

Remark 4. The expression sin α + (2 cos α)G(π + 2α) = 0 only when
α = 0. That the function g given by (2.4) is starlike when α = 0 follows
from Lemma 2 in a paper by Ruscheweyh [11]. As noted earlier, Krzyz [6]
gave an example of a function that was in G0 − St; Mocanu [8] gave an
example of a function f /∈ St satisfying the more restrictive condition
|f ′(z)− 1| < 1, z ∈ ∆.

Our next theorem gives a condition under which polynomial members
of Gα are starlike and convex.

Theorem 7. If pn(z) = z +
n∑

k=2

ckzk ∈ Gα, then pn ∈ St if cos α ≤
1

2(n− 1)
and pn ∈ K if cos α ≤ 1

(n + 2)(n− 1)
.

Proof. It is known [5] that, for f(z) = z +
∞∑

k=2

akzk ∈ A, the con-

dition
∞∑

k=2

k |ak| ≤ 1 is sufficient for starlikeness of f , while
∞∑

k=2

k2 |ak| ≤ 1



On α-close-to-convex functions 313

is sufficient for the convexity of f . For pn(z) = z +
n∑

k=2

ckzk ∈ Gα, the

coefficient bounds from (i) of Corollary 1 yield
n∑

k=2

k |ck| ≤
n∑

k=2

2 cos α = 2(n− 1) cos α ≤ 1

when cos α ≤ 1
2(n− 1)

, and

n∑

k=2

k2 |ck| ≤
n∑

k=2

2k cos α = 2
[
n(n + 1)

2
− 1

]
cos α

= (n + 2)(n− 1) cos α ≤ 1

whenever cos α ≤ 1
(n + 2)(n− 1)

.

The previous theorem gives conditions on polynomial elements of Gα

that will yield the geometric properties of starlikeness and convexity. It
would be nice to find other conditions or sets of conditions that would
either do this for more general members of the Gα or yield membership in
other classes.

Next we turn to a discussion of some convolution properties of Gα.

For g(z) =
∞∑

n=0
bnzn and h(z) =

∞∑
n=0

cnzn analytic in ∆, the convolution

or Hadamard product of g and h is given by (g ∗ h) (z) =
∞∑

n=0
bncnzn. It

follows from the next theorem that the classes Gα are preserved under op-
erators that can be realized as convolutions with specific convex functions.

Theorem 8. If f ∈ Gα and φ ∈ K, then f ∗ φ ∈ Gα.

Proof. It is known [12] that if φ ∈ K, g ∈ St, and F ∈ A, then
φ ∗ Fg

φ ∗ g
(∆) ⊂ con (F (∆)) where “con” denotes the convex hull. For

f ∈ Gα, take g(z) = z and F (z) = eiαf ′(z). Then

φ ∗ Fg

φ ∗ g
(z) =

φ(z) ∗ eiαzf ′(z)
z

= eiα(φ ∗ f)′(z).

From Re eiαf ′(z) > 0, we have that Re eiα(φ ∗ f)′(z) > 0. Therefore,
φ ∗ f ∈ Gα.

Particular choices of convex functions give us some well known prop-
erty preserving operators. Two examples are offered in the following
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Corollary 3. If f ∈ Gα, then so are

F1(z) =
1 + γ

zγ

z∫

0

tγ−1f(t)dt, Re γ > 0

and

F2(z) =

z∫

0

f(ζ)− f(xζ)
ζ − xζ

dζ, |x| ≤ 1, x 6= 1.

Proof. Observe that Fj(z) = (hj ∗ f)(z), j = 1, 2, for h1(z) =
∞∑

n=1

1 + γ

n + γ
zn, Re γ > 0, and h2(z) =

∞∑
n=1

1− xn

n(1− x)
zn =

1
1− x

log
[
1− xz

1− z

]
.

Since h1 was shown to be convex by Ruscheweyh [10] and h2 is clearly
convex, the result follows from Theorem [8].

According to the next result, the class Gα is closed under convolution
for some, but not all, α.

Theorem 9. There exists a real number α0 ≈ 1.24773 for which Gα

is closed under convolution when α0 ≤ |α| < π

2
and Gα is not closed under

convolution when 0 ≤ |α| < α0.

Proof. First, we show that it suffices to consider the extreme point
g that is given by (2.4). For f, h ∈ Gα, there exist probability measures µ1

and µ2 on the unit circle X such that

f(z) =
∫

X

(
z +

∞∑
n=2

2e−iα cos α

n
xn−1zn

)
dµ1(x)

and

h(z) =
∫

X

(
z +

∞∑
n=2

2e−iα cos α

n
yn−1zn

)
dµ2(y).

Thus,

(f ∗ h) (z) =
∫

X×X

(
z +

∞∑
n=2

4e−2iα cos2 α

n2
xn−1yn−1zn

)
dµ1(x)dµ2(y)

=
∫

X

(
z +

∞∑
n=2

4e−2iα cos2 α

n2
(w)n−1

zn

)
dµ(w)
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for |w| = 1 and µ is a probability measure on X. We conclude that
Re

(
eiα(f ∗ h)′(z)

)
> 0 whenever

Re

{
eiα

(
1 +

∞∑
n=2

4e−2iα cos2 α

n
zn−1

)}
= Re eiα(g ∗ g)′(z) > 0.

For g given by (2.4),

eiα(g ∗ g)′(z) = −eiα − 2e−2iα cos α− 4e−iα
(
cos2 α

) log(1− z)
z

.

When z = eiθ, 0 < θ < 2π,

Re
{
eiα(g ∗ g)′(z)

}
= (cos α)

[
1− 4 cos2 α− 4 (cos α)H(α, θ)

]
,

where

H(α, θ) =
(

(cos(α + θ)) log(2 sin
θ

2
)−

(
π − θ

2

)
sin(α + θ)

)
.

Consequently, Re
{
eiα(g ∗ g)′(z)

}
is positive if and only if

G(α, θ) =
[
1− 4 cos2 α− 4 (cos α) H(α, θ)

]

is positive. We can determine ranges of α for which Gα is not closed
under convolution by choosing specific θ for which G(α, θ) < 0. Since
G(−α, 2π−θ) = G(α, θ), we have that Gα is closed under convolution if and
only if G−α is closed under convolution. It is easy to verify that G(α, π) =
1 − 4(1 − ln 2) cos2 α ≤ 0 for |α| ≤ arccos

(
2
√

1− ln 2
) ≈ .44, G(α, π

2 ) =
(−1 + π

2 ) + (ln 2) sin 2α + (−2 + π
2 ) cos 2α < 0 for α ∈ (−.90,−.12), and

G(α, π
10 ) < 0 for α in (−1.22,−.85). Additional choices of θ show that

G(α, θ) can be negative for |α| ≤ 1.2477.
On the other hand, by fixing α and varying θ, we can verify numer-

ically that G(α, θ) ≥ 0 for |α| ≥ α0 ≈ 1.2477+ and all θ ∈ (0, 2π). This
completes the proof.
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