On stable rings

By LADISLAV BICAN and TOMAS KEPKA (Praha)

The stable torsion theories (i.e. the torsion class of which is closed under injec-
tive hulls) appeared in the literature in many situations and play an important role.
It is therefore natural to ask what are the rings having the stable torsion theories
only. The present paper is meant as an introduction to the study of such rings.

1. Preliminaries

All the rings considered below are assumed to be associative rings with identity
and R-mod will denote the category of all unitary left R-modules. A ring R is said
to be subcommutative if Ra=aR for all a€ R. By a local ring we mean a ring having
exactly one proper maximal left ideal. A non-zero element @ is said to be a left
zero divisor if ab=0 for some h=0. A commutative ring without zero divisors
will be called a domain. For any subset S of an R-module M we define the left
annihilator of S by (0: S)={/|A€R, A5=0}. For our further purposes it is con-
venient to consider 0 as a minimal left ideal and R as a maximal left ideal and a
prime ideal. Recall that a ring R is hereditary if every left ideal is a projective left
module. In this case the class of all injective modules is closed under homomorphic
images (see [6]). A ring direct sum will be denoted by 4, while that of modules
by @ . The injective hull of a module M is denoted by M. A module M is said to
be injective with respect to an inclusion A< B if every homomorphism 4 —-M can
be extended to B.

An idempotent radical r is a subfunctor of the identity functor for R-mod
such that r(r(M))=r(M) and r(M/r(M))=0 for all M<R-mod. A torsion theory
(9, B) for R-mod is an ordered pair of classes of modules orthogonal with respect
to the functor Hom, i.e. AWM iff Homg (4, B)=0 for all BB and BeB iff
Homy (A4, B)=0 for all A<M, The class M is called the torsion class and B the tor-
sion-free class. As it is well-known (see e.g. [7]) there is a one-to-one correspondence
between torsion theories and idempotent radicals. A torsion theory (I, B) will be
called hereditary if the class 9 is closed under submodules. If (9, B) is a hereditary
torsion theory then the system §= {///S R a left ideal, R//¢ 9} is a radical filter, i.e.
the following conditions are satisfied:

(Fy) If Ie§, IS K, a left ideal then KeG§.
(Fy) If 7€ and ZA€R then (/: A)€.
(Fy) If ISK, Ke§ and (I: x)€§ for all x€K then I€ .
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Conversely, if §& is a radical filter then ({M [(0: m)€§ for all me M}, {N|(0: m)4 &
for all me N, m=0} is a hereditary torsion theory and this correspondence is one-to-
one (see e.g. [20] for details). If & is a radical filter then § is closed under finite
intersections and products and by §* we shall denote {/|7 a left ideal with (/: 1)¢ §
for all 26 R+ 1} (the set §" is called the cofilter corresponding to §). Every class €
of modules defines uniquely a torsion theory (I, B), namely B = {B|Homg (C, B)=0
for all C<€} and M= {A4|Homg (4, B)=0 for all B£B}. This torsion theory is
said to be generated by the class €. The torsion theory cogenerated by € is defined
dually. A submodule NEM of a module M is called essential if N A4=0 implies
A=0 for each submodule A< M. The hereditary torsion theory corresponding to
the least radical filter containing all the essential left ideals will be called the GOLDIE’s
torsion theory (see [10]).

2. Basic properties

In this section we introduce the notion of stable ring and give some basic prop-
erties. The following proposition has already apperad in the literature in various
forms. However, we include it with proof for the sake of completeness and for the
convenience of the reader.

2.1. Proposition. Let (9, B) be a torsion theory for R-mod and let r be
the corresponding idempotent radical. Then the following are equivalent:

(i) If MeM then MeM.

(ii) If 7 is injective then r([) is so.

(i) If MM and M/MeB then M is injective.

(iv) If M9 and Extg (N, M)=0 for all NeIM then M is injective.

Moreover, if (MM, B) is hereditary and §F denotes the corresponding radical
filter then these conditions are equivalent to the following (see [21]).

(v) If JEK are left ideals and Ke&*, (I: 2)€F for all 26K then I=K(\L for
some L€F.
- . "
ProOF. (i) implies (ii). We have r(7)€9t and hence r(7)eM. But r(HEr(1)E1
P
and so r(H)=r(l).

(i1) implies (iii). Since M€ and M/MeB, M=r(M).

(iii) implies (iv). Let M €3 be such that Extg (N, M)=0 for all NI, Denoting
r(M/M)=A|M we get Extg (A/M, M)=0 and hence A= M since M is essential in A.
Thus M/M <98 and we may use (iii).

(iv) implies (i). Let M e, The exact sequence

0~ r(M) M-~ M[r(M)—~0
induces for each N€9i the exact sequence
0 = Homg(N, M/r(M)) - Extg(N, r(M)) - Extg(N, M) = 0.

Hence, by (iv), #(M) is injective and so M =r(M) (as MSr(M)).
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Now suppose that the torsion theory (9, B) is hereditary. (i) implies (v). Let
L/I be maximal with respect to L/I(K/I=0. Then LM K=I and K/[=(K+L)/L,
so (K+L)/LeM (since (I: 2)€F for all A€K implies K/I=r(R/I)). We claim that
(K+L)/L is essential in R/L. Indeed, if S/LN(K+L)/L=0 then SN(K+L)=L.
However, (L+ S) K=1, and consequently (L+ S)/I" K/I=0. From the maximality

of L/I we see (L+S)/I=LJI, i.e. S=L. Now we have (K+L)/LER/LS(K+L)/L

a/\\
and (K+L)/LeIM, and consequently R/LEIR, i.e. LEF.

(v) implies (i). Let M€ and x€M = r(M). Put I=(0: x), K= (r(M) x). Since
r(R/K)—r(R(r+r(M))) 0, KEF*. If %€K then (I: 2)=(0: xx)€F since xxcr(M).
Hence there is L€ such that /=K L. We show that K// is essential in R//. Indeed,
if ac R, a¢ K then ax¢ r(M). On the other hand, M S r(M)E M, so r(M) is essential
in M and there is s¢ R with sax=0, saxcr(M). Therefore sa¢ I and sack, i.e.
s(a+1)#0 and s(a+/1)€K/I. Now we have K/I(L/I=0 and the essentiallity of K//
yields L=1, a contradiction. Thus M=r(M).

2.2. Definition. A torsion theory (M, B) satisfying the equivalent conditions of
the preceding proposition will be called stable.

2.3. Remark. It follows immediately from Proposition 2.1 that every torsion
theory containing the Goldie’s torsion theory is stable.

2.4. Definition. A ring R is said to be stable (h-stable) if any (hereditary) torsion
theory for R-mod is stable.

2.5. Proposition. Let R=T,+T,+...+ T, be a direct sum of rings. Then
R is stable (/i-stable) if and only f 7; are stable (i-stable) for all i=1,2, ..., n

ProOF. The proof is based on the structure of modules over a direct sum of
rings as explained e.g. in § 9, Ch. 9 of [19] and has a technical character. The details
are left to the reader.

2.6. Lemma. Let R be a h-stable ring and r an idempotent radical for R-mod.
It 1€ R-mod is injective then r(I) is injective iff 1/r(I) is so.

Proor, Let I/r(I) be injective. Denote by 2 the smallest torsion-free class
containing //r(f). It is an easy exercise to show that the corresponding torsion class
is closed under submodules. Hence the radical s corresponding to 2 is hereditary.
Since I/r(I)eA, s(1/r(1))=0, i.e. s(I)Sr(I). The converse is obvious and therefore
s(I)=r(I). But s(7) is a direct summand of 7 by the hypothesis.

2.7. Proposition. Let R be a hereditary ring. Then R is stable if and only
if R is h-stable.

Proor. It suffices to use 2.6 and 2.1.
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3. Hereditary rings and stability

If M€ R-mod then k(M) will denote the set of all € R such that M is injective
with respect to the inclusion R.Z< R.

3.1. Lemma. Let M€ R-mod and /€ R. Then the following are equivalent:
(i) 2€k(M),
(i) If meM and (0: 2)m=0 then méiM.

Proor. Obvious.

3.2. Lemma. Let M<R-mod. Then
(i) 0, 1€k(M).
Gi) If 4, g€ R, Ri=Rg then ick(M) iff gck(M).
(iii) If Ay, Aoy ..., 2 €k(M) and R, are maximal left ideals then iy« iy« i €
ck(M).

PrOOF. The statements (i) and (ii) are obvious. For (iii) we use the induction
by n. Let me M and (0: 4, « 45-+-4,)m=0. Since (0: 4,)E(0: 4, Ay+--+4,), m=/ya, acM
suitable. Firstly suppose (0: iy-+-4,)E RA,. If 0€(0: /5---4,) then o=0c4, for some
g€R, and hence a€(0: /,+/y-+-4,). Therefore (0: iy---2,)=(0: A, Ay++4,)+4,, and
consequently (0: /,---4,)-@=0. By the induction hypothesis there is a b¢ M with
a=/lysy+b, and so m=/4,4y---2,b. Let now (0:7,---4,)% RA,. Then we have
R/y+(0: 25:--2,)=R since R/, is maximal. So 1=p4,+pu, 0€R and puc(0: 2y-+-2,).
Hence /y:++ 2, =0/, /g+++ 4, (by multiplying of the last equality by Z;---4, on the right).
From this, Riy---7,= Rl /y---4, and iy4y---4,€k(M) by (ii) and by the induction
hypothesis.

3.3. Lemma. Let (I, B) be a torsion theory and 7€ R be such that R.=AiR
is @ maximal left ideal. Let M <IN and Exty (N, M)=0 for every NeI. Then 7.€k(M)
provided at least one of the following conditions for M holds:

(1) Each submodule of M belongs to .

(il) The projective homological dimension of every factor-module of M is at

most 1.

(ii1) The injective homological dimension of M is at most 1.
PrOOF. Assume /A4 k(M). Then there is an m&M such that (0: 2)m=0 and
ma AM. Since RAS/R, ZM is a submodule of M. Put N=R(m+/.M). We have

N = R/(~AM: m). However, RAS(AM: m)< R. Hence the maximality of R/ yields
(AM:m)=Ri. If M satisfies (i), Rm+/ MeIM and consequently

N = (Rm+/ M)/, MEM,
Then Extg (N, M)=0. If (ii) or (iii) holds then the same gives the exact sequence
0 = Extg(M/AM, M) —~ Extg(N. M) — Exty(M/(Rm + /M), M) = 0.

Since Extg (N, M)=Ext, (R/R2Z, M)=0, M is injective with respect to RASR, a
contradiction.
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3.4. Theorem. Let R be a left hereditary left noetherian ring. Then R is stable,
provided the following condition is satisfied: (x) If .€ R, 7.#0, then there are /,, ..., /,€ R
such that RA=Ri /s 7y, RL,E2;R and RZ; is a maximal left ideal for every i.

Proor. Let (I, B) be a torsion theory for R-mod and McIR be such that
Extg (N, M)=0 for each N¢I. Since R is left hereditary, the condition (iii) from
3.3 is satisfied trivially. Now from («), 3.2 and 3.3 we see that k(M )=R. Hence M
is injective with respect to the inclusions of all the principal left ideals. But such a
module over a left hereditary left noetherian ring is injective (see [11], Theorem
6.1). An application of 2.1 finishes the proof.

3.5. Theorem. Let R be a left hereditary ring without zero divisors and let the
condition (%) from the preceding theorem be satisfied. Then R is stable.

Proor. Using Theorem 6.3 of [11] we can proceed in the similar way as in the
proof of the preceding theorem.

4. Some sufficient conditions for stability

4.1. Lemma. Let R be such a ring that J(R)[(J(R))* is a simple module, where
J(R) is the Jacobson radical of R. Then J(R) is a principal left ideal and (J(R))"/(J(R))"*"
is a simple module for every n=1, 2, ... , provided at least one of the following condi-
tions is satisfied:

(i) J(R) is nilpotent.
(i1) J(R) is a finitely generated left ideal.

Proor. Firstly we show that the condition (i) (under our hypothesis) implies
the condition (ii). Since J(R)/(J(R))? is simple, J(R)=(J(R))*+ Ra for eachacJ(R) -
= (J(R))? (if J(R)=(J(R))* then the nilpotence of J(R) yields J(R)=0=R-0). Then
(J(R))*=(J(R))'+(J(R))*- Ra+ Ra(J(R))*+ RaRa< (J(R))*+ RJ(R)a=(J(R))*+
+ Ra*=(J(R))®. Similarly, (J(R))"=(J(R))"*'+ Ra". However, (J(R))'=0 for some
n and so J(R)=Ra"+Ra""'+..+Ra. Now we have J(R)(J(R)/Ra)=
=((J(R))*+ Ra)/Ra=J(R)/Ra and the Nakayma’s Lemma ([18], § 4.2, Ex. 14) shows
J(R)/Ra=0, i.e. J(R)=Ra. Using the same method we get (J(R))"=Ra", and con-
sequently (J(R))"(J(R))"*'=Ra"/Ra"*'= R/(Ra"*': a"). Further, (Ra*: a)=(Ra: a"),
as one may check easily, and hence (Ra"*': @") is a maximal left ideal since (Ra*: a)
is so and we are through.

4.2, Lemma (see [3]). Let R be a local ring with nilpotent Jacobson radical J(R).
Then:
(i) If J(R)=Ra for some a< R, then every left ideal of R is of the form Ra", for
suitable n=0,1,2, ... .
(i1) If J(R)=Ra=bR for some a, be R, then every left right ideal of R is two-
sided and of the form Ra"=a"R=b"R=RD" for suitable n=0,1, 2, ... .

PrROOF. (i) Let /S R be a left ideal. We can clearly suppose /0, 7/ R so that
there is 0= x€/. Since IS J(R), x=r,a for some r,€ R. If r, is not an invertible ele-
ment of R, then r, =r,a. Repeating this argument we can find an invertible element
s€R and a natural integer /(x) with the property x=sa''®, I(x)=<h, the nilpotence
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degree of a. Setting n=min {/(x), x€I, x#0} we get Ra"<I (by the invertibility
of 5). On the other hand, for x€7 we have /(x)=n and consequently Ra"=1.

(if) Let k& be the nilpotence degree of J(R) and let &"=0. For x,, ..., x,€J(R
we have X;=ria, ..., X,=r,8 80d Xy¢ -2+ s Xy=PiQ+ > e P @=038¢ =+ 14 _10=...=
=r.a"=0 and hence k=n. If ¢c€J(R) is of the nilpotence degree k, then Rc= Rd'
for some natural integer / by (i) and the assumption /=1 leads to a contradiction
with the nilpotence degree of ¢. Hence Rc= Ra. By the left-right symmetry we get
Ra=Rb=bR=aR and now it suffices to use induction.

4.3. We shall say that a left ideal 7 of a ring R satisfies ondition (f) if there are
/1y« s Ay R such that R2;=/;+ R is a maximal left ideal of R and /=R/, - R/, R/,.

4.4. Lemma. Let R be a ring with zero divisors satisfving (f) for any non-zero
principal left ideal. Then the zero ideal satisfies (f), too.

PrOOF. Let €={p|00¢R, Ro=¢R)}. Firstly suppose that (0: ¢)=0 for each
0€€. Then (0: 2)=0 for every 0=.cR. Indeed, if 0=4cR then (by (f)) there is
0€Q such that RA=Rp. So R/(0: i)z Ri.=Ro=R/(0: p)=R. However, any left
ideal of R is a two-sided one, and hence (0: 1)=(0: R/(0: 2))=(0: R)=0—a contradic-
tion. Thus there is p€C€ with (0: g)=0. Taking A€(0: ¢) non-zero we get R/.-Ro=
=R/+-pR=0 and now it suffices to use (f) for R/, Ro.

4.5. Lemma. Let a ring R satisfy the condition of the preceding lemma. Then R

posseses a finite left composition series and has therefore a finite number of maximal
left ideals.

PrOOF. By 4.4 we have [, - --- - I,=0, where /; are certain maximal and principal
left ideals of R. We shall continue by induction on n. For n=1 there is nothing to
prove. Let us assume our assertion holds for all k<n and 7;+----1,=0is an irre-
dundant representation of 0 as a product of maximal and principal left ideals. Hence
L =(0:1,-+--1) and so I,---- -1, R/I; (because of the principality of I, ..., I,).
Now it suffices to use the induction hypothesis for the ring R/(/y- --- + I,). The second
part follows easily from the well-known theorems on composition series and from
the following simple fact: If R/K, = R/K, as modules for some two-sided ideals KX,
K, of R then K, =K.

4.6. Theorem. A ring R every nontrivial left ideal of which satisfies the condition
(B). is stable.

PrROOF. Let R be a ring without zero divisors. Then, due to (f), any left ideal
of R is two-sided and a principal one and the condition from 3.4 holds trivially.
Since every non-zero left ideal of R is isomorphic to R, R is left hereditary and we
may use Theorem 3.5. The case of the ring with zero divisors is settled to the following
more general result.

4.7. Theorem. Let R be a ring with zero divisors. Then the following are equiv-
alent:
(i) Every left ideal of R satisfies ().
(i1) Every nontrivial principal left ideal of R satisfies (p).
(i) R is a finite direct sum of local left and right principal ideal artinian rings.
In this case, R is stable on the left and on the right.
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PROOF. (i) implies (ii) trivially.

(i1) implies (iii). By Lemma 4.5 R is artinian and R/J(R) is a finite direct sum
of division rings (since any left ideal of R is two-sided). It is a well-known fact (see
e.g. [18]) that in this case idempotents can be lifted modulo J(R). Hence R=Re, &
& --- & Re,, ¢;€R are primitive orthogonal idempotents. However, Re; are two-
sided ideals and so R=Re,+ --- 4 Re,. The rings Re; are local and satisfy (f), thus
it suffices to use 4.2.

(iii) implies (i). Let R=R;+} --- + R,, R; being local principal left and right
ideal artinian rings. By 4.2 the rings R; satisfy () for every left ideal and consequently
every left ideal of R satisfies (f8), too.

Now we shall prove the stability of R. With respect to 2.5 and (iii) we may
assume R is a local artinian ring. By a result of GARDNER [8] such a ring has the
trivial torsion theories only and R is therefore stable.

5. The subcommutative case

5.1. Theorem. Every subcommutative principal left ideal ring R is stable.

ProOF. We shall divide the proof into three steps:

(x) Suppose R is a prime ring. In this case R is without zero divisors and the
subcommutativity of R permits us to prove, similarly as in the commutative case,
that every non-zero left ideal of R satisfies (ff). Now we can use 4.6.

(f) Suppose R is a local artinian ring. Then R is stable as follows from [8].

(y) By using of GoLpIg’s Theorem (see e.g. [12], Theorem 4.8 and Lemmas 4.12,
4.13) we may reduce the general situation to the above one’s. Indeed, under our
hypothesis, the ring R is a finite direct sum of primary rings and of local artinian
rings.

5.2. H. Bass in [1] has introduced the notion of a perfect ring. He has shown
that a right perfect ring can be defined as a ring satisfying the minimum condition on
principal left ideals and that a commutative perfect ring is a finite direct sum of
perfect local rings. This fact clearly holds for the subcommutative rings.

5.3. Theorem. Any subcommutative perfect ring R is stable.

Proor. By the above remark and by 2.5 we can suppose R is a local perfect
ring. But in this case R posseses the trivial torsion theories only (see GARDNER [8])
and it is therefore stable.

5.4. Theorem. Any subcommutative noetherian ring R is h-stable.

ProOOF. We shall use the criterion 2.1(v). So let & be a radical filter, K€F*,
IS K an ideal and (7: 2)€§ for each A€ K. Since R is noetherian, every ideal posseses
an (irredundant) representation as a finite intersection of meet irreducible ideals.
Also we have I=L,N--NL,NL,+;N-+NL, and K=L,N---NL,. We may restrict
ourselves to the case m=n since m=n yields I=K. Now we are going to show
L,iv,y ..., L,€§. Denoting by P/L,,+1 the prime radical of the ring R/L,., we get
(Li4qt x)EP for every x4 L,., since every zero divisor of R/L,,,is contained in
P/L, ;, (as assures us the irreducibility of L,., and the ascending chain condition

5D
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for right annihilators). Further, taking x€K=L,,, we have (I: x)S(L,,,: x)SP
and PeF since (/: x)€§. However, the prime radical of a noetherian ring is nilpotent
and hence PI€ L, , for some natural integer /. Thus L, €&, similarly L, .., ..., L €&
and finally L, (- NL,€& which finishes the proof.

5.5. Proposition. Let R be a Ah-stable ring and /SR be a two-sided ideal.
Then R/I is h-stable.

Proor. We shall use the criterion 2.1(v). Let € be a radical filter of left ideals
for R/I and let f: R—R/I denote the canonical projection. By [15] there exists a
radical filter § for R satisfying the following conditions:

(i) If K€§, then f(K)€E.

(ii) If LER is a left ideal with /S L and L/I€E, then LE.

Let KS L be left ideal in R such that IS K, (K/I: f(/))€€ for all A€L and
L/I€€*. For i€L we have IS(K: ) and f(K: 2)=(K/I: f(2))€€. Hence (K: )EF
for all Z€ L. Further, let (L: x)¢ & for some 2€ R. Then f(L: 2)€€, i.e. (L/I: f(2))€E.
However, L/I€¢€*, and consequently € L. From this we see that LEF*. By 2.1(v)
there exists a left ideal A R such that K=AMNL and A€§. Then K/I=A/INL/I
and A/I€E.

5.6. Lemma. Let R be a h-stable ring and L, IS R be left ideals such that I is a
two-sided ideal finitely generated as a left ideal and IL=0. Then there is n=1 such
that I"MN L=0.

PrOOF. Put €={K|K is a left ideal and there is n=1 with /"= K}. By Proposi-
tion 0.6 of [20], € is a radical filter. Let r be the corresponding radical. Since /L=0,
(0: )€€ for all AcL, and so LS r(R). With respect to 2.1(v) there is a left ideal
A€ such that AMNr(R)=0. In this case, there exists n=1 such that /"M L=0.

5.7. Lemma. Ler IC R be a two-sided ideal such that I is finitely generated and
maximal as a left ideal and I/1* is a simple left module. Let there exist a left ideal
L and n=0 such that LSI" (here I"=R), L I"*! and IL=0. Then ["*1=]"*+2,

Proor. From 4.1 it follows that /"/I"*! is a simple module. Hence /"=/"*'+ L,
and consequently ["*'=/"*2 4 JL=]"*2,

5.8. Lemma. Let R be a h-stable ring and 1= R be a two-sided ideal such that
1 is finitely generated and maximal as a left ideal and 1/1* is simple module. If (0: I),=
={ala€R, la=0}#=0, then there is n=1 such that I"=1"*",

Proor. Put L=(0: 7),. Obviously L is an ideal and /L=0. By 5.6 there exists
n=1 such that /"M L=0. Since L=0, LE I". Now it suffices to use 5.7.

5.9. Lemma. Ler R be a h-stable ring, PS R a prime ideal which is not maximal
as a left ideal and and 1< R be a finitely generated maximal left ideal such that I is
two-sided and I/1* is simple. Then IP= P, provided P*< IP.

PrROOF. Suppose /P=P. We have P2C/PC P. Put R=R/IP and denote by f
the canonical projection of R onto R. Then f(P) is a prime ideal in R, f([) is a maximal
left ideal which is finitely generated and two-sided and (f(P))*=0, f(/). f(P)=0.
From this one can easily deduce that f(P) is the smallest prime ideal of R. In par-
ticular, R is directly indecomposable as a ring. By 5.8 there exists =1 such that
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(A(D)" is idempotent. However, every idempotent ideal finitely generated as a left
ideal in a /-stable ring is a ring direct summand (see [14]). So f(/)=R or ( f(1))"=0.
In the first case, /= R and hence /P = P, a contradiction. In the second case, /"S IPS P
yields /=P, which contradicts the hypothesis.

5.10. Theorem. Let R be a noetherian h-stable ring such that every maximal
left ideal I of R is two-sided and I/I* is a simple left module. Then R is a finite direct
sum of prime rings and of local artinian left principal ideal rings.

PRrROOF. Since R is noetherian, R is a finite direct sum of directly indecomposable
rings. Thus it suffices to assume R is directly indecomposable. We shall distinguish
WO cases:

(i) Every prime ideal of R is a maximal left ideal. By Theorem 3.6. of [16] R
is artinian. R has no nontrivial idempotent ideals by [14] so that R has primary
decompositions by Lemma 3.3 of [3] and consequently R is local owing to the in-
decomposability and the hypothesis. By 4.1 and 4.2, R is left principal ideal ring.

(i1) R contains a prime ideal which is not a maximal left ideal. Assuming P*= P
let us denote by R the factor-ring R/P? and by f the canonical projection of R onto R.
Since R is left noetherian, there is a maximal ideal /S R with f(/)f(P)#fP which
contradicts to 5.9. Thus P*=P, P is a ring direct summand of R by [14] and con-
sequently P=0 owing to the indecomposability of R. Thus R is prime and the proof
is finished.

A ring R will be called a dedekind ring if every ideal of R is a finite product of
prime ideals.

5.11. Corollary. Let R be a subcommutative dedekind ring in which prime
ideals commute. Then R is a finite direct sum of dedekind prime rings and local
artinian principal ideal rings. Moreover, R is noetherian and stable.

Proor. Let PSR be a prime ideal. Then R/P is a dedekind prime ring. Using
the same method as in [17] we may prove that every non-zero prime ideal of R/P
is a maximal ideal. From this it follows that every prime ideal of R is either a minimal
prime ideal or a maximal ideal. This fact and the dedekind property yield the ascend-
ing chain condition, as one may check easily. Further, for every maximal ideal 7,
I/I* is a simple module. From 5.4 and 5.10 it follows that R is a finite direct sum of
dedekind prime rings and of local artinian principal ideal rings. By Theorem 4.4 of
[23] every dedekind prime ring is hereditary and the stability of R follows now from
3.5, 5.3 and 2.5.
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