Convolution quotients and distributions

By A. SZAZ (Debrecen)

Introduction

In this paper, using a slight modification of a quotient module construction
[7], we generalize the concept of Mikusinski operators and establish some intimate
connections between Schwartz distributions and convolution quotients intro-
duced here.

This generalization subsumes the cases of operators associated with admissible
convolution rings [3, 4], and may be considered as a general foundation for the con-
volution calculus.

The identification, used here to identify certain distributions as convolution
quotients, is more general than the traditional one [1].

§ 1. A universal module of convolution gquotients

Let & be the set of all infinitely differentiable functions from the k-dimensional
Euclidean space R* into the field C of complex numbers, and let Z be the subset of &
consisting of all those functions with compact support.

It is known, that under addition and convolution % is a commutative ring
without proper zero-divisors, and & is a Z-module.

Definition 1.1. Let Zc Rc M & such that under addition and convolution
R is a ring and M is an R-module.

Remark 1.2. Because of the commutativity of convolution, we have @ *f=/f* ¢
for all p€ R and fe M.

Example 1.3. M=R=%2.

Example 1.4. M=R=6&g, where &g denotes the subset of & consisting of all
those functions with supports contained in various right-sided orthants [3].

Example 1.5. M=R=¢6,, where &; denotes the subset of & consisting of all
those functions with supports contained in various left-sided orthants [4].

Example 1.6. M=R=§,,, where &, denotes the subset of & consisting of all
those functions of exponential descent [3].
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Example 1.7. M=R=Y, where & denotes the set of all rapidly decreasing
functions on R* [6].

Example 1.8. M=R=L'é&, where L' denotes the set of all integrable func-
tions on R* [8].

Example 1.9. M=6& and R=%2.

Definition 1.10. Let S be a multiplicative system [7] in R, i.e., 0:#SCR,
04 Sand S* ScS.

Definition L.11. For any (o, f)ESX M let

'{,; = {(Y,g)ESXM:FoeS:(f*Y—@xg)*c = 0}.
Let
MM, R, S) = {ii(tP,f)ESxM}
and ¢

R(M,R,S) = {%GJ(M, R, S):E(fpl-ﬁ)eﬁzﬁefe}.
For any %, %emm R.S) let

S

S .8 Jevtosy
¢ -

g
+= =

v Q*y
For any %GQ(M, R, S) and %elﬂ(M, R, S) let

f 2 - Jivs g
*— = and —
1 QL ¥y v

S|~

where ((pl,fl)e-j% such that f;€R.

Theorem 1.12. #(M, R, S) is a commutative ring with unity, and # (M, R, S)
is a unitial #(M, R, S)-module.

To prove this use [7]. For example, we show that the definition of %*%
is correct. For this suppose that{wl,/}},(tpz,ﬁ)eg such that f;, /5,6 R and (g, h)E%.

Then there exist a,,0,6S such that

(fi*@s—@1*fo)%a, =0 and (g*xy—yY*h)*o, = 0.
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Hence, it follows that

(/i %) * (@2 1)) % (0, % G3) = ((g%12) % (@, % 1)) * (0, % 03)

and
e ((g#/f) * (@1 % 1) * (6, %02) = (P W) # (foa*h)) * (6, % 7,).
us
: ((fi*g)*(@ex 1) —(@r*¥) * (f2%8)) * (0, % 6,) = 0,
T. B.;
hixg _ farh
Pr¥Y Qaky
Finally, observe that if %EQ?(M, R, S) also holds then the two definitions for
i*_g_ given the same result.
oV

Example 1.13. #(6g, g, g\ {0}) is the field of Mikusinski operators.
Example 1.14. #(&, 2, 2\ {0}) is a vector space over Z(&, 2, 2\ {0}).

§ 2. Embedding of certain distributions

Let 2° be the set of all Schwartz distributions on R*, and let &’ be the subset
of %’ consisting of all those distributions with compact support.

It is known that under addition and convolution &’ is a commutative ring with
unity and without proper zero-divisors, and %" is a unitial &’-module such that C
and & are embedded in £ such that C, 2c&”.

Hereafter, S is supposed to have non-empty intersection with Z.

Theorem 2.1. Let @€ S(\%. Then the mapping defined on & by
Ax¢@
@
is independent of ¢ and is a ring isomorphism of & into #(M, R, S).

A

For a proof see the proofs of Theorem 2.8. and 2.14.
Definition 2.2. For any A<&” let

where 0 SN 2.

Remark 2.3. After this embedding .# (M, R, S) may also be considered as an
&’-module.

Theorem 2.4. Let q¢.#(M,R,S). Then qcé&” if and only if g* 2 2.

For a proof see the proof of Theorem 2.16.
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Example 2.5. Let ¢€S(1Z. Then

D q’ and an

belong to & for any k-tuple 2 of nonnegative integers and Z<R* [6].

Definition 2.6. Let £'c A 2" be a submodule of the &’-module %’ such
that A= (SMN2Z)c M.

Example 2.7. /'={A€2":A»2 c M}.
Theorem 2.8. Let ¢S\ Z. Then the mapping ® defined on N by

B(A) = A=

is independent of ¢ and is an & '-module homomorphism of A" into # (M, R, S).

PrOOF. Suppose that A€.A4" and @,, @,€ SN Z. Then (A * @,) * @a=@, * (A * @,).
Hence ((A*¢,) # @y — @y % (A% @)) ¥ a=0 for any ¢€ S. Thus

Axg,  A*g,

Py P2
Suppose now that A,, A,€.A47 Then

Mit+d)*e _ (it A)*(9*9)  (4i*@)x@+@*(A*9)
® Q@ pxo

P(A;+4,) =

A * Ag *
= —l(-’;-‘-’+27"1 — ®(Ay) + D(Ay),

and if in addition A,€&” then

(e ) _ (M*A)+*(@+0) _ (4*@)*(A*0) _
@ P*Q @*Q

(A% Ay) =

A *‘P*Az*(o
@ @
Example 2.9. Let M=6&, R=2, S=2\{0} and A=2Z'. Then @ fails to be

one-to-one.
Namely, for example

= A, % B(Ay).

f*o
¢ =-—=0
) (P

for all constant f€&. To see this choose @€ S such that ‘[(P———O.
R
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Definition 2.10. 4" is said to be normal with respect to (M, R, S) if A€A;
@eSMN2Z, 6€S and (A*¢@)*a=0 imply that A=0.

Remark 2.11. If SCZ then A" is normal with respect to (M, R, S) if and only
if A4, p€S and A% ¢@=0 imply that A=0.

Remark 2.12. If fe M, @€ S and f* @ =0 imply that f=0, and A"+ Zc M, then
A" is normal with respect to (M, R, S).

Namely, suppose that A€A] @€SMZ, o€ S such that (A*¢)*e=0. Then
(A#y)*(p*0)=0 for all y€Z. Hence, it follows that Ay =0 for all Yy €2. This
implies that A=0.

Example 2.13. Let M€ {68z, 6., Eop) R=M, S=M {0} and 4" as in Example
11. Then A" is normal with respect to (M, R. §).
To prove this use Remark 2.12. and the fact that M has no proper zero-divi-

sors [3].
Theorem 2.14. @ is one-to-one if and only if A" is normal with respect to (M, R, S).

Proor. First let @ be one-to-one. Suppose that A€ A, €S Z and o€ .S such
that (A #@)*e6=0. Then

(A*@)x@—@*(0%@))*a = 0.
Hence, it follows that

Axp  Ox¢
@ ¢
Thus ®(A)=®(0), and so A=0.
Now let 4" be normal with respect to (M, R, §). Suppose that A,, A,€.4"
such that @(A,)=®(A,). Then
M*p Ay*o
Y P
where ¢ € S Z. Hence, it follows that there exists 6€ S depending on ¢ such that

(A1 *@)x @ —@x(Ay%@))xa = 0.

(A —A9) % @) * (¢ x0) = 0,

Thus

and so A,=A,.

Definition 2.15. If .4 is normal with respect to (M, R, S) then for any
AEN let

where @€ SN 2.

Theorem 2.16. Suppose that A" is normal with respect to (M, R, S). Let
qg<.M (M, R, S) and suppose that q* 7 &. Then there exists a A€EZ" such that

A*xe@
q=

@
Sfor any o€ SN 2.
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PROOF. Let F be the function defined on Z by
F(g) = g*o.

F(p*y) = F(@)*y
for all ¢, y€%. Thus, by Lemma 3. in [2], there exists a unique A¢%  such that

Then

F(o) =q*¢ = Axg
for all @€ %. Hence, it follows that

for any @€ SN 2.

Note. A preliminary version of this paper with title “Convolution quotients
of a new type and their connection with distributions™ was presented at the Con-
ference on Generalised Functions in Wisla, Poland, October 1973. Concerning it
C. RyLL—NARDzEWSKI at the Conference proved that if k=1 then for every ¢ €Z
there exists z€C such that {e¥}% ¢ =0. This shows that for k=1 there is no multi-
plicative system S in & so that 2’ should be normal with respect to (&, Z, S).

Acknowledgement. The author is indebted to E. GeszteLyi for his valuable
comments.
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