Conditional-completion of Boolean rings by lower cuts

By ALEXANDER ABIAN (Ames, Iowa)

1. Introduction

In what follows (B, \leq) denotes a Boolean ring not necessarily with a unit (cf. [1, p. 130]). Hence, (B, \leq) is not necessarily a Boolean algebra. Accordingly, (B, \leq) is a distributive lattice with the least element 0 and B is closed under subtraction. This means that (B, \leq) is a partially ordered set such that for every element x and y of B, the least upper bound $x \vee y$ as well as the greatest lower bound $x \wedge y$ exists, and for every element z of B

$$(1) z \lor (x \land y) = (z \lor x) \land (z \lor y)$$

which implies that for every element x, y, z of B

(2)
$$z \wedge (x \vee y) = (z \wedge x) \vee (z \wedge y).$$

Moreover, for every element x and y of B, the difference x-y exists, where d=x-y is the unique element of B such that

(3)
$$d \lor y = x \lor y \quad and \quad d \land y = 0.$$

As usual, a Boolean ring (B, \leq) is called *conditionally complete* if and only if every nonempty subset S of B (which, a priori, is bounded below by 0) has a greatest lower bound (infimum) denoted by $\wedge S$ or by $\bigwedge_{x \in S} x$. Equivalently, a Boolean

ring (B, \leq) is conditionally complete, if and only if every subset E of B which is bounded above has a least upper bound (supremum) denoted by $\forall E$ or by $\bigvee_{x \in E} x$. Clearly, in (B, \leq) we have $\forall \emptyset = 0$.

Obviously, a Boolean ring (B, \leq) need not be conditionally complete. However, as shown in this paper for every Boolean ring (B, \leq) there exists a conditionally complete Boolean ring (L, \subseteq) (where L is the set of all the lower cuts of (B, \leq) , see Definition 1 below such that there exists an isomorphism (i.e., a one-to-one mapping which preserves order in both directions) f from (B, \leq) into (L, \subseteq) which is also infima and suprema preserving. This means that the isomorphism f is such that for every subset S of B

(4)
$$f(\bigwedge_{x \in S} x) = \bigwedge_{x \in S} f(x)$$

whenever the left side of the above equality exists. Also, for every subset E of B

(5)
$$f(\bigvee_{x \in S} x) = \bigvee_{x \in E} f(x)$$

whenever the left side of the above equality exists. Clearly, in (4) and (5) the left side of each equality refers to (B, \leq) whereas the right side of each equality refers to (L, \subseteq) .

It is customary to refer to an isomorphism f described above or to the Boolean ring (L, \subseteq) described above, as a *conditional-completion* of the Boolean ring (B, \subseteq) .

As shown below, the conditional-completion (L,\subseteq) by lower cuts of a Boolean ring (B,\subseteq) that we consider in this paper, has the following special features. The lattice-theoretic order in (L,\subseteq) is the set-theoretic inclusion \subseteq . Moreover, for every element X and Y of (L,\subseteq) , the infimum $X \wedge Y$ is the set-theoretical intersection $X \cap Y$. However, for every element X and Y of (L,\subseteq) , the supremum $X \vee Y$ is generally larger (w.r.t. \subseteq) than the set-theoretical union $X \cup Y$. Also, for every element X and Y of (L,\subseteq) , the difference X-Y is generally smaller (w.r.t. \subseteq) than the set-theoretical difference $X \setminus Y$. In fact, we show below that the conditional-completion (L,\subseteq) by lower cuts of a Boolean ring (B,\subseteq) is a conditionally-complete Boolean ring in which

whereas, as mentioned, $\forall H \supseteq \bigcup H$ for every subset H of L which is bounded above and $X - Y \subseteq X \setminus Y$ for every element X and Y of (L, \subseteq) .

Our conditional-completion (L,\subseteq) by lower cuts of a Boolean ring (B,\subseteq) resembles Dedekind's conditional-completion of rational numbers by real numbers, whereby every real number r is identified with the set of all rational numbers x such that $x \le r$.

Also, our conditional-completion (L, \subseteq) by lower cuts of a Boolean ring (B, \le) closely resembles MacNeille's original work [2] on completion by cuts of a Boolean algebra (i.e., a Boolean ring with unit). However, as the reader will note, between [2] and the present paper, there exist substantial differences in definitions, in methods and in proofs.

Conditional-completion of partially ordered sets and in particular conditional-completion of Boolean rings are of significant importance in mathetics. However, it seems that there is nothing in print which treats these subjects elegantly, lucidly and in a self-contained readable and understandable way without resorting to complicated topological considerations. It is hoped that the present paper will contribute to the subject of the conditional-completion of Boolean rings. The obvious relation of a completion of a partially ordered set (or a Boolean ring) to the conditional-completion of the partially ordered set (or the Boolean ring) is mentioned in the sequel.

2. Lower cuts and conditional-completion of partially ordered sets

Let (P, \leq) be a partially ordered set. For every element x of P we call the subset I(x) of P a lower segment of P if and only if

(7)
$$I(x) = \{ y | y \in P \text{ and } y \leq x \}.$$

Based on (7) we introduce:

Definition 1. A subset W of a partially ordered set (P, \leq) is called a lower cut of P if and only if for some nonempty subset S of P

$$W = \bigcap_{x \in S} I(x).$$

In other words, a lower cut of a partially ordered set P is the intersection of a nonempty family of lower segments of P.

Let (P, \leq) be a partially ordered set, then

(9)
$$\bigcap_{x \in P} I(x) = \{0\} \quad or \quad \bigcap_{x \in P} I(x) = \emptyset$$

where 0 is the minimum (the least) element of P. This is because if $\bigcap_{x \in P} I(x) \neq \emptyset$ then there exists an element $h \in \bigcap_{x \in P} I(x)$ and therefore by (7) we have $h \leq x$ for every $x \in P$. Thus, h is the (unique) minimum element of P.

Lemma 1. Let (P, \leq) be a partially ordered set. Every nonempty subst of P which is bounded below has an infimum if and only if every nonempty subset of P which is bounded above has a supremum.

PROOF. The proof of the lemma follows easily from the fact that for every subset S of (P, \leq) we have:

$$\inf S = \sup \{x \mid x \text{ is a lower bound of } S\}$$

and

$$\sup S = \inf \{x \mid x \text{ is an upper bound of } S\}.$$

Definition 2. A partially ordered set P is called conditionally complete if and only if every nonempty subset of P which is bounded below has a greatest lower bound (or every nonempty subset of P which is bounded above has a least upper bound).

Based on Definitions 1 and 2 we prove:

Lemma 2. Let L be the set of all lower cuts of a partially ordred set (P, \leq) . Then (L, \subseteq) is a conditionally complete partially ordered set such that for every non-empty subset G of L which is bounded below

(10)
$$\inf G = \wedge G = \cap G.$$

Moreover, for every nonempty subset H of L which is bounded above

$$\sup H = \forall H \supseteq \bigcup H.$$

PROOF. Clearly, (L, \subseteq) is a partially ordered set since \subseteq is the set-theoretical inclusion. In order to prove that (L, \subseteq) is conditionally complete, in view of Lemma 1, it is sufficient to establish (10). Now, let G be as described in the statement of the Lemma. But then by (8) we see that for some nonempty subset K of the powerset (i.e., the set of all subset) of P

$$G = \{W | W = \bigcap_{x \in S} I(x) \text{ and } \emptyset \neq S \in K\}.$$

But then

$$\bigcap G = \bigcap_{S \in K} \left(\bigcap_{x \in S} I(x) \right) = \bigcap_{x \in \cup K} I(x).$$

Thus, by (8), we see that $\cap G$ is a lower cut of (P, \leq) and therefore $\cap G \in L$. Hence, from Lemma 1 and Definition 2 it follows that (L, \subseteq) is conditionally complete. Moreover, since \subseteq is the set-theoretical inclusion, in view of Lemma 1 we see that (10) implies (11).

Theorem 1. Let (P, \leq) be a partially ordered set and (L, \leq) be the conditionally complete partially ordered set of all lower cuts of P. Then the function f given by

$$(12) f(x) = I(x)$$

is a one-to-one suprema and infima preserving mapping from (P, \leq) into (L, \subseteq) .

PROOF. Let x and y be distinct elements of P. Without loss of generality, we may assume $x \not\equiv y$. But then by (7) and (12) we see that $x \in f(x)$ and $x \notin f(y)$. Hence $f(x) \neq f(y)$ and consequently, f is one-to-one.

Next, we show that f is order preserving, i.e., for every element x and y of P, we have:

we have.

(13)
$$x < y \text{ if and only if } f(x) \subset f(y).$$

Let x < y and let $z \in f(x)$. By (7) and (12) we see that $z \le x < y$ and therefore $z \in f(y)$ which implies $f(x) \subset f(y)$. Conversely, let $f(x) \subset f(y)$. But then clearly by (7) and (12) we have x < y.

Now, we show that f is infima preserving. In view of (13), it is enough to show that f preserves the infimum of every nonempty subset of P. Let S be a nonempty subset of P. By (12) we have:

$$f[S] = \{I(x) | x \in S\}.$$

On the other hand, from (10) it follows that

$$\inf f[S] = \wedge f[S] = \bigcap f[S] = \bigcap_{x \in S} I(x).$$

Let $s=\inf S= \land S$. But then, by (7) and (12) we have

$$f(s) = I(s) \subseteq \bigcap_{x \in S} I(x).$$

On the other hand, if $y \in \bigcap_{x \in S} I(x)$ then clearly $y \le s$ since $s = \inf S$. Hence

$$\bigcap_{x \in S} I(x) \subseteq \{y | y \le s\} = I(s).$$

Thus, $f(\land S) = \cap f[S]$ and f is infima preserving. From this, in view of the two equalities used in the proof of Lemma 1 it follows that f is also suprema preserving. As indicated by (11), obviously, $\forall f[E] \supseteq \bigcup f[E]$.

Since f is a one-to-one suprema and infima preserving mapping, it is customary to refer to (L, \subseteq) as the *conditional-completion by lower cuts of* (P, \subseteq) . In (L, \subseteq) , every element x of P is identified with the lower segment I(x) of P.

Remark 1. A partially ordered set is called *complete* if and only if every subset of it has an infimum (or equivalently, has a supremum). As usual, by adjoining at most two elements to a conditional-completion of a partially ordered set (P, \leq) , a *completion* of (P, \leq) can be obtained. Thus, if (P, \leq) has neither a least nor a greatest element, then by adjoining \emptyset and P respectively to (L, \subseteq) , a completion of (P, \leq) is obtained.

3. Conditional-completion of Boolean rings

In this section we show that if instead of an arbitrary partially ordered set we start with a Boolean ring (B, \leq) , then the conditional-completion (L, \subseteq) by lower cuts of (B, \leq) is again a Boolean ring.

We recall that a Boolean ring is a distributive lattice which is closed under subtraction (see (1), (2), (3)).

Let us recall also that a lattice (M, \leq) with least element 0 is called sectionally complemented [3, p. 28] if and only if for every element x and u of M such that $x \leq u$, there exists an element y of M such that

$$(14) x \lor y = u \quad and \quad x \land y = 0$$

in which case y is called a complement of x with respect to u. It is easily seen that if (M, \leq) is a distributive lattice then an element x of M has at most one complement y with respect to an element u of M.

Although we define a Boolean ring as a distributive lattice which is closed under subtraction, as shown by the lemma below, we can also regard a Boolean ring as a sectionally complemented distributive lattice (and equivalently, [3, p. 48] or [1, p. 130] as a relatively complemented distributive lattice with least element 0).

Lemma 3. A distributive lattice (B, \leq) is a Boolean ring if and only if (B, \leq) is sectionally complemented.

PROOF. Let (B, \leq) be a Boolean ring, and let x and u be elements of B such that $x \leq u$. Then clearly, the difference u - x, as given by (3), is the complement of x with respect to u. Thus (B, \leq) is sectionally complemented.

Next, let (B, \leq) be a sectionally complemented distributive lattice with least element 0, and let x and y be elements of B. Let d be the complement of y with respect to $x \vee y$. Thus, $d \vee y = x \vee y$ and $d \wedge y = 0$, and therefore, in view of (3), we see that d is the difference x - y. Hence, (B, \leq) is closed under subtraction and the lemma is proved.

As mentioned earlier, we show in this paper that the conditional completion (L, \subseteq) by lower cuts of a Boolean ring (B, \le) is a (conditionally complete) Boolean ring. To this end, in view of the above, it is enough to prove that the conditional completion (L, \subseteq) of a sectionally complemented distributive lattice (B, \le) is again a sectionally complemented distributive lattice. In what follows, we shall prove this by a sequence of lemmas and partial results. Many of the lemmas are established to prove the distributivity of (L, \subseteq) . It seems that no shorter and direct proof of the distributivity of (L, \subseteq) is plausible.

Notation. In what follows, we let (L, \subseteq) represent the conditional completion by lower cuts of a Boolean ring (B, \subseteq) .

Lemma 4. (L, \subseteq) is a lattice with least element $\{0\}$.

PROOF. Obviously $\{0\}$ is the least element of (L, \subseteq) because 0 is an element of every lower cut of B. Thus to prove the lemma, it remains to show that if X and Y are elements of L, then X and Y have a supremum and an infimum in L.

Let X and Y be elements of L. Then X and Y can be given in the form $X = \bigcap_{v \in M} I(v)$ and $Y = \bigcap_{v \in N} I(v)$, and let $m \in M$ and $n \in N$. Since B is a Boolean ring and $M \subseteq B$ and $N \subseteq B$, it is obvious that $(m \lor n) \in B$ and therefore by (12) we have $I(m \lor n) \in L$. But then $X \subseteq I(m \lor n)$ and $Y \subseteq I(m \lor n)$. Consequently X and Y are bounded above in (L, \subseteq) by $I(m \lor n)$, and thus have a supremum in (L, \subseteq) since (L, \subseteq) is conditionally complete.

On the other hand, from (10) it is clear that $\bigcap_{v \in (M \cup N)} I(v)$ is the infimum $X \land Y = X \cap Y$ of X and Y in (L, \subseteq) .

Hence the lemma is proved.

Lemma 5. (L, \subseteq) is sectionally complemented.

PROOF. Let X and Y be elements of L such that $X = \bigcap_{v \in M} I(v)$ where M is the set of all upper bounds of X and $Y = \bigcap_{v \in N} I(v)$ where N is the set of all upper bounds of Y. Moreover let

$$(15) X \subseteq Y.$$

To prove the lemma, it is sufficient to show that the lower cut D of B given by

(16)
$$D = \bigcap \{I(v) | v = (n-x) \text{ for some } n \in N \text{ and some } x \in X\}$$

is a complement of X with respect to Y in (L, \subseteq) . In the above, the difference n-x exists since B is a Boolean ring and $N\subseteq B$ and $X\subseteq B$.

In view of (14), we must show that

$$(17) X \cap D = \{0\}$$

and

$$(18) X \lor D = Y.$$

Let $x \in (X \cap D)$. Then $x \le (n-x)$ for some $n \in N$, which implies x = 0 since B is a Boolean ring. Thus (17) is established.

We note that $D \subseteq Y$ because $v \in D$ implies $v \subseteq (n-x)$ for every $n \in N$ and every $x \in X$. Hence $v \subseteq n$ for every $n \in N$, and thus $v \in Y$. Consequently from (17) it follows that

$$(19) D \subseteq ((Y \setminus X) \cup \{0\}).$$

We claim that an element u of B is an upper bound of $X \cup D$ if and only if $u \in N$. IF $u \in N$ then u is an upper bound of Y and hence u is an upper bound of $X \cup D$ since $(X \cup D) \subseteq Y$ as shown by (15) and (19).

Next, let u be an upper bound of $X \cup D$ and let us assume, on the contrary, that $u \notin N$. Then since u is an upper bound of X, we see that $u \in M$ and consequently by our assumption, $u \in (M \setminus N)$. However, since $u \notin N$, there exists $y \in (Y \setminus X)$ such that

$$(20) y \leq u.$$

We show that $(y-u) \in D$. Since u is an upper bound of X we have $x \le u$ for every $x \in X$. Furthermore, since B is a Boolean ring, we have $(n-u) \le (n-x)$ for every $x \in X$ and every $n \in N$. Since $y \le n$ for every $n \in N$ and since B is a Boolean ring, it is clear that $(y-u) \le (n-u) \le (n-x)$ for every $x \in X$ and every $n \in N$. Hence $(y-u) \in D$. But then, since u is an upper bound of $X \cup D$ and hence is an upper bound of D, we have $u \ge (y-u)$, which implies $y \le u$ since D is a Boolean ring. This contradicts (20). Hence our assumption is false, and $u \in N$.

Thus an element u of B is an upper bound of $(X \cup D)$ if and only if $u \in N$, and therefore $X \lor D = \bigcap_{v \in N} I(v) = Y$, and (18) is established. Consequently D is a comple-

ment of X with respect to Y, and the lemma is proved.

From Lemmas 4 and 5 we have

Corollary 1. The conditional completion (L, \subseteq) by lower cuts of Boolean ring (B, \leq) is a sectionally complemented lattice.

Notation. Let X and Y be elements of (L, \subseteq) such that $X \subseteq Y$. Then the complement D of X with respect to Y as given by (16) is denoted by

$$(21) Y - X$$

We recall that a Boolean ring (B, \leq) is also a ring $(B, +, \cdot)$ in which every element is idempotent, and therefore $(B, +, \cdot)$ is commutative and of characteristic 2. In other words, for every element x and y of a Boolean ring $(B, +, \cdot)$, we have:

(22)
$$xy = yx \text{ and } x^2 = x \text{ and } x + x = 0.$$

Moreover, for every element x and y of a Boolean ring $(B, \leq) \equiv (B, +, \cdot)$ we have:

(23)
$$x \le y$$
 if and only if $xy = x$

and

(24)
$$y-x=y+yx$$
, and, $y-x=y+x$ if and only if $x \le y$.

It is worth observing that the passage from (B, \leq) to $(B, +, \cdot)$ is given by

$$x+y = (x \lor y) - (x \land y)$$
 and $xy = x \land y$.

Next we prove

Lemma 6. For every element X and Y of (L, \subseteq) such that $X \subseteq Y$ we have

$$(25) Y - (Y - X) = X.$$

PROOF. Let $X = \bigcap_{v \in M} I(v)$ where M is the set of all upper bounds of X, and let $Y = \bigcap_{v \in N} I(v)$ where N is the set of all upper bounds of Y. From (16) and (21) it follows that

(26)
$$Y-(Y-X)=\bigcap \{I(v)|v=(n-z) \text{ for some } n\in \mathbb{N} \text{ and for some } z\in (Y-X)\}.$$

First we show that if $w \in X$ then $w \in (Y - (Y - X))$. If $w \in X$ then w is a lower bound of N and therefore $w \le n$ for every $n \in N$. On the other hand, since B is a Boolean ring, then for every $z \in (Y - X)$, in view of (24), we have w(n-z) = w - wz = w since, by (17) and (21) we have $X \cap (Y - X) = \{0\}$ and therefore wz = 0. Thus by, (23) we see that $w \le (n-z)$ for every $n \in N$ and every $z \in (Y - X)$. Consequently, $w \in (Y - (Y - X))$, by (26).

Next, let w be an element of Y-(Y-X). We show that $w \in X$. Let us assume, on the contrary, that $w \notin X$. Clearly $w \in Y$ and consequently, by our assumption, $w \in (Y \setminus X)$. However, since $w \notin X$, there exists $u \in (M \setminus N)$ such that

$$(27) w \leq u.$$

Since u is an upper bound of X, we see that $x \le u$ for every $x \in X$ and therefore since B is a Boolean ring, $(n-u) \le (n-x)$ for every $x \in X$ and every $n \in N$. Again, since $w \le n$, we have $(w-u) \le (n-u) \le (n-x)$ for every $x \in X$ and every $n \in N$. Consequently, $(w-u) \in (Y-X)$. However, since $w \in (Y-(Y-X))$ we see that $w \le (n-(w-n))$ for some $n \in N$. But this, in view of (23), (24) and (22) implies wn + w + wu = w and since $w \le u$, it follows that w = wu. Hence, by (23) we see that $w \le u$ which contradicts (27). Thus, our assumption is false and indeed $w \in X$, and the lemma is proved.

Lemma 7. For every element X and Y of (L, \subseteq) such that $X \subseteq Y$ we have

- (28) $t \in (Y-X)$ if and only if $t \in Y$ and tx = 0 for every $x \in X$ and
- (29) $t \in X$ if and only if $t \in Y$ and tc = 0 for every $c \in (Y X)$.

PROOF. Let $t \in (Y-X)$. By (17) and (21) we have $(Y-X) \cap X = \{0\}$, and hence tx=0 for every $x \in X$ since $tx \in ((Y-X) \cap X)$. This is because Y-X, as well as X, is a lower cut of (L, \subseteq) .

Next let $t \in Y$ and tx=0 for every $x \in X$. Let us assume, on the contrary, that $t \notin (Y-X)$. Thus by (16) we see that $t \not\equiv (n-x)$ for some $n \in N$ and some $x \in X$ where $Y = \bigcap_{v \in N} I(v)$ and where N is the set of all upper bounds of Y. Therefore by (23) and (24) we have $t(n+x) \neq t$ and hence $(tn+tx) \neq t$. However, since $t \in Y$ implies $t \leq n$, we have tn=t which implies $tx \neq 0$, contradicting the hypothesis that tx=0 for every

 $x \in X$. Hence our assumption is false and (28) is established.

In order to prove (29), let us observe that by (28) we have $t \in (Y - (Y - X))$ if and only if $t \in Y$ and tc = 0 for every $c \in (Y - X)$, which in view of (25) implies (29).

Lemma 8. For every element X, Y and Z of (L, \subseteq) such that $X \subseteq Z$ and $Y \subseteq Z$, we have

(30)
$$X \subseteq Y$$
 if and only if $(Z-X) \supseteq (Z-Y)$.

PROOF. Let $X \subseteq Y$ and let $t \in (Z - Y)$. Then by (28), we have ty = 0 for every $y \in Y$, and since $X \subseteq Y$ we have tx = 0 for every $x \in X$. Thus again by (28) we have $t \in (Z - X)$.

Next let $(Z-X)\supseteq (Z-Y)$, and let $t\in X$. Then by (29) we see that tc=0 for every $c\in (Z-X)$. Since $(Z-X)\supseteq (Z-Y)$ we have td=0 for every $d\in (Z-Y)$. But then again by (29) we have $t\in Y$, and hence $X\subseteq Y$.

Lemma 9. For every element X, Y and Z of (L, \subseteq) such that $X \subseteq Z$ and $Y \subseteq Z$ we have

(31)
$$X \subseteq Y$$
 if and only if $X \cap (Z - Y) = \{0\}$.

PROOF. Let $X \subseteq Y$. By (30) we have $(Z-X) \supseteq (Z-Y)$, and by (17) and (21) we see that $\{0\} = (X \cap (Z-X)) \supseteq (X \cap (Z-Y))$, and therefore $X \cap (Z-Y) = \{0\}$. Next let $X \cap (Z-Y) = \{0\}$, and let $x \in X$. But then xc = 0 for every $c \in (Z-Y)$

Next let $X \cap (Z - Y) = \{0\}$, and let $x \in X$. But then xc = 0 for every $c \in (Z - Y)$ since $xc \in (X \cap (Z - Y))$. This is because X as well as Z - Y is a lower cut of (L, \subseteq) . Therefore by (29) we see that $x \in Y$, and hence (31) is established.

Lemma 10. For every element X, Y and Z of (L, \subseteq) such that $X \subseteq Z$ and $Y \subseteq Z$ we have

$$(32) Z - (X \wedge Y) = (Z - X) \vee (Z - Y)$$

and

$$(33) Z-(X \lor Y) = (Z-X) \land (Z-Y).$$

PROOF. Since $X \subseteq (X \lor Y)$ and $Y \subseteq (X \lor Y)$ it follows from (30) that $(Z - (X \lor Y)) \subseteq (Z - X)$ and $(Z - (X \lor Y)) \subseteq (Z - X)$ and consequently $(Z - (X \lor Y)) \subseteq (Z - X) \cap (Z - Y) = (Z - X) \wedge (Z - Y)$.

Thus to prove (32), it remains to show that

$$(Z-(X\vee Y))\supseteq (Z-X)\wedge (Z-Y).$$

But then in view of (31), to establish (34), it is sufficient to show that

$$((Z-X)\wedge(Z-Y))\cap(Z-(Z-(X\vee Y)))=\{0\}$$

which in view of (10) and (25) reduces to proving that

$$(Z-X)\cap(Z-Y)\cap(X\vee Y)=\{0\}.$$

Let us assume the contrary, and let

$$(Z-X)\cap(Z-Y)\cap(X\vee Y)=C\neq\{0\}$$

for some lower cut C of (L, \subseteq) . We claim that

$$(37) X \subseteq ((X \vee Y) - C).$$

Let $t \in X$. Then, since $X \subseteq Z$, by (29) we see that tx = 0 for every $x \in (Z - X)$. Hence, tc = 0 for every $c \in C$, since $C \subseteq (Z - X)$, by (36). Again, by (36) we have $C \subseteq (X \lor Y)$ and therefore, from (28) it follows that $t \in ((X \lor Y) - C)$, since $t \in X$ and $X \subseteq (X \lor Y)$ and tc = 0 for every $c \in C$. Thus, indeed $X \subseteq ((X \lor Y) - C)$, and (37) is established.

Similarly, we can prove that

$$(38) Y \subseteq ((X \vee Y) - C).$$

From (37) and (38) it follows that

$$(X \lor Y) \subseteq ((X \lor Y) - C) \subseteq (X \lor Y)$$

which implies $C = \{0\}$ since $C \subseteq (X \lor Y)$. This contradicts (36), and therefore (35), and hence also (32), is established.

To prove (33), we substitute Z-X for X and Z-Y for Y in (32), and in view of (25) we obtain $X \lor Y = Z - ((Z-X) \land (Z-Y))$ which, again in view of (25), yields (33), as desired.

A dual of Lemma 9 is given by

Corollary 2. For every element X, Y and Z of (L, \subseteq) such that $X \subseteq Z$ and $Y \subseteq Z$ we have

(39)
$$X \subseteq Y$$
 if and only if $((Z-X) \lor Y) = Z$.

PROOF. In view of (31) we have

(40)
$$X \subseteq Y$$
 if and only if $Z - (X \land (Z - Y)) = Z - \{0\} = Z$

which by (33) and (25) implies $X \subseteq Y$ if and only if $(Z-X) \lor (Z-(Z-Y)) = (Z-X) \lor Y = Z$, as desired.

Based on the above lemmas, we prove the following theorem.

Theorem 2. For every element X, Y and Z of (L, \subseteq) we have

$$(41) X \wedge (Y \vee Z) = (X \wedge Y) \vee (X \wedge Z)$$

and

$$(42) X \vee (Y \wedge Z) = (X \vee Y) \wedge (X \vee Z).$$

PROOF. Since $X \land (Y \lor Z) \supseteq (X \land Y)$ and $X \land (Y \lor Z) \supseteq (X \land Z)$ it is clear that $X \land (Y \lor Z) \supseteq ((X \land Y) \lor (X \land Z))$. Hence to establish (41) it remains to show that

$$(43) X \wedge (Y \vee Z) \subseteq ((X \wedge Y) \vee (X \wedge Z)).$$

Let $H=X \lor Y \lor Z$. Then

(44)
$$X \wedge (Y \vee Z) \wedge (H - ((X \wedge Y) \vee (X \wedge Z))) \wedge Y =$$

$$= X \wedge (Y \vee Z) \wedge (H - (X \wedge Y)) \wedge (H - ((X \wedge Z))) \wedge Y =$$
by (33)
$$= ((X \wedge Y) \wedge (H - (X \wedge Y))) \wedge (Y \vee Z) \wedge (H - (X \wedge Z)) = \{0\}$$
by (17) and (21).

Therefore, by (25) we have:

$$X \wedge (Y \vee Z) \wedge (H - ((X \wedge Y) \vee (X \wedge Z))) \wedge (H - (H - Y)) = \{0\}$$

which by (31 implies:

$$(45) X \wedge (Y \vee Z) \wedge (H - ((X \wedge Y) \vee (X \wedge Z))) \subseteq (H - Y).$$

Similarly, by replacing the last Y appearing in (44) by Z, we obtain

$$X \wedge (Y \vee Z) \wedge (H - ((X \wedge Y) \vee (X \wedge Z))) \wedge Z = \{0\}$$

which, as in the case of (45), implies

$$(46) X \wedge (Y \vee Z) \wedge (H - ((X \wedge Y) \vee (X \wedge Z))) \subseteq (H - Z).$$

But then, from (45) and (46) it follows that

$$X \land (Y \lor Z) \land (H - ((X \land Y) \lor (X \land Z))) \subseteq ((H - Y) \land (H - Z))$$

which by (33) implies

$$(47) X \wedge (Y \vee Z) \wedge (H - ((X \wedge Y) \vee (X \wedge Z))) \subseteq (H - (Y \vee Z)).$$

On the other hand, it is clear that

$$X \land (Y \lor Z) \land (H - ((X \land Y) \lor (X \land Z))) \subseteq (Y \lor Z)$$

which, in view of (47) and (17) implies

$$X \land (Y \lor Z) \land (H - ((X \land Y) \lor (X \land Z))) \subseteq ((H - (Y \lor Z)) \land (Y \lor Z)) = \{0\}$$

and consequently,

$$X \land (Y \lor Z) \land (H - ((X \land Y) \lor (X \land Z))) = \{0\}$$

which by (31) implies (43). But then (41) follows, as mentioned above.

To prove (42), we replace X, Y and Z respectively by H-X, H-Y and H-Z in (41). As a result, we obtain

$$(H-X)\wedge \big((H-Y)\vee (H-Z)\big)=\big((H-X)\wedge (H-Y)\big)\vee \big((H-X)\wedge (H-Z)\big)$$

which by (32) and (33) implies

$$(H-X)\wedge \big(H-(Y\wedge Z)\big)=\big(H-(X\vee Y)\big)\vee \big(H-(X\vee Z)\big)$$

which, in turn, by (25), (32) and (33) implies

$$X \lor (Y \land Z) = H - ((H - X) \land (H - (Y \land Z))) = H - ((H - (X \lor Y)) \lor (H - (X \lor Z))) =$$
$$= (X \lor Y) \land (X \lor Z)$$

as desired. Thus, (42) is established.

The above Theorem establishes the distributivity of (L, \subseteq) . Observing that in a distributive lattice (sectional) complementation is unique, based of Lemmas 3, 4, 5 and Theorems 1 and 2, we have:

Theorem 3. The conditional completion (L, \subseteq) by lower cuts of a Boolean ring (B, \subseteq) is a sectionally complemented distributive lattice and hence a conditionally complete Boolean ring. Moreover, the mapping f from B into L defined by

$$f(x) = I(x) = \{y | y \in B \text{ and } y \leq x\}$$

is a ring isomorphism from (B, \leq) into (L, \subseteq) such that f preserves suprema (and hence, also infima).

Remark 2. Let us observe that if the Boolean ring (B, \leq) in Theorem 3 is a Boolean algebra (i.e., B has a multiplicative unit 1), then the conditional completion $(L, \subseteq by)$ lower cuts of (B, \leq) is in fact a complete Boolean algebra (see Remark 1 on page 255). Thus, to obtain a completion of a Boolean ring (B, \leq) which is not a Boolean algebra, it is sufficient to consider the conditional completion by lower cuts of the Boolean algebra (A, \leq) which is obtained by adjoining to B a new symbol 1 (as a multiplicative unit) along with x+1 for every $x \in B$ and by defining addition and multiplication in A in an obvious way.

References

[1] G. Szász, Introduction to Lattice Theory, New York, 1973.

[2] H. MAC NEILLE, Partially ordered Sets, Trans. AMS, 42 (1937), 416-60.

[3] G. Birkhoff, Lattice Theory, AMS Coll. Pub. 25 (1967).

IOWA STATE UNIVERSITY AMES, IOWA

(Received December 23, 1973.)