Conditional-completion of Boolean rings by lower cuts

By ALEXANDER ABIAN (Ames, lowa)

1. Introduction

In what follows (B, =) denotes a Boolean ring not necessarily with a unit (cf. [1,
p. 130]). Hence, (B, =) is not necessarily a Boolean algebra. Accordingly, (B, =)
is a distributive lattice with the least element 0 and B is closed under subtraction.
This means that (B, =) is a partially ordered set such that for every element x and
y of B, the least upper bound xVy as well as the greatest lower bound x/\y exists,
and for every element z of B

(1 zV(xAy) = (zVx)A(zVy)
which implies that for every element x, y, z of B
2) zA(xVy) = (ZAX)V(zAp).

Moreover, for every element x and y of B, the difference x —y exists, where d=x—y
is the unique element of B such that

) dVy =xVy and dhy = 0.

As usual, a Boolean ring (B, =) is called conditionally complete if and only
if every nonempty subset S of B (which, a priori, is bounded below by 0) has a
greatest lower bound (infimum) denoted by A S or by /\ x. Equivalently, a Boolean

ring (B, =) is conditionally complete, if and only if every subset £ of B which is
bounded above has a least upper bound (supremum) denoted by VE or by V x.
Clearly, in (B, =) we have V0=0. »EE

Obviously, a Boolean ring (B, =) need not be conditionally complete. How-
ever, as shown in this paper for every Boolean ring (B, =) there exists a conditionally
complete Boolean ring (L, £) (where L is the set of all the lower cuts of (B, =),
see Definition 1 below such that there exists an isomorphism (i.e., a one-to-one
mapping which preserves order in both directions) f from (B, =) into (L, £) which
is also infima and suprema preserving. This means that the isomorphism f is such
that for every subset S of B

@) J(AX) = A S

xES xXES
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whenever the left side of the above equality exists. Also, for every subset £ of B
(5) SV x)=V f(x)
xXES x€E

whenever the left side of the above equality exists. Clearly, in (4) and (5) the left side
of each equality refers to (B, =) whereas the right side of each equality refers to
(L, &)

It is customary to refer to an isomorphism f described above or to the Boolean
ring (L, &) described above, as a conditional-completion of the Boolean ring (B8, =).

As shown below, the conditional-completion (L, £) by lower cuts of a Boolean
ring (B, =) that we consider in this paper, has the following special features. The
lattice-theoretic order in (L, £) is the set-theoretic inclusion . Moreover, for
every element X and Y of (L, ©), the infimum XA Y is the set-theoretical inter-
section X Y. However, for every element X and Y of (L, ), the supremum XV Y
is generally larger (w.r.t. £) than the set-theoretical union XU Y. Also, for every
element X and Y of (L, ), the difference X— Y is generally smaller (w.r.t. £) than
the set-theoretical difference X\ Y. In fact, we show below that the conditional-
completion (L, £) by lower cuts of a Boolean ring (B, =) is a conditionally-complete
Boolean ring in which

(6) NG = (G for every nonempty subset G of L

whereas, as mentioned, V H 2 U H for every subset H of L which is bounded above
and X—YCS X\Y for every element X and Y of (L, ©).

Our conditional-completion (L, &) by lower cuts of a Boolean ring (B, =
resembles Dedekind’s :onditional-completion of rational numbers by real num-
bers, whereby every real number r is identified with the set of all rational numbers x
such that x=r.

Also, our conditional-completion (L, £) by lower cuts of a Boolean ring (B, =
closely resembles MacNeille's original work [2] on completion by cuts of a Boolean
algebra (i.e., a Boolean ring with unit). However, as the reader will note, between
[2] and the present paper, there exist substantial differences in definitions, in methods
and in proofs.

Conditional-completion of partially ordered sets and in particular conditional-
completion of Boolean rings are of significant importance in mathetics. However,
it seems that there is nothing in print which treats these subjects elegantly, lucidly
and in a self-contained readable and understandable way without resorting to
complicated topological considerations. It is hoped that the present paper will con-
tribute to the subject of the conditional-completion of Boolean rings. The obvious
relation of a completion of a partially ordered set (or a Boolean ring) to the con-
ditional-completion of the partially ordered set (or the Boolean ring) is mentioned
in the sequel.

2. Lower cuts and conditional-completion of partially ordered sets

Let (P, =) be a partially ordered set. For every element x of P we call the sub-
set /(x) of P a lower segment of P if and only if

(7) I(x) = {y|y€P and y = x}.
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Based on (7) we introduce:

Definition 1. A subset W of a partially ordered set (P, =) is called a lower
cut of P if and only if for some nonempty subset S of P
(8) W= N I(x).

XES

In other words, a lower cut of a partially ordered set P is the intersection of a
nonempty family of lower segments of P.
Let (P, =) be a partially ordered set, then

9) []P I(x) = {0} or Dp I(x) =0
where 0 is the minimum (the least) element of P. This is because if [ /(x)=0
xEP
then there exists an element #€ (| /(x) and therefore by (7) we have /1= x for every
XeP

x€P. Thus, / is the (unique) minimum element of P.

Lemma 1. Let (P, =) be a partially ordered set. Every nonempty subst of P
which is bounded below has an infimum if and only if every nonempty subset of P
which is bounded above has a supremum.

ProoF. The proof of the lemma follows easily from the fact that for every sub-
set S of (P, =) we have:

p inf S = sup {x|x is a lower bound of S}
an
sup S = inf {x|x is an upper bound of S}.
Definition 2. A partially ordered set P is called conditionally complete if and
only if every nonempty subset of P which is bounded below has a greatest lower bound
(or every nonempty subset of P which is bounded above has a least upper bound).

Based on Definitions | and 2 we prove:
Lemma 2. Let L be the set of all lower cuts of a partially ordred set (P, =).

Then (L, <) is a conditionally complete partially ordered set such that for every non-
empty subset G of L which is bounded below

(10) infG =AG =NG.
Moreover, for every nonempty subset H of L which is bounded above
(11) sup H =VH 2UH.

inclusion. In order to prove that (L, £) is conditionally complete, in view of Lemma 1,
it is sufficient to establish (10). Now, let G be as described in the statement of the
Lemma. But then by (8) we see that for some nonempty subset K of the powerset
(i.e., the set of all subset) of P

G={WW=I(x) and 0= ScK}.
XES

Proor. Clearly, (L, £) is a partially ordered set since = is the set-theoretical

But then
NG= NNz = EQKI(J.:).

SEK xc€8
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Thus, by (8), we see that (G is a lower cut of (P, =) and therefore N G€ L. Hence,
from Lemma 1 and Definition 2 it follows that (L, £) is conditionally complete.
Moreover, since € is the set-theoretical inclusion, in view of Lemma | we see that
(10) implies (11).

Theorem 1. Let (P, =) be a partially ordered set and (L, <) be the conditionally
complete partially ordered set of all lower cuts of P. Then the function f given by

(12) J(x) = I(x)

is a one-to-one suprema and infima preserving mapping from (P, =) into (L, ©).

PrOOF. Let x and y be distinct elements of P. Without loss of generality, we
may assume x = y. But then by (7) and (12) we see that x€f(x) and x¢ f(y). Hence
f(x)#f(y) and consequently, fis one-to-one.

Next, we show that f is order preserving, i.e., for every element x and y of P,
we have:

(13) x <y if and only if f(x) < f(p).

Let x=y and let z€f(x). By (7) and (12) we see that z=x-<y and therefore
z€f(y) which implies f(x)cf(y). Conversely, let f(x)<f(y). But then clearly by (7)
and (12) we have x=y.

Now, we show that fis infima preserving. In view of (13), it is enough to show
that f preserves the infimum of every nonempty subset of P. Let S be a nonempty
subset of P. By (12) we have:

18] = {I(x)|x€ S}.
On the other hand, from (10) it follows that

inff[S] = Af[S] = N /18] = () 1(x).

xXES
Let s=inf S=A S. But then, by (7) and (12) we have
f(s) =1(s) € N 1(x).

€S

On the other hand, if y€ | 7(x) then clearly y=s since s=inf S. Hence
X€S

N 1(x) & {yly = s} = 1(s).
XES

Thus, f(A S)=0f[S] and fis infima preserving. From this, in view of the two equali-
ties used in the proof of Lemma 1 it follows that f is also suprema preserving. As
indicated by (11), obviously, Vf[E]= Uf[E].

Since f'is a one-to-one suprema and infima preserving mapping, it is customary
to refer to (L, £) as the conditional-completion by lower cuts of (P, =). In (L, ©),
every element x of P is identified with the lower segment /(x) of P.
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Remark 1. A partially ordered set is called complete if and only if every sub-
set of it has an infimum (or equivalently, has a supremum). As usual, by adjoining
at most two elements to a conditional-completion of a partially ordered set (P, =),
a completion of (P, =) can be obtained. Thus, if (P, =) has neither a least nor a
greatest element, then by adjoining @ and P respectively to (L, £), a completion of
(P, =) is obtained.

3. Conditional-completion of Boolean rings

In this section we show that if instead of an arbitrary partially ordered set we
start with a Boolean ring (B, =), then the conditional-completion (L, &) by lower
cuts of (B, =) is again a Boolean ring.

We recall that a Boolean ring is a distributive lattice which is closed under sub-
traction (see (1), (2), (3)).

Let us recall also that a lattice (M, =) with least element 0 is called sectionally

complemented (3, p. 28] if and only if for every element x and u of M such that x =u,
there exists an element y of M such that

(14) xVy=u and xANy =0

in which case y is called a complement of x with respect to u. It is easily seen that if
(M, =) is a distributive lattice then an element x of M has at most one complement y
with respect to an element u of M.

Although we define a Boolean ring as a distributive lattice which is closed
under subtraction, as shown by the lemma below, we can also regard a Boolean
ring as a sectionally complemented distributive lattice (and equivalently, [3, p. 48]
or [1, p. 130] as a relatively complemented distributive lattice with least element 0).

Lemma 3. A distributive lattice (B, =) is a Boolean ring if and only if (B, =) is
sectionally complemented.

PROOF. Let (B, =) be a Boolean ring, and let x and « be elements of B such
that x=u. Then clearly, the difference u— x, as given by (3), is the complement of x
with respect to u. Thus (B, =) is sectionally complemented.

Next, let (B, =) be a sectionally complemented distributive lattice with least
clement 0, and let x and y be elements of B. Let d be the complement of y with
respect to xVy. Thus, dVy=xVy and dAy=0, and therefore, in view of (3), we
see that d is the difference x— y. Hence, (B, =) is closed under subtraction and the
lemma is proved.

As mentioned earlier, we show in this paper that the conditional completion
(L, ) by lower cuts of a Boolean ring (B, =) is a (conditionally complete) Boolean
ring. To this end, in view of the above, it is enough to prove that the conditional
completion (L, £) of a sectionally complemented distributive lattice (B, =) is again
a sectionally complemented distributive lattice. In what follows, we shall prove
this by a sequence of lemmas and partial results. Many of the lemmas are established
to prove the distributivity of (L, ). It seems that no shorter and direct proof of the
distributivity of (L, £) is plausible.
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Notation. In what follows, we let (L, ) represent the conditional completion
by lower cuts of a Boolean ring (B, =).

Lemma 4. (L, ©) is a lattice with least element {0}.

PrOOF. Obviously {0} is the least element of (L, &) because 0 is an element of
every lower cut of B. Thus to prove the lemma, it remains to show that if X and Y
are elements of L, then X and Y have a supremum and an infimum in L.

Let X and Y be elements of L. Then X and Y can be given in the form X= [ /(v)
vEM

and Y= ) I(v), and let m&M and n€N. Since B is a Boolean ring and M < B and

vEN

NEB, it is obvious that (m\/n)€B and therefore by (12) we have I(m\/n)€L.
But then XS /(mVn) and YEI(m\/ n). Consequently X and Y are bounded above
in (L, €) by I(m\V/n), and thus have a supremum in (L, £) since (L, £) is
conditionally complete.

On the other hand, from (10) it is clear that (|  /(v) is the infimum X'/ Y=
=XNY of X and Y in (L, ). vE(MUN)

Hence the lemma is proved.

Lemma 5. (L, €) is sectionally complemented.
Proor. Let X and Y be elements of L such that X= [ /(v) where M is the set

vEM
of all upper bounds of X and Y= (| I(v) where N is th:: set of all upper bounds
of Y. Moreover let vEN

(15) XEY.
To prove the lemma, it is sufficient to show that the lower cut D of B given by
(16) D =N {I(v)|v = (n—x) for some nc¢ N and some x€X}

is a complement of X with respect to Y in (L, £). In the above, the difference n—x
exists since B is a Boolean ring and NS B and XS B.
In view of (14), we must show that

(17 XND = {0}
and
(18) XND=Y.

Let x€(XM D). Then x=(n—x) for some nc N, which implies x=0 since B is a
Boolean ring. Thus (17) is established.

We note that DS Y because v€D implies v=(n—x) for every n€N and every
x€X. Hence v=n for every nc€ N, and thus v€ Y. Consequently from (17) it fol-
lows that

(19) D S (Y \X)U {0}).

We claim that an element u of B is an upper bound of XD if and only if
ueN. IF u€ N then u is an upper bound of Y and hence u is an upper bound of
XUD since (XUD)S Y as shown by (15) and (19).
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Next, let # be an upper bound of XU D and let us assume, on the contrary, that
u¢ N. Then since u is an upper bound of X, we see that u€¢ M and consequently by
our assumpion, u€(MN\N). However, since u¢ N, there exists y€(Y\.X) such that

(20) y £ u

We show that (y—wu)€D. Since u is an upper bound of X we have x=u for
every x€X. Furthermore, since B is a Boolean ring, we have (n—u)=(n—x) for
every x€ X and every n€N. Since y=n for every n€ N and since B is a Boolean ring,
itis clear that (y —u) =(n—u)=(n—x) for every x€ X and every nc N. Hence (y —u)€ D.
But then, since « is an upper bound of XUD and hence is an upper bound of D,
we have u=(y—u), which implies y=u since B is a Boolean ring. This contradicts
(20). Hence our assumption is false, and u€N.

Thus an element u of B is an upper bound of (X'UD) if and only if u€N, and
therefore XV D= [ I(v)=Y, and (18) is established. Consequently D is a comple-

vEN
ment of X with respect to Y, and the lemma is proved.
From Lemmas 4 and 5 we have

Corollary 1. The conditional completion (L, =) by lower cuts of Boolean ring
(B, =) is a sectionally complemented lattice.

Notation. Let X and Y be elements of (L, &) such that XS Y. Then the com-
plement D of X with respect to Y as given by (16) is denoted by

1) YouX.

We recall that a Boolean ring (B, =) is also a ring (B, +, +) in which every
element is idempotent, and therefore (B, +, +) is commutative and of characteristic
2. In other words, for every element x and y of a Boolean ring (B, +, +), we have:

22) xy=yx and x*=x and x+x=0.

Moreover, for every element x and y of a Boolean ring (B, =)=(B8, +, +)
we have:

(23) X = y v and 0”1}’ 1}' X)= %
and
(24) Y=k }"+'J,’x, a"d, y—x = .}J+x if a"d Onfy !‘f' x = ¥.

It is worth observing that the passage from (B, =) to (B, +, -) is given by
x+y = (xVy)—(xAy) and xy = xAy.

Next we prove

Lemma 6. For every element X and Y of (L, £) such that XS Y we have
(25) Y—(Y-X) = X.

6D
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PrOOF. Let X= (| I(v) where M is the set of all upper bounds of X, and let

veM
Y= [ I(v) where N is the set of all upper bounds of Y. From (16) and (21) it fol-
veEN
lows that

(26) Y—(Y—X) =N {l(v)|v = (n—z) for some nEN and for some z€(Y—X)}.

First we show that if weX then we(Y—(Y—X)). If wéX then w is a lower
bound of N and therefore w=n for every né N. On the other hand, since B is a
Boolean ring, then for every z€(Y—X), in view of (24), we have w(n—z)=w—wz=w
since, by (17) and (21) we have X (Y—X)={0} and therefore wz=0. Thus by,
(23) we see that w=(n—z) for every n€N and every z€(Y—X). Consequently,
we(Y—(Y—X)), by (26).

Next, let w be an element of ¥—(Y—X). We show that we X. Let us assume,
on the contrary, that wé X. Clearly we Y and consequently, by our assumption,
we(Y\X). However, since w¢ X, there exists u€(M \N) such that

(27) wE u

Since u is an upper bound of X, we see that x=u for every x€ X and therefore since
B is a Boolean ring, (n—u)=(n—x) for every x€X and every n€N. Again, since
w=n, we have (w—u)=(n—u)=(n—x) for every x€ X and every n€ N. Consequently,
(w—u)€(Y—X). However, since we(Y—(Y—X)) we see that w=(n—(w—n)) for
some n€N. But this, in view of (23), (24) and (22) implies wn+w+wu=w and since
w=u, it follows that w=wu. Hence, by (23) we see that w=u which contradicts
(27). Thus, our assumption is false and indeed weX, and the lemma is proved.

Lemma 7. For every element X and Y of (L, ©) such that XS Y we have
(28) te(Y—X) ifand only if t€Y and tx =0 for every x€X
and
(29) t€X ifand only if t€Y and tc =0 for every c€(Y—X).

ProoF. Let t€(Y—X). By (17) and (21) we have (¥Y—X)NX={0}, and hence
tx=0 for every x€X since tx€((Y—X)NX). This is because Y—X, as well as X,
is a lower cut of (L, €).

Next let 7€ Y and rx=0 for every x€X. Let us assume, on the contrary, that
14 (Y—X). Thus by (16) we see that 1= (n—x) for some n€ N and some x€X where

Y= () I(v) and where N is the set of all upper bounds of Y. Therefore by (23) and
vEN
(24) we have r(n+x)=t and hence (tn+1x)=t. However, since /€Y implies r=n,

we have tn=1t which implies 7x 0, contradicting the hypothesis that tx=0 for every
x€X. Hence our assumption is false and (28) is established.

In order to prove (29), let us observe that by (28) we have t€(Y—(Y—X))
if and only if 7€ Y and 7¢=0 for every c¢€(Y—X), which in view of (25) implies (29).

Lemma 8. For every element X, Y and Z of (L, ) such that XS Z and YEZ,
we have

(30) XSY itand only if (Z—-X) 2 (Z-Y).
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ProOOF. Let XS Y and let :E(Z —Y). Then by (28), we have ty=0 for every
yeY, and since XS Y we have tx=0 for every x€X. Thus again by (28) we have
te(Z—-X).

Next let (Z—X)=2(Z—Y), and let t€X. Then by (29) we see that tc=0 for
every c€(Z—X). Since (Z—X)2(Z—-Y) we have td=0 for every de€(Z—Y). But
then again by (29) we have 7€ Y, and hence XS Y.

Lemma 9. For every element X, Y and Z of (L, £) such that XS Z and YSZ
we have

(31) XESY ifand only if XN(Z-Y) = {0}.
Proor. Let XS Y. By (30) we have (Z—X)2(Z-Y), and by (17) and (21)
we see that {0}=(XO(Z—X){2(X0(Z— Y)), and therefore XN (Z—Y)={0}.
Next let XN(Z—Y)={0}, and let x€X. But then xc=0 for every c€(Z—7Y)

since xc€(XMN(Z—Y)). This is because X as well as Z—Y is a lower cut of (L, ).
Therefore by (29) we see that x¢ Y, and hence (31) is established.

Lemma 10. For every element X, Y and Z of (L, ©) such that XS Z and YEZ
we have

(32) Z—(XANY)=(Z-X)V(Z-Y)
and
(33) Z—-XVY)=(Z-X)N(Z-Y).

PrOOF. Since XS (XV Y)and YS(XV Y) it follows from (30) that (Z—(XV Y))S
€(Z—X) and (Z—(XVY))S(Z—-Y) and consequently (Z—(XVY))S(Z—X)N
MNZ-Y)=(Z—-X)\N(Z-Y).

Thus to prove (32), it remains to show that

(34) (Z—=(XVY)) 2(Z-X)NZ-Y).

But then in view of (31), to establish (34), it is sufficient to show that
(Z-X)NZ-Y)N(Z—(Z-(XxVY))) = {0}

which in view of (10) and (25) reduces to proving that

(35) (Z-X)"(Z-Y)N&XVY) = {0}
Let us assume the contrary, and let

(36) (Z-X)N(Z-Y)N(XVY) = C = {0}

for some lower cut C of (L, £). We claim that

(37) XS ((xvY)=0).

Let 7€ X. Then, since XS Z, by (29) we see that tx=0 for every x¢€(Z—X).
Hence, t¢=0 for every c€C, since CS(Z—X), by (36). Again, by (36) we have
CS(XVY) and therefore, from (28) it follows that r€((XV Y)—C), since € X and
XS(XVY) and 1¢=0 for every c€C. Thus, indeed XS((XVY)—C), and (37) is
established.

6.
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Similarly, we can prove that
(38) Y S ((xvY)-C).
From (37) and (38) it follows that
(XVY) € ((XVY)-C) S (XVY)

which implies C={0} since CS(XV Y). This contradicts (36), and therefore (35),
and hence also (32), is established.

To prove (33), we substitute Z— X for X and Z—Y for Y in (32), and in view
of (25) we obtain XV ¥Y=Z—((Z—X)A(Z~-Y)) which, again in view of (25), yields
(33), as desired.

A dual of Lemma 9 is given by

Corollary 2. For every element X, Y and Z of (L, <) such that XS Z and YEZ
we have

(39) XCY ifand only if (Z-X)VY) = Z.
Proor. In view of (31) we have
(40) XCVY if and only if Z—(XA(Z-Y))=Z-{0}=2Z

which by (33) and (25) implies X< Y if and only if (Z—X)V(Z—(Z—Y))=(Z—-X)V
VY=2Z, as desired.
Based on the above lemmas, we prove the following theorem.

Theorem 2. For every element X, Y and Z of (L, ) we have

(@1 XN(YVZ) = (XAY)V(X\Z)
and
(42) XV(YAZ) = (XVYAXV2Z).

ProoF. Since XA(YVZ)2(XAY) and XA(YVZ)2(XANZ) it is clear that
XNYVZ)2((XAY)V(XAZ)). Hence to establish (41) it remains to show that

(43) XAN(YVZ) S (XAY)V(XA2Z)).
Let H=XVYVZ. Then
(44) XNYVZNH-((XAY)V(XAZ)NY =
= XA(YVZ)N(H—-(XAY)A(H-((XAZ)))AY = by (33)

= (XAYNH—-(XAY)AN(YVZ)N(H—(XNZ)) = {0} by (17) and (21).
Therefore, by (25) we have:
XA(YV Z)ANH—((XAY)V(XAZ)A(H—(H—-Y)) = {0}
which by (31 implies:
(45) XNYVZ)ANH—-((XAY)V(XNZ)) S (H-Y).
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Similarly, by replacing the last Y appearing in (44) by Z, we obtain
XNYVZNH-((XAY)V(XAZ)AZ = {0}
which, as in the case of (45), implies
(46) XNYVZNH-((XAY)V(XNZ)) S (H-2Z).
But then, from (45) and (46) it follows that
XNYVZNH-(XANY)V(XNZ)) S (H-Y)N(H-2))
which by (33) implies
(47) XANYVZNH—-((XAY)V(XAZ)) S (H-(YV Z)).
On the other hand, it is clear that
XANYVZ)NH-((XAY)V(XAZ)) S (YVZ)
which, in view of (47) and (17) implies
XNYVZNH-((XAY)V(XAZ)) S (H—(YVZ)A(YVZ)) = {0}
and consequently,
XA(YVZ)ANH—((XAY)V(XAZ))) = {0}

which by (31) implies (43). But then (41) follows, as mentioned above.
To prove (42), we replace X, Y and Z respectively by H—X, H—Y and H—Z
in (41). As a result, we obtain

(H-X)AN(H-Y)V(H-2)) = (H-X)N\(H-Y))V(H-X)\(H—2Z))
which by (32) and (33) implies
(H-X)NH—(Y\Z)) = (H-(XV))V(H—-(XV Z))
which, in turn, by (25), (32) and (33) implies
XV(YAZ) = H—(H-X)N(H—(YAZ))) = H—((H—(XV ))V(H-(XV 2))) =
=(XVY)AN(XVZ)

as desired. Thus, (42) is established.

The above Theorem establishes the distributivity of (L, £). Observing that in
a distributive lattice (sectional) complementation is unique, based of Lemmas 3, 4, 5
and Theorems 1 and 2, we have:

Theorem 3. The conditional completion (L, ©) by lower cuts of a Boolean ring
(B, =) is a sectionally complemented distributive lattice and hence a conditionally
complete Boolean ring. Moreover, the mapping f from B into L defined by

f(x) = I(x) = {y|y€B and y = x}

is a ring isomorphism from (B, =) into (L, ) such that f preserves suprema (and
hence, also infima).
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Remark 2. Let us observe that if the Boolean ring (B, =) in Theorem 3 is a
Boolean algebra (i.e., B has a multiplicative unit 1), then the conditional comple-
tion (L, £ by) lower cuts of (B, =) is in fact a complete Boolean algebra (see Remark
1 on page 255). Thus, to obtain a completion of a Boolean ring (B, =) which is not a
Boolean algebra, it is sufficient to consider the conditional completion by lower
cuts of the Boolean algebra (4, =) which is obtained by adjoining to B a new symbol
1 (as a multiplicative unit) along with x+1 for every x¢€ B and by defining addition
and multiplication in 4 in an obvious way.
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