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Introduction

In the present paper the authors wish to derive the generalisations of Gauss
Codazzi equations by considering the induced Berwald’s covariant derivative of a
unit vector in the direction of the congruences of curves associated to a hypersurface
of a Finsler space.

1. Notations and fundamental formulae
Let F, be an n-dimensional Finsler space equipped with a positively homoge-

neous metric function F(x, X). The fundamental metric tensor g;;(x, X) of F, is
defined by [1])

Yo .
(l.l) g,'j(x, .*) — Ea;sz(x, x), 2}
where
(12) Conlx, %) & L g1, (2, 2).

2

Let X'(x, x) be a vector field. The covariant derivatives of X‘(x, x) with respect to
x* in the sense of Bernwald and Cartan are given by

(1.4) Xl = 0 X' — (0 X)GB X" + X" Gl
and
(1.5) Xk =X —@ X x"+XmI¥,

') Numbers in brackets refer to the references given at the end of the paper.
}) 9;=9[9x', 0,=9d/ox' and ;] = 9*/dx'Ix’.
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respectively, where Gix(x, X) and I'i}(x, X) are connection parameters symmetric
in its lower indices and are related by the equation

(1.6) I’;‘b‘:’ = Gi,;,i".
We shall now consider a hypersurface F,_, of F, represented by
(1.7) X=xw, @@=12 ..,n0-1)

where u* are the parameter. The matrix |B;| of the projection parameters has
rank n—1. We shall use the following notations

(1.8) B=dd, By Bt =RR.. =,
The hypersurface vector #* and a vector x' of F, are related by
(1.9) 2 =08,

The metric (induced) tensor g,;(u, 1) of F,_, is given by

(1.10) Lap(u, 1) = gi;(x, X)Bj.

g (u, 1) are the inverse of the tensor 2.5 (u, u1); therefore we can construct the fol-
lowing entities:

(1.11) B} =8"'€-8£8'u

which satisfies the identity

112 e pa]l Sie=g
{2} G S Sl LT Y

At each point P of F,_, we can define the unit normal vectors N'(x, X) with
respect to the tangential direction x' at P by the set of equations.

(1.13) a) g;N'Bi = N;B, =0 b) g N;N; = N'N; =1
which imply
(1.14) a) NiBf =0, b) g;N'N =1.

The induced symmetric tensor 43, and the connection parameters Gj, (Sinha and
Singh [3]) of F,_, are given by

(1.15) A3, (u, 1) = Ay (x, X)Bi Bj;
and
(1.16) Gy, = B (Bj, + Bl (Gia— Chum¥™)} + A, + iy i

where the quantity Aj,=g* A,,, satisfies the identities
» b = NM7 and Abyutif = 0.

With the help of the above quantities we can define an induced mixed derivative
denoted by T7, in the sense of Berwald as follows

(1.17) Tipy = 0pTa— (9, )G} + T3 Gou B — T Gy
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With the help of the above equation, we can define the mixed tensor Vj; as

(1.18) Bipy = Viy = Biy— BiGy+ Gix B%

which are regarded as vectors of the imbeding space F,_, and are normal to F,_,.
We may write V},, [3], as

(1.19) Vi = N'Q,5— Bi TS + ClymX™BY,

where ﬁa,, is the second fundamental tensor symmetric in its lower indices and
(1.20) 0 & A%+ Cop .

The induced derivative N{,, of typc (1.17) is given by (Sinha and Singh [3]):

(1.21) Nigy = — 0,58 B+ EL V3 u®+ N*Cjy %™ B,

where

(1.22) EL, = M N'-2M:

and

(1.23) M{‘ - Cgpr, Ml = CﬂlN’Nk = MklNk.

2. Generalised Gauss Codazzi equations

Consider a set of congruences of curves such that one curve of each of them
passes throught every point of F,_,. We consider the contravariant components of
a unit vector in the direction of a curve of a congruence of curves as a linear com-
bination of tangent vector B} and normal vector N’ as

2.1 i = t*Bi +dN',

where 1* and d are parameters. Taking the mixed derivative of A’ with respect to u”
of type (1.17) we get

(2.2) Xsy = Balisy +1*Bigy + N'dg), +dNig)),

again taking the covariant derivative of (2.1) with respect to u” of type (1.17) and
substracting the equation obtained by interchanging the indices f and y we get

(2.3)  Aumom = Batfumn omt I Bigasn com+ Nty om+ Ny com-
With the help of equation (1.18) we can write

(2.4 Bitconom = Vasom- )
Thus by substituting equations (1.19) and (1.21) in (2.4) we obtain

Biay o = Bi{Tite Ty — Pugs 01387 — Tliponi} +
(2.5) + N Qg — T2s 238} + ChuymX™ {5 By N* — Ty Blis} +
+ En ¥ty Qp1ati® + (Chiym %™ Bip) r1- *)

) 2‘:|'¢ﬂ) = Xgg—
*) Indices in brackcls {) are free from symmetric and skew symmetric parts.
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Similarly, by using equation (1.19) and (1.21) we get
Nicmnom = Bi{Ti, Upag™ — (2% D)o} +
(2.6) + En (Vs 1)1+ Entcn V31 + (Chim X" By N" +
+ CigmX™ {(E¥V,i,u® + N’Cf‘,h.i‘B{’,]B;]}.

i - i h i - i hk i h
We have X)) = AmBji and A = Ao By + 2 Viy-

Thus we have

2.7 Mo m = M anBhy-

But we know the following commutation formula [1]

'(2.8} 21{("] k)] = ).IH}“*-(B}).‘)H{;.

From equations (2.7) and (2.8), we get

(2.9) 2ty om = (¥ Hjw— 034 Hjy) By
Similarly for #* we have

(2.10) 25py (om = 1°Heg, — (0:0°) Hj,
where

(2.11) Hiyy(u, 1) = 2{0y, Ghye + Gigp G + Gour, Gl
and

2.12) Hj,(u, i) = 2{dy, 05, G' + Gy, Gy}
The induced covariant derivative of 4 in the sense of Berwald is given by
Therefore, we get

(2.14) iy (m = 0,4{0 G + Gl G-

Substituting equations (2.5), (2.6), (2.9), (2.10) and (2.14) in (2.3) we obtain
M H Bl = Hip,t* By + (0, Hy By — Bj(9,1°) Hj, +
+2[ Bi{t*(Tiep Toorn — Qatp @1e8” — Titpen) +4(Tity Bpra™ + (87 Lap) o)} +
(2.15) + Nt (Duppoom — Tiis @pa) + 0,d (91 G4 + Gl Gi)} +
+ Ep {1 Vg, Qppait® + d(Vyp1i®) 30} + Cham X™ {1*(Dgp B N* — Ty BY) +
+d(E§V,i,u® + N Cis\a X" BY,) By} + t*(Chaym X" Bitg) (i +
+d{Engn Vit + (ChmX™ i By N"}] |
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Multiplying equation (2.15) by B/ and using equations (1.12), (1.14) and (1.22) we
obtain
A" Huw By B} = Hy,t* + B} (,4) Hy By — (0,1°) Hf, +

+2[0*{(Tip T — Datp @3e8" — Thipein) +d(Tity 8™ + (8% Bt om)} +

(2.16)  +BH{CiximX™(t*(Qy By N" — Ty BY;) + d(ELV i + N/ Clis . %° BY,) Bj;)) —
— 2M (V2 Qprati® +d(Vigp i) ) + *(Chiimn X" Bifg) o +
+d(Engin Vet + (ChaimX i B N")} ]
Again multiplying (2.15) by N; and using equation (1.13) we get
N;A"Hjw Bt = (0, ") N Hjx Bk + 2[1* (@051 — Toip 23) +

+0,d{01y G + Gitp Gy} + N { En(1* Vg, Qpyati® + A (Vgp 1) 1) +
+ Claim X" (t* (D By N" — Tiyy Bis) +d(ESV i, i + N Cls o X BY,) Bjy) +

+1*(Chuim X" B3p) o + 4(En(n Vile #° + (ChmX ™o Bin N"}].

Equations (2.16) and (2.17) can be regarded as generalisation of Gauss Codazzi
equation in a hypersurface F,_, imbedded in a Finsler space F,.

(2.17)

3. Particular cases

We can choose a congruence of curves in three different ways. Firstly it is
supposed to be normal to F,_, i.e. A*=dN". Secondly it is such that the vector with
the contravariant components A' in the direction of the curve of the congruence
is only depending upon the tangent vectors B! i.e. A'=¢*B/; thirdly it can be tangential
to the curve x'=u*B!.
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