Generalisation of Gauss-Codazzi equations for Berwald's curvature tensor in a hypersurface of a Finsler space

By H. D. PANDE and A. KUMAR (Groakhpur)

Introduction

In the present paper the authors wish to derive the generalisations of Gauss Codazzi equations by considering the induced Berwald's covariant derivative of a unit vector in the direction of the congruences of curves associated to a hypersurface of a Finsler space.

1. Notations and fundamental formulae

Let F_n be an *n*-dimensional Finsler space equipped with a positively homogeneous metric function $F(x, \dot{x})$. The fundamental metric tensor $g_{ij}(x, \dot{x})$ of F_n is defined by [1]¹)

(1.1)
$$g_{ij}(x, \dot{x}) = \frac{1}{2} \partial_{ij}^2 F^2(x, \dot{x}),^2$$

where

(1.2)
$$C_{ijk}(x, \dot{x}) \stackrel{\text{def}}{=} \frac{1}{2} \partial_k g_{ij}(x, \dot{x}).$$

Let $X^i(x, \dot{x})$ be a vector field. The covariant derivatives of $X^i(x, \dot{x})$ with respect to x^k in the sense of Bernwald and Cartan are given by

$$(1.4) X_{(k)}^i = \partial_k X^i - (\partial_m^i X^i) G_{k\nu}^m \dot{x}^{\gamma} + X^m G_{mk}^i$$

and

$$(1.5) X_{|k}^i = \partial_k X^i - (\partial_m^i X^i) \Gamma_{\gamma k}^{*m} \dot{x}^{\gamma} + X^m \Gamma_{mk}^{*i}$$

²) $\partial_i = \partial/\partial \dot{x}^i$, $\partial_i = \partial/\partial x^i$ and $\partial_{ij}^2 = \partial^2/\partial \dot{x}^i \partial \dot{x}^j$.

¹⁾ Numbers in brackets refer to the references given at the end of the paper.

respectively, where $G_{mk}^i(x, \dot{x})$ and $\Gamma_{mk}^{*i}(x, \dot{x})$ are connection parameters symmetric in its lower indices and are related by the equation

$$\Gamma^{*i}_{\gamma k}\dot{x}^{\gamma} = G^{i}_{\gamma k}\dot{x}^{\gamma}.$$

We shall now consider a hypersurface F_{n-1} of F_n represented by

(1.7)
$$x^i = x^i(u^\alpha), \quad (\alpha = 1, 2, ..., n-1)$$

where u^{α} are the parameter. The matrix $\|B_{\alpha}^{i}\|$ of the projection parameters has rank n-1. We shall use the following notations

$$(1.8) B_{\alpha}^{i} = \partial_{\alpha} x^{i}, \quad B_{\alpha\beta}^{i} = \partial_{\alpha\beta}^{2} x^{i}, \quad B_{\alpha\beta}^{ij} \dots^{k} = B_{\alpha}^{i} B_{\beta}^{j} \dots B_{\gamma}^{k}.$$

The hypersurface vector \dot{u}^{α} and a vector \dot{x}^{i} of F_{n} are related by

$$\dot{x}^i = \dot{u}^\alpha B^i_\alpha.$$

The metric (induced) tensor $g_{\alpha\beta}(u, \dot{u})$ of F_{n-1} is given by

$$g_{\alpha\beta}(u,\dot{u}) = g_{ij}(x,\dot{x})B_{\alpha\beta}^{ij}.$$

 $g^{\alpha\beta}(u, \dot{u})$ are the inverse of the tensor $g_{\alpha\beta}(u, \dot{u})$; therefore we can construct the following entities:

$$(1.11) B_i^{\alpha} = g^{\alpha \in B_i^j} g_{ij}$$

which satisfies the identity

(1.12)
$$B_i^{\alpha} B_{\beta}^i = \delta_{\beta}^{\alpha} = \begin{cases} 1 & \text{if } \alpha = \beta \\ 0 & \text{if } \alpha \neq \beta. \end{cases}$$

At each point P of F_{n-1} we can define the unit normal vectors $N^i(x, \dot{x})$ with respect to the tangential direction \dot{x}^i at P by the set of equations.

(1.13) a)
$$g_{ij}N^{j}B_{\alpha}^{i} = N_{i}B_{\alpha}^{i} = 0$$
 b) $g^{ij}N_{i}N_{j} = N^{i}N_{i} = 1$

which imply

(1.14) a)
$$N^i B_i^{\alpha} = 0$$
, b) $g_{ij} N^i N^j = 1$.

The induced symmetric tensor $A^{\alpha}_{\beta\gamma}$ and the connection parameters $G^{\alpha}_{\beta\gamma}$ (Sinha and Singh [3]) of F_{n-1} are given by

$$A^{\alpha}_{\beta\gamma}(u,\dot{u}) = A^{i}_{hk}(x,\dot{x})B^{\alpha}_{i}B^{hk}_{\beta\gamma}$$

and

(1.16)
$$G_{\beta\gamma}^{\alpha} = B_{i}^{\alpha} \{ B_{\beta\gamma}^{i} + B_{\beta\gamma}^{hk} (G_{hk}^{i} - C_{hk|m}^{i} \dot{x}^{m}) \} + \Lambda_{\beta\gamma}^{\alpha} + C_{\beta\gamma|\varrho}^{\alpha} \dot{u}^{\varrho},$$

where the quantity $\Lambda_{\beta\gamma}^{\alpha} = g^{\alpha\epsilon} \Lambda_{\beta\epsilon\gamma}$ satisfies the identities

$$\Lambda^{\alpha}_{\beta\gamma}\dot{u}^{\beta}=NM^{\alpha}_{\gamma} \quad \text{and} \quad \Lambda^{\varepsilon}_{\alpha\beta}\dot{u}^{\alpha}\dot{u}^{\beta}=0.$$

With the help of the above quantities we can define an induced mixed derivative denoted by $T^i_{\alpha((\beta))}$ in the sense of Berwald as follows

$$(1.17) T_{\alpha((\beta))}^{i} = \partial_{\beta} T_{\alpha}^{i} - (\partial_{\gamma}^{i} T_{\alpha}^{i}) G_{\beta}^{\gamma} + T_{\alpha}^{s} G_{sh}^{i} B_{\beta}^{h} - T_{\varepsilon}^{i} G_{\alpha\beta}^{\varepsilon}.$$

With the help of the above equation, we can define the mixed tensor $V_{\alpha\beta}^i$ as

$$(1.18) B_{\alpha((\beta))}^{i} \stackrel{\text{def}}{=} V_{\alpha\beta}^{i} = B_{\alpha\beta}^{i} - B_{\varepsilon}^{i} G_{\alpha\beta}^{\varepsilon} + G_{hk}^{i} B_{\alpha\beta}^{hk}$$

which are regarded as vectors of the imbeding space F_{n-1} and are normal to F_{n-1} . We may write $V_{\alpha\beta}^i$, [3], as

$$V_{\alpha\beta}^{i} = N^{i} \tilde{\Omega}_{\alpha\beta} - B_{\varepsilon}^{i} T_{\alpha\beta}^{\varepsilon} + C_{hk|m}^{i} \dot{x}^{m} B_{\alpha\beta}^{hk},$$

where $\tilde{\Omega}_{\alpha\beta}$ is the second fundamental tensor symmetric in its lower indices and

(1.20)
$$T_{\alpha\beta}^{\varepsilon} \stackrel{\text{def}}{=} \Lambda_{\alpha\beta}^{\varepsilon} + C_{\alpha\beta|\varrho}^{\varepsilon} \dot{u}^{\varrho}.$$

The induced derivative $N_{((\beta))}^i$ of type (1.17) is given by (Sinha and Singh [3]):

$$N^i_{((\beta))} = -\tilde{\Omega}_{\alpha\beta} g^{\alpha\delta} B^i_{\delta} + E^i_m V^m_{\varrho\beta} \dot{u}^{\varrho} + N^h C^i_{hk|m} \dot{x}^m B^k_{\beta},$$

where

$$(1.22) E_m^i = M_m N^i - 2M_m^i$$

and

$$(1.23) M_l^i = C_{lp}^i N^p, M_l = C_{pkl} N^p N^k = M_{kl} N^k.$$

2. Generalised Gauss Codazzi equations

Consider a set of congruences of curves such that one curve of each of them passes throught every point of F_{n-1} . We consider the contravariant components of a unit vector in the direction of a curve of a congruence of curves as a linear combination of tangent vector B^i_α and normal vector N^i as

$$\lambda^i = t^{\alpha} B^i_{\alpha} + dN^i,$$

where t^{α} and d are parameters. Taking the mixed derivative of λ^{i} with respect to u^{β} of type (1.17) we get

(2.2)
$$\lambda_{((\beta))}^{i} = B_{\alpha}^{i} t_{((\beta))}^{\alpha} + t^{\alpha} B_{\alpha((\beta))}^{i} + N^{i} d_{((\beta))} + dN_{((\beta))}^{i},$$

again taking the covariant derivative of (2.1) with respect to u^{γ} of type (1.17) and substracting the equation obtained by interchanging the indices β and γ we get

$$(2.3) \quad \lambda_{[((\beta))((\gamma))]}^{i} = B_{\alpha}^{i} t_{[((\beta))((\gamma))]}^{\alpha} + t^{\alpha} B_{\alpha[((\beta))((\gamma))]}^{i} + dN_{[((\beta))((\gamma))]}^{i} + N^{i} d_{[((\beta))((\gamma))]}.$$

With the help of equation (1.18) we can write

(2.4)
$$B_{\alpha[(\beta))((\gamma))]}^{i} = V_{\alpha[\beta((\gamma))]}^{i}.^{3}$$

Thus by substituting equations (1.19) and (1.21) in (2.4) we obtain

$$(2.5) \qquad B_{\alpha[((\beta))((\gamma))]}^{i} = B_{\delta}^{i} \left\{ T_{\alpha[\beta}^{\varepsilon} T_{\langle \varepsilon \rangle \gamma]}^{\delta} - \widetilde{\Omega}_{\alpha[\beta} \widetilde{\Omega}_{\gamma]\varepsilon} g^{\varepsilon \delta} - T_{\alpha[\beta((\gamma))]}^{\delta} \right\} + \\
+ N^{i} \left\{ \widetilde{\Omega}_{\alpha[\beta((\gamma))]} - T_{\alpha[\beta}^{\delta} \Omega_{\gamma]\delta} \right\} + C_{hk|m}^{i} \dot{x}^{m} \left\{ \widetilde{\Omega}_{\alpha[\beta} B_{\gamma]}^{k} N^{h} - T_{\alpha[\beta}^{\delta} B_{\gamma]\delta}^{hk} \right\} + \\
+ E_{m}^{i} V_{\varrho[\gamma}^{m} \widetilde{\Omega}_{\beta]\alpha} \dot{u}^{\varrho} + \left(C_{hk|m}^{i} \dot{x}^{m} B_{\alpha[\beta}^{hk})_{((\gamma))]}^{h} \right\}.$$

³) $2x_{[\alpha\beta]} = x_{\alpha\beta} - x_{\beta\alpha}$. ⁴) Indices in brackets $\langle \rangle$ are free from symmetric and skew symmetric parts.

Similarly, by using equation (1.19) and (1.21) we get

$$(2.6) N_{[((\beta))((\gamma))]}^{i} = B_{\delta}^{i} \{ T_{\varepsilon[\gamma}^{\delta} \widetilde{\Omega}_{\beta]\alpha} g^{\alpha\varepsilon} - (g^{\alpha\delta} \widetilde{\Omega}_{\alpha[\beta})_{((\gamma))]} \} +$$

$$+ E_{m}^{i} (V_{\varrho[\beta}^{m} \dot{u}^{\varrho})_{((\gamma))]} + E_{m[((\gamma))}^{i} V_{\beta]\varrho}^{m} \dot{u}^{\varrho} + (C_{hk|m}^{i} \dot{x}^{m})_{[((\gamma))} B_{\beta]}^{k} N^{h} +$$

$$+ C_{hk|m}^{i} \dot{x}^{m} \{ (E_{s}^{h} V_{\varrho[\gamma}^{s} \dot{u}^{\varrho} + N^{l} C_{ls|\alpha}^{h} \dot{x}^{\alpha} B_{[\gamma)}^{s}) B_{\beta]}^{k} \}.$$

We have $\lambda_{((\beta))}^i = \lambda_{(h)}^i B_{\beta}^h$ and $\lambda_{((\beta))((\gamma))}^i = \lambda_{(h)(k)}^i B_{\beta\gamma}^{hk} + \lambda_{(h)}^i V_{\beta\gamma}^h$.

Thus we have

$$\lambda_{\Gamma((\beta)),((\gamma))}^i = \lambda_{\Gamma(h),(k)}^i B_{\beta\gamma}^{hk}.$$

But we know the following commutation formula [1]

From equations (2.7) and (2.8), we get

(2.9)
$$2\lambda_{\lfloor ((\beta))((\gamma))\rfloor}^i = (\lambda^j H^i_{jhk} - \partial_j \lambda^i H^j_{hk}) B^{hk}_{\beta\gamma}.$$

Similarly for t^{δ} we have

$$(2.10) 2t_{\Gamma((\beta))((\gamma))}^{\delta} = t^{\varepsilon} H_{\varepsilon\beta\gamma}^{\delta} - (\partial_{\varepsilon}^{*} t^{\delta}) H_{\beta\gamma}^{\varepsilon},$$

where

$$(2.11) H^{\delta}_{\varepsilon\beta\gamma}(u,\dot{u}) = 2\{\partial_{[\gamma}G^{\delta}_{\beta]\varepsilon} + G^{\varrho}_{\varepsilon[\beta}G^{\delta}_{\gamma]\varrho} + G^{\delta}_{\varrho\varepsilon[\gamma}G^{\varrho}_{\beta]}\}$$

and

$$(2.12) H_{\beta\gamma}^{\epsilon}(u,\dot{u}) = 2\{\partial_{[\gamma}\partial_{\beta]}G^i + G_{\varrho[\gamma}^{\epsilon}G_{\beta]}^{\varrho}\}.$$

The induced covariant derivative of d in the sense of Berwald is given by

$$(2.13) d_{((\beta))} = \partial_{\beta} d - (\dot{\partial}_{\gamma} d) G_{\beta}^{\gamma}.$$

Therefore, we get

$$(2.14) d_{[((\beta))((\gamma))]} = \partial_{\varrho}^{\star} d \{ \partial_{[\beta} G_{\gamma]}^{\varrho} + G_{\varepsilon[\beta}^{\varrho} G_{\gamma]}^{\varepsilon} \}.$$

Substituting equations (2.5), (2.6), (2.9), (2.10) and (2.14) in (2.3) we obtain

$$\lambda^{j}H_{jhk}^{i}B_{\beta\gamma}^{hk} = H_{\varepsilon\beta\gamma}^{\delta}t^{\varepsilon}B_{\delta}^{i} + (\partial_{n}^{i}\lambda^{i})H_{hk}^{n}B_{\beta\gamma}^{hk} - B_{\delta}^{i}(\partial_{\varepsilon}^{i}t^{\delta})H_{\beta\gamma}^{\varepsilon} +$$

$$+2\left[B_{\delta}^{i}\left\{t^{\alpha}(T_{\alpha[\beta}^{\varepsilon}T_{\langle\varepsilon\rangle\gamma]}^{\delta} - \tilde{\Omega}_{\alpha[\beta}\tilde{\Omega}_{\gamma]\varepsilon}g^{\varepsilon\delta} - T_{\alpha[\beta((\gamma))]}^{\delta}) + d\left(T_{\varepsilon[\gamma}^{\delta}\tilde{\Omega}_{\beta]\alpha}g^{\alpha\varepsilon} + (g^{\alpha\delta}\tilde{\Omega}_{\alpha[\beta)((\gamma))]}\right)\right\} +$$

$$+N^{i}\left\{t^{\alpha}(\tilde{\Omega}_{\alpha[\beta((\gamma))]} - T_{\alpha[\beta}^{\delta}\tilde{\Omega}_{\gamma]\delta}) + \partial_{\varepsilon}^{i}d(\partial_{[\beta}G_{\gamma]}^{\varepsilon} + G_{\varepsilon[\beta}^{\varepsilon}G_{\gamma]}^{\varepsilon})\right\} +$$

$$+E_{m}^{i}\left\{t^{\alpha}V_{\varrho[\gamma}^{m}\tilde{\Omega}_{\beta]\alpha}\dot{u}^{\varrho} + d(V_{\varrho[\beta}^{m}\dot{u}^{\varrho})_{((\gamma))]}\right\} + C_{hk|m}^{i}\dot{x}^{m}\left\{t^{\alpha}(\tilde{\Omega}_{\alpha[\beta}B_{\gamma]}^{k}N^{h} - T_{\alpha[\beta}^{\delta}B_{\gamma]\delta}^{hk}) +$$

$$+d(E_{S}^{h}V_{\varrho[\gamma}^{S}\dot{u}^{\varrho} + N^{\varrho}C_{\varrho S|\alpha}^{h}\dot{x}^{a}B_{[\gamma)}^{S})B_{\beta]}^{k}\right\} + t^{\alpha}(C_{hk|m}^{i}\dot{x}^{m}B_{\alpha[\beta}^{hk})_{((\gamma))]} +$$

$$+d\left\{E_{m[(\gamma))}^{l}V_{\beta]\alpha}^{m}\dot{u}^{\varrho} + (C_{hk|m}^{i}\dot{x}^{m})_{((\gamma))}B_{\beta1}^{k}N^{h}\right\}\right].$$

Multiplying equation (2.15) by B_i^{δ} and using equations (1.12), (1.14) and (1.22) we obtain

$$\lambda^{n} H_{nhk}^{i} B_{\beta\gamma}^{hk} B_{i}^{\delta} = H_{\varepsilon\beta\gamma}^{\delta} t^{\varepsilon} + B_{i}^{\delta} (\partial_{n} \lambda^{i}) H_{hk}^{n} B_{\beta\gamma}^{hk} - (\partial_{\varepsilon}^{*} t^{\delta}) H_{\beta\gamma}^{\varepsilon} +$$

$$+ 2 \left[t^{\alpha} \left\{ (T_{\alpha[\beta}^{\varepsilon} T_{\langle \varepsilon \rangle \gamma]}^{\delta} - \widetilde{\Omega}_{\alpha[\beta} \overline{\Omega}_{\gamma]\varepsilon} g^{\varepsilon\delta} - T_{\alpha[\beta((\gamma))]}^{\delta}) + d \left(T_{\varepsilon[\gamma}^{\delta} \widetilde{\Omega}_{\beta]\alpha} g^{\alpha\delta} + (g^{\alpha\delta} \widetilde{\Omega}_{\alpha[\beta)((\gamma))]} \right) \right\} +$$

$$(2.16) \quad + B_{i}^{\delta} \left\{ C_{hk|m}^{i} \dot{x}^{m} \left(t^{\alpha} (\widetilde{\Omega}_{\alpha[\beta} B_{\gamma]}^{k} N^{h} - T_{\alpha[\beta}^{\delta} B_{\gamma]\delta}^{hk}) + d (E_{S}^{h} V_{\varrho[\gamma}^{S} \dot{u}^{\varrho} + N^{j} C_{jS|\alpha}^{h} \dot{x}^{a} B_{[\gamma}^{S}) B_{\beta]}^{k} \right) -$$

$$- 2 M_{m}^{i} \left(t^{\alpha} V_{\varrho[\gamma}^{m} \widetilde{\Omega}_{\beta]\alpha} \dot{u}^{\varrho} + d (V_{\varrho[\beta}^{m} \dot{u}^{\varrho})_{((\gamma))} \right) + t^{\alpha} \left(C_{hk|m}^{i} \dot{x}^{m} B_{\alpha[\beta}^{hk})_{((\gamma))} +$$

$$+ d \left(E_{m[((\gamma))}^{i} V_{\beta]\varrho}^{m} \dot{u}^{\varrho} + \left(C_{hk|m}^{i} \dot{x}^{m} \right)_{[((\gamma))} B_{\beta]}^{k} N^{h} \right) \right\} \right].$$

Again multiplying (2.15) by N_i and using equation (1.13) we get

$$(2.17) \begin{array}{c} N_{i}\lambda^{n}H_{nhk}^{i}B_{\beta\gamma}^{hk} = (\partial_{n}^{*}\lambda^{i})N_{i}H_{hk}^{n}B_{\beta\gamma}^{hk} + 2\left[t^{\alpha}(\widetilde{\Omega}_{\alpha[\beta((\gamma))]} - T_{\alpha[\beta}^{\delta}\,\overline{\Omega}_{\gamma]\delta}) + \right. \\ \left. + \partial_{\varrho}^{*}d\left\{\partial_{[\beta}G_{\gamma]}^{\varrho} + G_{e[\beta}^{\varrho}G_{\gamma]}^{e}\right\} + N_{i}\left\{E_{m}^{i}\left(t^{\alpha}V_{\varrho[\gamma}^{m}\,\widetilde{\Omega}_{\beta]\alpha}\dot{u}^{\varrho} + d(V_{\varrho[\beta}^{m}\dot{u}^{\varrho})_{((\gamma))]}\right) + \right. \\ \left. + C_{hk|m}^{i}\dot{x}^{m}\left(t^{\alpha}(\widetilde{\Omega}_{\alpha[\beta}B_{\gamma]}^{k}N^{h} - T_{\alpha[\beta}^{\delta}B_{\gamma]\delta}^{hk}) + d(E_{S}^{k}V_{\varrho[\gamma}^{S}\dot{u}^{\varrho} + N^{j}C_{jS|a}^{h}\dot{x}^{a}B_{[\gamma}^{S})B_{\beta]}^{k}\right) + \\ \left. + t^{\alpha}(C_{hk|m}^{i}\dot{x}^{m}B_{\alpha[\beta}^{hk})_{((\gamma))]} + d(E_{m}^{i}((\gamma))V_{\beta]\varrho}^{m}\dot{u}^{\varrho} + (C_{hk|m}^{i}\dot{x}^{m})_{[(\gamma))}B_{\beta]}^{k}N^{h}\right\}\right]. \end{array}$$

Equations (2.16) and (2.17) can be regarded as generalisation of Gauss Codazzi equation in a hypersurface F_{n-1} imbedded in a Finsler space F_n .

3. Particular cases

We can choose a congruence of curves in three different ways. Firstly it is supposed to be normal to F_{n-1} i.e. $\lambda^i = dN^i$. Secondly it is such that the vector with the contravariant components λ^i in the direction of the curve of the congruence is only depending upon the tangent vectors B^i_α i.e. $\lambda^i = t^\alpha B^i_\alpha$; thirdly it can be tangential to the curve $\dot{x}^i = \dot{u}^\alpha B^i_\alpha$.

References

- [1] H. Rund, The differential geometry of Finsler spaces, Berlin, 1959.
- [2] H. Rund, Curvature properties of hypersurfaces of Finsler spaces and Minkowskian spaces, Tensor, N. S., 14 (1963), 226—244.
- [3] B. B. SINHA and S. P. SINGH, A generalisation of Gauss Codazzi equation for the Berwald's curvature tensor, *Tensor*, N. S. 22 (1971), 112—116.
- [4] B. B. Sinha and S. P. Singh, A generalisation of Gauss and Codazzi equations for the first curvature of Cartan. Progress of Math. 6 (1972), 1—6.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF GORAKHPUR GORAKHPUR, U. P. INDIA

(Received January 18, 1974.)