A new algebra of distributions; initial-value problems
involving Schwartz distributions. I

By GREGERS KRABBE (West Lafayette, Ind.)

The theme of this paper is a space B of distributions; this space 9B is closed
under convolution (the definition of this particular convolution reguires no restric-
tion on the supports — nor does it require growth conditions). The space B con-
tains all the functions which are locally integrable on (— o=, =c); the space B also
contains D, and each derivative of every distribution whose support is a locally
finite subset of (—eo, ). If T is a distribution whose derivative 97" belongs to B,
then 7" also belongs to B, and 7 has a well-defined initial-value T(0—). Thus, it is
possible to consider initial-value problems involving arbitrary distributions whenever
the input belongs to the space B. Also defined in this paper is a one-to-one trans-
formation of B into a commutative algebra of operators (this transformation is
somewhat analogous to the Fourier transformation); this gives an operational
calculus which yields an existence and uniqueness theorem for differential equations
subject to initial conditions of the form

u(0-) =c¢,, ou(0-)=c¢,, *u(0-)=c,,...,

where ¢, ¢;, ¢5, ... are arbitrary constants and where « is an arbitrary distribu-
tion satisfying a differential equation whose right-hand side belongs to the space B.
The operational calculus is applied to a differential equation which cannot be solved
explicitly by means of the Fourier transformation.

The new algebra is denoted B: it is a commutative algebra (of distributions)
under convolution multiplication; the space B contains D’, and all locally integrable
functions. The space B is closed under convolution and contains each derivative
of every distribution whose support is locally finite. If F is a distribution whose
derivative d F belongs to B, then F also belongs to B and F equals a continuous func-
tion fin some interval (a, 0) (with a<0): in consequence, F has a well-defined initial
value F(0—)=f(0-).

Given arbitrary constants (a,, a,, ..., a,) and an arbitrary element S of the
algebra B, we shall describe a calculus to obtain explicit solutions of differential
equations of the form

(n A, 0"u+...+a,0u+ayu==S§
subject to initial conditions such as
(2) #(0-) =¢y, MO0-) =55 0.3 ™ u(0-) = Cpyy,
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where ¢,, ¢, ..., ¢,,—, are arbitrary constants. As we shall see, such initial-value
problems can be solved by means of an operational calculus which is a useful sub-
stitute for the two-sided distributional Laplace transformation: it requires no growth
restrictions and no restrictions on the supports. We shall prove that the equation (1)
implies that both » and d*u belong to B for each integer k=m; moreover, there
exists a unique distribution wu satisfying the problem (1)—(2): this distribution
belongs to the algebra B.

The algebra B contains as a subalgebra the space D’, (of all the distributions
which vanish on the interval (— <, 0)). In fact, B=D’, +B_, where B_ is the
space of all the elements of D” which are regular in some neighborhood of the
origin (here D’ denotes the space of all the distributions which vanish on (0, =)).
The space B contains the space L'° of all the complex-valued functions which are
locally integrable on (— o=, ==):

I™-BeD’.

The space B also contains all the “opérateurs de Heaviside™ [2]. To each F in
B there corresponds a unique pair (F,, F_) in the cartesian product D’. X8 _ such

that F=F, +F._.
The algebra B is the result of providing the space B with the multiplication

BXB3(F,G) - FRGeB
defined by
FRG=F G, —F_=*G_,

where # is convolution in the usual sense [4, p. 348]. Thus, ® is the multiplication
of the algebra B; it is commutative and commutes with the distributional differen-
tiator d; note the absence of any restriction on the supports (there are no growth
conditions either). A particular solution of the differential equation (1) is given by

the Duhamel-type formula
u=G®S,

where G is the regular distribution corresponding to the Green’s function of the
equation (1): see 5.15.

If [ f1° (respectively, [g]°) is the regular distribution corresponding to the locally
integrable function f( ) (respectively, g( )), then [ f]°®[g]" is the regular distribution
[/ g]° corresponding to the function f/\g( ) defined by

fhg(t) =~ [ ft—Dg(x)dr (for — = <t < ).

Our operational calculus (see 3.8) is an algebraic isomorphism of B into the
operator-algebra o7g (see [6]); it applies to problems such as (1)—(2): for example,
it yields the solution

(3) U= c,,cosr+(cl+l)sint+[2—;] sint
of the initial-value problem

@) Pu+u= 2 Ou. subjectto u(0—)=c,
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and Ju(0—)=¢, (with ¢, and ¢, arbitrary complex numbers): as usual, [7/2x] is the
greatest integer <1/2m, and d,,, is the Dirac distribution concentrated at the point
2kn. The first equation in (4) is a counter-example in [1, p. 128] and cannot be solved
by the method of fundamental (or “elementary™) solutions; its solution (3) cannot be
obtained by using the Fourier transformation, the finite Fourier transformation, nor
the two-sided distributional Laplace transformation.

Organization of this paper. The first sections are devoted to the operational
calculus; § 5 deals with initial-value problems and contains the main results; the
above example is discussed in §6.

Concluding remarks. The theorems in § 5 resemble (and were inspired by) the
ones in César de Freitas’ article [2] (which deals with a space 9 containing L'¢
and properly contained in B each element of 9 is a linear combination of a function
with a sum of distributions of finite order whose supports are locally finite). Harris
Shultz gave me the idea that F® G belongs to B whenever F and G belong to B:
he also gave me a more elegant characterization of the space B (which I use as a
definition).

§ 1. Preliminaries

Let D be the space D(R) of Schwartz test-functions on R=(— ==, ==); as usual,
D’ is the dual of D (see [4, p. 313]); a distribution is an element of D’.

If J is a subset of R, the relation ¢ <J will mean that ¢( )€ D and the support of
@( ) is a compact subset of J. We always have ¢ <R.

1.1. The symbol O . If F is a distribution, there exists a largest open set O (F)
such that F(¢)=0 whenever ¢ = O (F) (see [4, p. 318]).

1.2. If («, f) is an open interval, then ¢ <(a, f) if (and only if) ¢@() vanishes
outside some closed sub-interval of (x«, f).

1.3. Again, let F be a distribution. If J; and J, are open subsets of R such that
O(F)> J, for k=1 and k=2, then

O(F) o J;UJ, (see [8, pp. 27—28)).

1.4. Equality of distributions in a set. If JCR, a distribution F is said to equal
F, in J if (and only if) F(¢)= F,(¢) whenever ¢ <J.

Thus, O(F) is the largest open set J such that F equals 0 in J. Note that 0 is
the zero distribution.

1.5. Note. Let J be an open subset of R; clearly,
O(F)>J if (and only if) F equals 0 in J.
1.6. Lemma. Let ¢, and ¢, be complex numbers. If F, and F, are distributions, then
O(ey Fy+¢3F) D O(F) N O(Fy):
see [4, p. 318, Proposition 2].
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1.7. Two spaces of regular distributions. Let # be the space L'"* of all the com-
plex-valued functions which are locally integrable on R. There is a linear injection
J(O)=[f]° of #F into the space D’ of distributions, the distribution [f]° being
defined by

UT(9) = [ fe@du (for ¢() in D):

see p. 48 in [9], where the distribution [ f]° is denoted 7. If ¥F# we set
[ = {/1: 709}

The elements of the space [#]° are usually called regular distributions. Let #_ be
the space of all the functions f( ) in # such that f( ) equals zero almost-everywhere
on (0, =) (this will henceforth be written: f( )=0 on (0, =)):

(1.8) F_={fOeF:f() =0 on (0, =)}.
Thus, BE[#_]° if B is a regular distribution [f]° such that f( )=0 on (0, =):
(1.9) [Z1 ={[f1":fO€F and f() =0 on (0, =)}.

1.10. Let © be an open subset of R and let £,() and f;() be two elements of
F.If f,0)=1u() on Q, then the distribution [ f;]° equals [ f5]" in Q. See [9, p. 48].

1.11. Conversely, if [A]° equals [ f3]° in Q, then f,()=fs() on Q (that is, the
functions are equal almost-everywhere on Q). See [9, p. 48].

1.12. Definition. Let B_ be the family of all the distributions which equal 0
in the interval (0, ==) and which equal some regular distribution in some interval (a, —a)
with a=0.

1.13. Definitions. Let B, be the family of all the distributions which equal 0
in the interval (—<,0). We set
(1.14) B=B_+9B,;
thus, the family B consists of all the sums F+ R such that FeB_ and ReB .

1.15. Definition. A “left-distribution” is a distribution which equals zero in
some interval (a, =) containing the point 0. We denote by (%) the family of left-
distributions.

1.16. Therefore, Le(Z) if (and only if) L is a distribution which equals 0 in
some interval (a, ==) with a<0. In other words, L£(%) if (and only if) LeD’ and
there exists a number a=0 such that O(L)>(a, ).

1.17. Reorientation. The main object of this section is to prove that 1.14 is a
direct sum. We shall also need the following lemma, which characterizes B_ as
the space of all distributions of the form L[ f]°, where L£(Z) and f( )eF_.

1.18. Lemma. B_=(Z)+[#_]".



A new algebra of distributions...T 283

PrOOF. If A belongs to (£)+[#_]°, then the equation
(1) A=L+[f]

holds for some L&(%) and for some f( )€#_. Since f()=0 on (0, =) (by 1.8), it
follows from 1.10 and 1.5 that

2 O(/1)2(0, ==).
Since L& (%) we can apply 1.16 to infer the existence of a number <0 such that
(3) O(L)>(a, =).
In view of (1), (2) and (3), we may apply 1.6 to obtain
) O(A4)D(0, =):

this is obtained by using the fact that a<0, which implies the equation (0, =)/
MN(a, =)=(0, ==).

Thus, A equals 0 in (0, =): we still have to prove that 4 equals [ /]° in (a, —a).
To that effect, observe that L equals 0 in (a, =) (by (3) and 1.5); from (1) we there-
fore infer that A4 equals [ f]° in (a, =). Consequently, 4 belongs to B _ (since A4 also
equals 0 in (0, =) (see (4) and 1.12)).

To prove the converse, suppose that A¢B_. In view of 1.12, this implies (4),
the existence of a number a<0 and a function g() in # such that

5 A(p) = [g]'(p) (for @ < (a, —a)).
Since ©(A4)>(0, —a) (by (4) and a<0), we have
6) A(p) =0 (for @ < (0, —a)).

Combining (5) and (6), we see that
€)= 0 (for ¢ = (0, —a)):
that is, [g]" equals 0 in (0, —a); therefore, 1.11 gives
(7 g()=0 on (0, —a).
Let f() be the function defined by
g(t) for a<=t<-—a

(8) f() = {0

From (7) and (8) it follows that f( )=0 on (0, —a); since f()=0 on (—a, =)
(by (8)), we see that f()=0 on (0, =): therefore,

otherwise.

©) O([f192(0, <),

which (by 1.11) implies that f( )=0 on (0, =); consequently, /() belongs to #_ and
(10) T e[F )"

Next, we set

(11) L=A-[f"
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since A= L+[f]° our conclusion (namely, that A belongs to the space (£)+[#_]°)
will be obtained by proving that L&(%). To that effect, observe that the equations

(12) L(o) = A(e)—[f1(0) = [g]°(¢) —[2]°(¢)

hold for ¢ <(a, —a) and come from (11) and (5). Since g()=/() on (a, —a) (by (8)),
the distribution [¢]° equals [f]° in (a, —a) (by 1.10), so that [g]°(¢)=[f](¢) for
¢p<=(a, —a): from (12) it now follows that

L(p) =0 (for ¢ < (a. —a)).

that is.

(13) O(L)>(a, —a).

On the other hand, (11), (4), (9) and 1.6 imply that
(14) QL) 0N O(S1)>(0, ).

From (13)—(14) and 1.3 it therefore follows that
O(L) :)(at G a) U (0$ oo) = (ﬂ, oo),

which proves that O(L)>(a, =): therefore, Le(¥) (see 1.15). Since A=L+[f]°
and (10), the distribution 4 belongs to (£)+[#_]".

1.19. Lemma. Suppose that BEB _. If BEB, then B=0.

Proor. If BB, it follows from 1.13 that B equals 0 in the interval (— <o, 0):
this means that

(1 B(p) =0 (for ¢ = (—==,0)).
In view of 1.18, the hypothesis BB _ implies that the equation
(2) B=L+[fT
holds for some L in (%) and for some f( ) in #_. From (1)—(2) it follows that
3) [/1°(@) = —L(9) (for ¢ = (—==,0)).

On the other hand, it follows from L€(%) and 1.16 the existence of a number
a0 such that

(4) L(p) =0 (for ¢ < (a, =)).
Combining (3) and (4):
[/1°(¢) =0 (for ¢ < (a,0)),

so that [ f]° equals 0 in (a, 0), whence f( )=0 on (a, 0) (by 1.11). But our hypothesis
SfO)eF_ implies that f()=0 on (0, ==); therefore, f( )=0 on (a, =), so that

(&) [/1°(e) =0 (for ¢ < a,==)).
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From (5) and (4) we see that L+[f]° equals 0 in (a, ==); from (2) it therefore
follows that
O(B)>(a, =);

but O(B)D(—==,0) (from (1)), so that 1.3 now gives

©6) ‘O(B)D(—20,0U(a, =) = R.

From (6), 1.5, and 1.1 we see that B(¢)=0 whenever ¢ <R. If ¢@()€D then
@=R, so that the equation B(¢)=0(¢) holds for every ¢ () in D. We have proved
that B=0.

1.20. Theorem. The four spaces B ., (£), B_, and B are linear spaces. To any
F in B there corresponds a unique pair (F_, F.) of distributions such that F_€%8B _,
F=F_+F,., and F,.cB .. Moreover,

(1.21) FeEB oF =0F=F,,
and
(1.22) FEB_oF,=0F=F._.

Proor. The linearity of B, and (%) follow directly from 1.13, 1.15, and 1.6:
it is now easy to verify that the space (%) +[#_)° is linear; therefore, B_ is linear
(by 1.18); this in turn implies the linearity of the space B (defined by B=B_+3B.).
Since B consists of distributions of the form B+ R with BeB_ and RSB,
the uniqueness of the pair (B, R) will be established by proving that the assumption

(1) F_+F, = B+R

implies F_=B and F. =R (when F_ and B belong to B_, and when F, and R
belong to B, ). From (1) it follows that F_ — B belongs to both B_ and B ; from
1.19 it therefore follows that F_ —B=0, which implies F_ =B and F, =R (by (1)).

To prove (1.21), note that FEB . implies F_+ F,€B,, so that F_cB_; since
F_e®B_ we have F_=0 (by 1.19): the rest is obvious. The proof of 1.22 is entirely
similar.

1.23. Notation. Let 1_() and 1,() be the functions defined by

1 fort <=0
(L2 '*(”:{0 for 1=0
and
0 fort=0
(152) L. = {1 for t = 0.
If f()eF we set
(1.26) f-O=1_.0f() and f,.()=1,0f0.

1.27. Lemma. If f()eF then [f]°€B,
(1.28) [/-P=01L, and [f.]°=[f]5.
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Proor. From 1.24—1.26 and 1.10 w: see that [/_]"¢®B and [f,]°¢B, ; from
1.24—1.26 it also follows that [ f1°=[f-1°4 [ f+]°; the conclusions are now immediate
from 1.20.

§ 2. The operation ®

In this section our aim is to define a multiplication ® on the linear space B;
its main properties will be established. First, let us set down some notation.

If R is a distribution, its distributional derivative dR is defined in the usual
way [4, p. 323]. We denote by 1( ) the constant function whose value is the unit 1
(the function 1() is defined by 1(r)=1 for 7€R). Note that 9[1]°=0,

(2.1) o[1]° =—46, and I[1)% =

where [1]2 =[1_]° (see 1.28) and ¢ is the Dirac distribution. As usual, if f{( )EF then

f() is the function defined by f(r)—f( x). If T is a distribution, then T is the
distribution (also denoted 7~ ) defined by

(2.2) T(p) = T(¢) (for ¢()€D).
It is easily verified that

(2.3) T =1/1" (for f)€F).
Clearly,

(2.4) S =8 (for Sin D).

2.5. Lemma. Suppose that a<0. If ¢( )ED then ¢ <(— <=, —a) if (and only if)
p=(a, =).

PROOF. If ¢p<(—<, —a) we can use 1.2 to assert that ¢( ) vanishes outside
of some closed subinterval [— 4, —u] of (— s, —a). Therefore, — < —a and a<pyu,
so that

(1) [u, =) c(a, ).

If x>/4and t<=u then —x <= —A1 and —u = —1, which implies that ¢ (—1)=0=
=@(—x) (since ¢ () vanishes outside of the mterval [—4 —nl); consequentiy, o()
vanishes on the set (—eo, p)U(4, =): this means that the support of ¢() is con-
tained in the interval [y, A]: the conclusion ¢ =(a, ==) now comes from (1) and 1.2.

Conversely, suppose that ¢ <=(a, =<). From 1.2 it follows that ¢() vanishes
outside of some interval [u, /] (a, ==). Therefore, a<u and —pu <= —a, so that

(2J (==, —-j.l]C(—m, —ﬂ).

If t=—u and x=—4 then —r<=u and —x=/, which implies that ¢(—1)=
=@(—x)=0 (since ¢ () vanishes outside of [, 4]); consequently, ¢ () vanishes on
the set (— =, —4)U(—pu, ==); therefore, the support of ¢( ) is contained in [— 4, —pu]:
the conclusion ¢ <(— <=, —a) is now immediate from (2).
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2.6. Theorem. Suppose that a<0. If T is a distribution, then
O(T)>(a, =) if (and only if) O(T)>(—e=, —a).
Proor. If O(T)>(a, =) then
(1 T(p) =0 (for @, < (a, =)).
If ¢ =(-— ==, —a) then ¢ =(a, =) (by 2.5), so that T(¢)=0 (by (1)); consequently,

T(¢)=0 (by 2.2). We have just seen that T(¢)=0 whenever ¢<(—-eo, —a): this
means thatO(T) D (— =, —a).

Conversely, suppose that C}(f“):(—w, —a): if ¢p<(—-e, —a) then f‘((p)r-:D.
Thus, by 2.2;

(2 T(p) =0 (for ¢ < (—=, —a)).
If @, <(a, <) we set @()=¢,(); then
3) ¢1() = ‘)5()

and ¢<(a, =), whence ¢ <(— =, —a) (by 2.5), and the equations

0 = T(¢) = T(p))

come directly from (2) and (3). We have just seen that T(¢,) =0 whenever ¢, <(a, =):
this means that O(7)>(a, =).

2.7. Lemma. If S and T are distributions such that
D(S):)(—OD, 0) and O(T)D(_ e, T),

then S* T is a distribution such that

(2.8) OS*T)D(—ec,0+71);
maoreover,
(2.9) ST = Tx%S,

Proor. Note that both S and 7 belong to D’ (see [8, p. 172]): note also that
O(F) is the set-theoretic complement of Supp F. Conclusions 2.8 and 2.9 now
follows from Théoréme XIII in [8, p. 172].

2.10. Definition. If F, and F, are distributions such that

(2.11) O(F)D(ay, =) (for k =1,2),

we set

(2.12) Fy%F,= (F*F,)".
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2.13. Lemma. If F, and F, are distributions satisfying 2.11, then
(2.14) O(Fy* Fy) D (a, +ay, =).
If f() and g() are in F_, then the equation

f+g@t)= [ flt—w)g) du (for tR)

defines a function f+*g() in F_ such that
(2.15) [f1° %[’ = [f=*g]

PrROOF. It is not hard to verify that = is the convolution product as defined
in [10, pp. 123—124]; in consequence, 2.14 can be derived from Theorem 5.4—2
in [10, p. 125]; further, 2.15 is proved in [10, pp. 126—127]. The present lemma

can be proved directly from 2.12; for example, to establish 2.14, observe that O(I:'k)
contains the interval (— ==, —a,) (by 2.11 and 2.6), so that we may use 2.8 to assert that

O(ﬁ:*ﬁi)a(_ms —ah —0y):

conclusion 2.14 now results from one more application of 2.6.

2.16. Lemma. If Le(Z) and O(R)D(0, =) then L= R and R* L both belong
to (£).

Proor. From 1.16 it follows the existence of a number a=0 such that O(L)>
D(a, =); we may therefore apply 2.14 to obtain

O(L*R)D(a+0, =),

whence the conclusion L#* Re(%) now comes from 1.16; on the other hand, the
conclusion R# L=L % R comes from 2.12 and 2.9.

2.17. Definition. If F and G are distributions, we set

(2.18) FRG=—F_%G_+F,*G,.
2.19. Theorem. If F and G belong to B, then

(2.20) F®G belongs to B,

(2.21) (F®G). =—-F_%G_,

and

(2.22) (F®G), = F,*G,;

moreover,

(2.23) FeB, implies FRG = F,»G_ B,

and

(2.24) Fe(Z) implies FRGE(ZL).
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Proor. Clearly,

(1) F®RG = A+B, where B = F_ *G,
and
(2) A=—F_=»G_.

A distribution Q belongs to B, if (and only if) O(Q) includes the interval
(—e==,0):see 1.13and 1.5. Since F, and G, belong to B ., we can use 2.7 to assert that

3) F,«G,_ belongsto 9B,.
In view of (1)—(3), the conclusion F® G€B can be obtained by proving that
4 F_%G_ belongsto 9B_.

Let us prove (4). From 1.18 we see that both F_ and G, belong to (&) +[#_]°;
therefore, the equations

F_=LF+[f’ and G_ = L°+[g]°
hold for LFe(Z), L9€(Z), f()eF_, and g()eF_. Consequently,
(5) F_%xG_ = LF«LO+ LFx[g]"+[f1°* LC +[f1°*[g]".

The three first terms on the right-hand side of (5) are of the form R=x L (or
L% R), where O(R)>(0, =) and L€(Z); in view of 2.16, their sum is an element
L, of (£):

(6) F_xG_ = L, +[f]°*[g]"

From (6) and 2.15 it follows that F_*G_=L,+[f*g]’, where fxg()cF_.
Therefore, F_+G_ belongs to the space (Z)+[F_]": Conclusion (4) now comes
from 1.18.

Having thus proved (4), Conclusions 2.20—2.22 follow directly from (1)—(4)
and 1.20. It remains to prove 2.23—2.24. If FEB, then F_ =0 (by 1.21); consequently,
(F®G)_ =0 (by 2.21), which implies FRGEB, (by 1.21)and FRG=F, %G, (by
2.18). Finally, let us prove 2.24. If Fc(%) then FE®B_ (by 1.18), so that F, =0 and
F=F_ (by 1.22): from 2.18 it therefore follows that

(7N FRG =—-F%G._.

Our conclusion FRGE(ZL) is now obtained by setting F=L and G_=R in
2.16 (note that O(G_.)>(0, =) since G_€B_ and 1.12).

2.25. Notations. As indicated at the beginning of this section, the deriva-
tive of a distribution F is denoted dF (see [4, p. 323]); the Dirac distribution is
denoted & (it is defined by the equation 6(¢)=¢(0): see [4, p. 314]).

8D
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2.26. Theorem. If R, S, T belong to B, then

(2.27) R®S = S®R,

(2.28) RR(S®T) = (RRS)DT,
(2.29) oRS==S,,

(2.30) Od(R®S) = —0R_*S_+0R,*S,,
and

(2.31) ([1'®S) = S.

Proor. Note that F£ B, if (and only if) F is a distribution whose support is
included in the half-open interval [0, =) (see 1.13): we may therefore combine
Remark 3 in [4, p. 385] with [4, p. 390] and [4, p. 392] to infer that

(H R,*S,=S,*R,,
2 R,%(S,3T,) = (R,*5,)*T,,
and
(3) O(R,*S,) = 0R, +S,.
Since O(F_)>(0, =) whenever FeB, the corresponding equations
(i) R.=S_.=8S_sR_,
(ii) R_*%(S_oT )=(R_+S_)»T_,
and
(i11) I(R_#S_)=0R_»S8_

can be obtained from (1)—(3) by applying 2.12, 2.16, and 2.13 (allernatively, (1)—(iii)y
can be obtained by verifying that they are consequences of [4, p. 390] and [4, p. 392]).
The equation

R®S =—-S_*R_+S,*R,

is from 2.18, (1), and (i); another application of 2.18 now gives 2.27. Next, Defini-
tion 2,18 gives

RA®(S®T)=—R_*(S®T)_+R,*(S®T),,
so that, by 2.21—2.22:

RO(S®T) =R_*(S_*T_)+R,*(5,;*T,);
we may now apply (2) and (ii) to obtain

RO(S®T) = (R_*S_)*T_+(Ry*S8,)*T,;
but 2.21—2.22 then give

RQ(S®T) = —(R®S)-*¥T.+(R®S),*T,,

and conclusion 2.28 is now immediate from 2.18.
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Next, observe that 6 belongs to B, ; therefore, _ =0 and é, =4d; the equations
@S =0,%S, =6%S, =S,

are from 2.18, from é, =4, and from Proposition 9 in [4, p. 391]. We still have to
prove 2.30—2.31. From 2.18 it follows immediately that

O(R®S) =—0d(R_*S_)+0(R,*S,):

Conclusions 2.30 is now immediate from (3) and (iii); on the other hand, the equations

4) O([1]°®S) = —o[1]> *S+9[1]%*S, =0%S_+0*S5,
are from 2.30 and 2.1; on the other hand, the equations
(5) O*S_+06*S, =85S_+85, =S

are from Proposition 9 in [4, p. 391] and 1.20. Conclusion 2.31 comes directly from
(4)—(5).

2.32. Theorem. If f() and g() belong to F, then [fI'®[gl°=[f\g]°, where
fAg() is the function in F defined by

(2.33) fAg@) = [ft—uw)gdu (for tER).

Proor. From 2.18, 1.28, and 2.15 it follows that [ /]°®[g]°=[A]°, where

(6) B() =—fog_ )+ s%g.();

the proof will therefore be completed by showing that /#( )=f/Ag(). To begin with,
suppose that F( )¢# and note that the equations

{F(t) for t<0
o) FO=10 ftor t=0
and

538 ¥ [0 for r=0
(42 144 F(t) for t=20

are immediate consequences of 1.24—1.26. Next, it is not hard to verify that
f.xg.()=0 on (—e=, 0): therefore, (6) gives

(7) h(t) = —f_*g_(t) (for t < 0).
If +t =0 then
0 0
(8) foap )= ff_('r—u)g(u)du = ff(r—u)g(u)du:

the first equation is from 2.34 (with F=g) and the second is obtained by observing
that u=t implies 1 —u=0, whence f_(t—u)=f(t—u) (by 2.34 with F=f), whereas
u=t implies t—u=0 and f_(t—u)=0. From (8) and 2.33 it follows that

—f-*g_(t) = fAg(t) (for t < 0);

8*
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combining with (7): A()=fAg() on (—==, 0). Next, to prove the same relation on
(0, ==), take t=0: the equations

&) fi*g (1) =6ff+(t —u)g(u) du = jf(r—u}g(tf) du
come from 2.35 (with F=g) and from the fact that f.(1—u)=0 for u=1t (see 2.35
with F=f). From (9) and 2.33 it follows that
(10) S+*84(1) = fAg(r) (for t = 0).
It is not hard to verify that f_*g_(1)=0 (for 1=0); consequently, (6) gives
h(t) = fy*g. (1) (for 1= 0).

Combining with (10), we obtain: i( )=f/Ag() on (0, ==): since we have already
verified that #()=fAg() on (—<=, 0), we have concluded the proof.

( Received July 11, 1972., in revised form: March 22, 1974.)



