A new algebra of distributions; initial-value problems involving Schwartz distributions. I

By GREGERS KRABBE (West Lafayette, Ind.)

The theme of this paper is a space $\mathfrak B$ of distributions; this space $\mathfrak B$ is closed under convolution (the definition of this particular convolution reguires no restriction on the supports — nor does it require growth conditions). The space $\mathfrak B$ contains all the functions which are locally integrable on $(-\infty,\infty)$; the space $\mathfrak B$ also contains D'_+ and each derivative of every distribution whose support is a locally finite subset of $(-\infty,\infty)$. If T is a distribution whose derivative ∂T belongs to $\mathfrak B$, then T also belongs to $\mathfrak B$, and T has a well-defined *initial-value* T(0-). Thus, it is possible to consider initial-value problems involving arbitrary distributions whenever the input belongs to the space $\mathfrak B$. Also defined in this paper is a one-to-one transformation of $\mathfrak B$ into a commutative algebra of operators (this transformation is somewhat analogous to the Fourier transformation); this gives an operational calculus which yields an existence and uniqueness theorem for differential equations subject to initial conditions of the form

$$u(0-) = c_0$$
, $\partial u(0-) = c_1$, $\partial^2 u(0-) = c_2$, ...

where c_0, c_1, c_2, \ldots are arbitrary constants and where u is an arbitrary distribution satisfying a differential equation whose right-hand side belongs to the space \mathfrak{B} . The operational calculus is applied to a differential equation which cannot be solved explicitly by means of the Fourier transformation.

The new algebra is denoted \mathfrak{B} : it is a commutative algebra (of distributions) under convolution multiplication; the space \mathfrak{B} contains D'_+ and all locally integrable functions. The space \mathfrak{B} is closed under convolution and contains each derivative of every distribution whose support is locally finite. If F is a distribution whose derivative ∂F belongs to \mathfrak{B} , then F also belongs to \mathfrak{B} and F equals a continuous function f in some interval (a, 0) (with a < 0): in consequence, F has a well-defined initial value F(0-)=f(0-).

Given arbitrary constants $(a_0, a_1, ..., a_m)$ and an arbitrary element S of the algebra \mathfrak{B} , we shall describe a calculus to obtain explicit solutions of differential equations of the form

$$(1) a_m \partial^m u + \dots + a_1 \partial u + a_0 u = S$$

subject to initial conditions such as

(2)
$$u(0-) = c_0, \quad \partial u(0-) = c_1, \dots, \partial^{m-1} u(0-) = c_{m-1},$$

where $c_0, c_1, \ldots, c_{m-1}$ are arbitrary constants. As we shall see, such initial-value problems can be solved by means of an operational calculus which is a useful substitute for the two-sided distributional Laplace transformation: it requires no growth restrictions and no restrictions on the supports. We shall prove that the equation (1) implies that both u and $\partial^k u$ belong to \mathfrak{B} for each integer $k \leq m$; moreover, there exists a unique distribution u satisfying the problem (1)—(2): this distribution belongs to the algebra \mathfrak{B} .

The algebra $\mathfrak B$ contains as a subalgebra the space D'_+ (of all the distributions which vanish on the interval $(-\infty,0)$). In fact, $\mathfrak B=D'_++\mathfrak B_-$, where $\mathfrak B_-$ is the space of all the elements of D'_- which are regular in some neighborhood of the origin (here D'_- denotes the space of all the distributions which vanish on $(0,\infty)$). The space $\mathfrak B$ contains the space L^{loc} of all the complex-valued functions which are locally integrable on $(-\infty,\infty)$:

$$L^{\mathrm{loc}} \subset \mathfrak{B} \subset D'$$
.

The space $\mathfrak B$ also contains all the "opérateurs de Heaviside" [2]. To each F in $\mathfrak B$ there corresponds a unique pair (F_+, F_-) in the cartesian product $D'_+ \times \mathfrak B_-$ such that $F = F_+ + F_-$.

The algebra B is the result of providing the space B with the multiplication

 $\mathfrak{B} \times \mathfrak{B} \ni (F, G) \to F \otimes G \in \mathfrak{B}$

defined by

$$F \otimes G = F_+ * G_+ - F_- * G_-,$$

where * is convolution in the usual sense [4, p. 348]. Thus, \otimes is the multiplication of the algebra \mathfrak{B} ; it is commutative and commutes with the distributional differentiator ∂ ; note the absence of any restriction on the supports (there are no growth conditions either). A particular solution of the differential equation (1) is given by the Duhamel-type formula

$$u = G \otimes S$$
,

where G is the regular distribution corresponding to the Green's function of the equation (1): see 5.15.

If $[f]^0$ (respectively, $[g]^0$) is the regular distribution corresponding to the locally integrable function f() (respectively, g()), then $[f]^0 \otimes [g]^0$ is the regular distribution $[f \wedge g]^0$ corresponding to the function $f \wedge g()$ defined by

$$f \wedge g(t) = -\int_{t}^{0} f(t-\tau)g(\tau) d\tau$$
 (for $-\infty < t < \infty$).

Our operational calculus (see 3.8) is an algebraic isomorphism of \mathfrak{B} into the operator-algebra \mathcal{A}_R (see [6]); it applies to problems such as (1)—(2); for example, it yields the solution

(3)
$$u = c_0 \cos t + (c_1 + 1) \sin t + \left[\frac{t}{2\pi} \right] \sin t$$

of the initial-value problem

(4)
$$\partial^2 u + u = \sum_{k=-\infty}^{\infty} \delta_{2k\pi} \quad \text{subject to} \quad u(0-) = c_0$$

and $\partial u(0-)=c_1$ (with c_0 and c_1 arbitrary complex numbers): as usual, $[t/2\pi]$ is the greatest integer $< t/2\pi$, and $\delta_{2k\pi}$ is the Dirac distribution concentrated at the point $2k\pi$. The first equation in (4) is a counter-example in [1, p. 128] and cannot be solved by the method of fundamental (or "elementary") solutions; its solution (3) cannot be obtained by using the Fourier transformation, the finite Fourier transformation, nor the two-sided distributional Laplace transformation.

Organization of this paper. The first sections are devoted to the operational calculus; § 5 deals with initial-value problems and contains the main results; the above example is discussed in § 6.

Concluding remarks. The theorems in § 5 resemble (and were inspired by) the ones in César de Freitas' article [2] (which deals with a space $\mathfrak M$ containing L^{loc} and properly contained in $\mathfrak B$; each element of $\mathfrak M$ is a linear combination of a function with a sum of distributions of finite order whose supports are locally finite). Harris Shultz gave me the idea that $F \otimes G$ belongs to $\mathfrak B$ whenever F and G belong to $\mathfrak B$; he also gave me a more elegant characterization of the space $\mathfrak B$ (which I use as a definition).

§ 1. Preliminaries

Let D be the space $D(\mathbf{R})$ of Schwartz test-functions on $\mathbf{R} = (-\infty, \infty)$; as usual, D' is the dual of D (see [4, p. 313]); a distribution is an element of D'.

If J is a subset of **R**, the relation $\varphi < J$ will mean that $\varphi(\cdot) \in D$ and the support of $\varphi(\cdot)$ is a compact subset of J. We always have $\varphi < \mathbf{R}$.

- 1.1. The symbol \bigcirc . If F is a distribution, there exists a largest open set $\bigcirc(F)$ such that $F(\varphi)=0$ whenever $\varphi<\bigcirc(F)$ (see [4, p. 318]).
- 1.2. If (α, β) is an open interval, then $\varphi < (\alpha, \beta)$ if (and only if) $\varphi()$ vanishes outside some closed sub-interval of (α, β) .
- 1.3. Again, let F be a distribution. If J_1 and J_2 are open subsets of **R** such that $\bigcirc(F) \supset J_k$ for k=1 and k=2, then

$$\bigcirc(F) \supset J_1 \cup J_2$$
 (see [8, pp. 27—28]).

1.4. Equality of distributions in a set. If $J \subset \mathbb{R}$, a distribution F is said to equal F_1 in J if (and only if) $F(\varphi) = F_1(\varphi)$ whenever $\varphi < J$.

Thus, $\bigcirc(F)$ is the largest open set J such that F equals 0 in J. Note that 0 is the zero distribution.

1.5. Note. Let J be an open subset of R; clearly,

$$\bigcirc(F)\supset J$$
 if (and only if) F equals 0 in J.

1.6. Lemma. Let c_1 and c_2 be complex numbers. If F_1 and F_2 are distributions, then

$$\bigcirc (c_1F_1+c_2F_2)\supset \bigcirc (F_1)\cap \bigcirc (F_2)$$
:

see [4, p. 318, Proposition 2].

1.7. Two spaces of regular distributions. Let \mathscr{F} be the space L^{loc} of all the complex-valued functions which are locally integrable on \mathbb{R} . There is a linear injection $f() \rightarrow [f]^0$ of \mathscr{F} into the space D' of distributions, the distribution $[f]^0$ being defined by

$$[f]^{0}(\varphi) = \int_{-\infty}^{\infty} f(u)\varphi(u) du$$
 (for $\varphi()$ in D):

see p. 48 in [9], where the distribution $[f]^0$ is denoted T_f . If $\mathscr{G} \subset \mathscr{F}$ we set

$$[\mathcal{G}]^0 = \{ [f]^0 : f() \in \mathcal{G} \}.$$

The elements of the space $[\mathcal{F}]^0$ are usually called *regular distributions*. Let \mathcal{F}_- be the space of all the functions f() in \mathcal{F} such that f() equals zero almost-everywhere on $(0, \infty)$ (this will henceforth be written: f()=0 on $(0, \infty)$):

$$\mathcal{F}_{-} = \{ f() \in \mathcal{F}: f() = 0 \text{ on } (0, \infty) \}.$$

Thus, $B \in [\mathscr{F}_{-}]^0$ if B is a regular distribution $[f]^0$ such that f()=0 on $(0, \infty)$:

$$[\mathcal{F}_{-}]^{0} = \{ [f]^{0} : f() \in \mathcal{F} \text{ and } f() = 0 \text{ on } (0, \infty) \}.$$

- 1.10. Let Ω be an open subset of **R** and let $f_1()$ and $f_2()$ be two elements of \mathcal{F} . If $f_1()=f_2()$ on Ω , then the distribution $[f_1]^0$ equals $[f_2]^0$ in Ω . See [9, p. 48].
- 1.11. Conversely, if $[f_1]^0$ equals $[f_2]^0$ in Ω , then $f_1()=f_2()$ on Ω (that is, the functions are equal almost-everywhere on Ω). See [9, p. 48].
- 1.12. Definition. Let \mathfrak{B}_{-} be the family of all the distributions which equal 0 in the interval $(0, \infty)$ and which equal some regular distribution in some interval (a, -a) with a < 0.
- 1.13. Definitions. Let \mathfrak{B}_+ be the family of all the distributions which equal 0 in the interval $(-\infty,0)$. We set

$$\mathfrak{B} = \mathfrak{B}_{-} + \mathfrak{B}_{+};$$

thus, the family \mathfrak{B} consists of all the sums F+R such that $F\in\mathfrak{B}_{-}$ and $R\in\mathfrak{B}_{+}$.

- 1.15. Definition. A "left-distribution" is a distribution which equals zero in some interval (a, ∞) containing the point 0. We denote by (\mathcal{L}) the family of left-distributions.
- 1.16. Therefore, $L \in (\mathcal{L})$ if (and only if) L is a distribution which equals 0 in some interval (a, ∞) with a < 0. In other words, $L \in (\mathcal{L})$ if (and only if) $L \in D'$ and there exists a number a < 0 such that $O(L) \supset (a, \infty)$.
- 1.17. Reorientation. The main object of this section is to prove that 1.14 is a direct sum. We shall also need the following lemma, which characterizes \mathfrak{B}_{-} as the space of all distributions of the form $L+[f]^0$, where $L\in(\mathscr{L})$ and $f()\in\mathscr{F}_{-}$.

1.18. Lemma.
$$\mathfrak{B}_{-} = (\mathscr{L}) + [\mathscr{F}_{-}]^{0}$$
.

PROOF. If A belongs to $(\mathcal{L})+[\mathcal{F}_{-}]^{0}$, then the equation

$$(1) A = L + [f]^0$$

holds for some $L \in (\mathcal{L})$ and for some $f() \in \mathcal{F}_{-}$. Since f() = 0 on $(0, \infty)$ (by 1.8), it follows from 1.10 and 1.5 that

$$\bigcirc ([f]^0) \supset (0, \infty).$$

Since $L \in (\mathcal{L})$ we can apply 1.16 to infer the existence of a number a < 0 such that

$$\bigcirc(L)\supset(a,\infty).$$

In view of (1), (2) and (3), we may apply 1.6 to obtain

$$(4) \qquad \qquad \bigcirc (A) \supset (0, \infty):$$

this is obtained by using the fact that a<0, which implies the equation $(0, \infty)\cap (a, \infty)=(0, \infty)$.

Thus, A equals $\mathbf{0}$ in $(0, \infty)$: we still have to prove that A equals $[f]^0$ in (a, -a). To that effect, observe that L equals $\mathbf{0}$ in (a, ∞) (by (3) and 1.5); from (1) we therefore infer that A equals $[f]^0$ in (a, ∞) . Consequently, A belongs to \mathfrak{B}_- (since A also equals $\mathbf{0}$ in $(0, \infty)$ (see (4) and 1.12)).

To prove the converse, suppose that $A \in \mathfrak{B}_{-}$. In view of 1.12, this implies (4), the existence of a number a < 0 and a function g() in \mathscr{F} such that

(5)
$$A(\varphi) = [g]^{0}(\varphi) \quad \text{(for } \varphi < (a, -a)\text{)}.$$

Since $\bigcirc(A) \supset (0, -a)$ (by (4) and a < 0), we have

(6)
$$A(\varphi) = 0 \text{ (for } \varphi < (0, -a)).$$

Combining (5) and (6), we see that

$$[g]^{0}(\varphi) = 0$$
 (for $\varphi < (0, -a)$):

that is, $[g]^0$ equals 0 in (0, -a); therefore, 1.11 gives

(7)
$$g() = 0$$
 on $(0, -a)$.

Let f() be the function defined by

(8)
$$f(t) = \begin{cases} g(t) & \text{for } a < t < -a \\ 0 & \text{otherwise.} \end{cases}$$

From (7) and (8) it follows that f()=0 on (0, -a); since f()=0 on $(-a, \infty)$ (by (8)), we see that f()=0 on $(0, \infty)$: therefore,

$$\bigcirc ([f]^0) \supset (0, \infty),$$

which (by 1.11) implies that f()=0 on $(0, \infty)$; consequently, f() belongs to \mathcal{F}_{-} and

$$[f]^0 \in [\mathscr{F}_{-}]^0.$$

Next, we set

(11)
$$L = A - [f]^0:$$

since $A = L + [f]^0$, our conclusion (namely, that A belongs to the space $(\mathcal{L}) + [\mathcal{F}_-]^0$) will be obtained by proving that $L \in (\mathcal{L})$. To that effect, observe that the equations

(12)
$$L(\varphi) = A(\varphi) - [f]^{0}(\varphi) = [g]^{0}(\varphi) - [g]^{0}(\varphi)$$

hold for $\varphi < (a, -a)$ and come from (11) and (5). Since g() = f() on (a, -a) (by (8)), the distribution $[g]^0$ equals $[f]^0$ in (a, -a) (by 1.10), so that $[g]^0(\varphi) = [f]^0(\varphi)$ for $\varphi < (a, -a)$: from (12) it now follows that

$$L(\varphi) = 0$$
 (for $\varphi < (a, -a)$),

that is,

$$\bigcirc(L)\supset(a,-a).$$

On the other hand, (11), (4), (9) and 1.6 imply that

$$(14) \qquad \bigcirc (L) \supset \bigcirc (A) \cap \bigcirc ([f]^0) \supset (0, \infty).$$

From (13)—(14) and 1.3 it therefore follows that

$$\bigcirc$$
 (L) \supset (a, -a) \cup (0, ∞) = (a, ∞),

which proves that $\bigcirc(L) \supset (a, \infty)$: therefore, $L \in (\mathcal{L})$ (see 1.15). Since $A = L + [f]^0$ and (10), the distribution A belongs to $(\mathcal{L}) + [\mathcal{F}_-]^0$.

1.19. Lemma. Suppose that $B \in \mathfrak{B}_-$. If $B \in \mathfrak{B}_+$ then B = 0.

PROOF. If $B \in \mathfrak{B}_+$ it follows from 1.13 that B equals 0 in the interval $(-\infty, 0)$: this means that

(1)
$$B(\varphi) = 0 \quad \text{(for } \varphi < (-\infty, 0)\text{)}.$$

In view of 1.18, the hypothesis $B \in \mathfrak{B}_{-}$ implies that the equation

$$(2) B = L + [f]^0$$

holds for some L in (\mathcal{L}) and for some f() in \mathcal{F}_{-} . From (1)—(2) it follows that

(3)
$$[f]^0(\varphi) = -L(\varphi) \quad \text{(for } \varphi < (-\infty, 0)).$$

On the other hand, it follows from $L \in (\mathcal{L})$ and 1.16 the existence of a number a < 0 such that

(4)
$$L(\varphi) = 0 \text{ (for } \varphi < (a, \infty)).$$

Combining (3) and (4):

$$[f]^{0}(\varphi) = 0 \text{ (for } \varphi < (a, 0)),$$

so that $[f]^0$ equals $\mathbf{0}$ in (a, 0), whence f()=0 on (a, 0) (by 1.11). But our hypothesis $f() \in \mathscr{F}_-$ implies that f()=0 on $(0, \infty)$; therefore, f()=0 on (a, ∞) , so that

(5)
$$[f]^{0}(\varphi) = 0 \quad \text{(for } \varphi < a, \infty)).$$

From (5) and (4) we see that $L+[f]^0$ equals 0 in (a, ∞) ; from (2) it therefore follows that

$$\bigcirc$$
 (B) \supset (a, ∞);

but $\bigcirc(B) \supset (-\infty, 0)$ (from (1)), so that 1.3 now gives

$$(6) \qquad (B) \supset (-\infty, 0) \cup (a, \infty) = \mathbf{R}.$$

From (6), 1.5, and 1.1 we see that $B(\varphi)=0$ whenever $\varphi < \mathbf{R}$. If $\varphi(\cdot) \in D$ then $\varphi < \mathbf{R}$, so that the equation $B(\varphi)=\mathbf{0}(\varphi)$ holds for every $\varphi(\cdot)$ in D. We have proved that $B=\mathbf{0}$.

1.20. Theorem. The four spaces \mathfrak{B}_+ , (\mathcal{L}) , \mathfrak{B}_- , and \mathfrak{B} are linear spaces. To any F in \mathfrak{B} there corresponds a unique pair (F_-, F_+) of distributions such that $F_- \in \mathfrak{B}_-$, $F = F_- + F_+$, and $F_+ \in \mathfrak{B}_+$. Moreover,

$$(1.21) F \in \mathfrak{B}_+ \Leftrightarrow F_- = \mathbf{0} \Leftrightarrow F = F_+,$$

and

$$(1.22) F \in \mathfrak{B}_{-} \Leftrightarrow F_{+} = \mathbf{0} \Leftrightarrow F = F_{-}.$$

PROOF. The linearity of \mathfrak{B}_+ and (\mathscr{L}) follow directly from 1.13, 1.15, and 1.6; it is now easy to verify that the space $(\mathscr{L})+[\mathscr{F}_-]^0$ is linear; therefore, \mathfrak{B}_- is linear (by 1.18); this in turn implies the linearity of the space \mathfrak{B} (defined by $\mathfrak{B}=\mathfrak{B}_-+\mathfrak{B}_+$). Since \mathfrak{B} consists of distributions of the form B+R with $B\in\mathfrak{B}_-$ and $R\in\mathfrak{B}_+$, the uniqueness of the pair (B,R) will be established by proving that the assumption

$$(1) F_- + F_+ = B + R$$

implies $F_-=B$ and $F_+=R$ (when F_- and B belong to \mathfrak{B}_- , and when F_+ and R belong to \mathfrak{B}_+). From (1) it follows that F_--B belongs to both \mathfrak{B}_- and \mathfrak{B}_+ ; from 1.19 it therefore follows that $F_--B=0$, which implies $F_-=B$ and $F_+=R$ (by (1)).

1.19 it therefore follows that $F_- - B = 0$, which implies $F_- = B$ and $F_+ = R$ (by (1)). To prove (1.21), note that $F \in \mathfrak{B}_+$ implies $F_- + F_+ \in \mathfrak{B}_+$, so that $F_- \in \mathfrak{B}_+$; since $F_- \in \mathfrak{B}_-$ we have $F_- = 0$ (by 1.19): the rest is obvious. The proof of 1.22 is entirely similar.

1.23. Notation. Let 1_() and 1₊() be the functions defined by

(1.24)
$$1_{-}(t) = \begin{cases} 1 & \text{for } t < 0 \\ 0 & \text{for } t \ge 0 \end{cases}$$

and

(1.25)
$$1_{+}(t) = \begin{cases} 0 & \text{for } t \leq 0 \\ 1 & \text{for } t > 0. \end{cases}$$

If $f() \in \mathcal{F}$ we set

$$(1.26) f_{-}() = 1_{-}()f() and f_{+}() = 1_{+}()f().$$

1.27. Lemma. If $f() \in \mathcal{F}$ then $[f]^0 \in \mathfrak{B}$,

(1.28)
$$[f_{-}]^{0} = [f]_{-}^{0}$$
, and $[f_{+}]^{0} = [f]_{+}^{0}$.

PROOF. From 1.24—1.26 and 1.10 we see that $[f_-]^0 \in \mathfrak{B}$ and $[f_+]^0 \in \mathfrak{B}_+$; from 1.24—1.26 it also follows that $[f]^0 = [f_-]^0 + [f_+]^0$; the conclusions are now immediate from 1.20.

§ 2. The operation \otimes

In this section our aim is to define a multiplication \otimes on the linear space \mathfrak{B} ; its main properties will be established. First, let us set down some notation.

If R is a distribution, its distributional derivative ∂R is defined in the usual way [4, p. 323]. We denote by 1() the constant function whose value is the unit 1 (the function 1() is defined by 1(t)=1 for $t \in \mathbb{R}$). Note that $\partial [1]^0=0$,

(2.1)
$$\partial [1]_{-}^{0} = -\delta$$
, and $\partial [1]_{+}^{0} = \delta$,

where $[1]_{-}^{0} = [1_{-}]^{0}$ (see 1.28) and δ is the Dirac distribution. As usual, if $f(\cdot) \in \mathcal{F}$ then $\check{f}(\cdot)$ is the function defined by $\check{f}(x) = f(-x)$. If T is a distribution, then \check{T} is the distribution (also denoted T) defined by

(2.2)
$$\check{T}(\varphi) = T(\check{\varphi}) \text{ (for } \varphi(\cdot) \in D).$$

It is easily verified that

$$[\check{f}]^0 = [f]^0 \quad \text{(for } f() \in \mathscr{F}).$$

Clearly,

(2.4)
$$\check{S} = S \quad \text{(for } S \text{ in } D'\text{)}.$$

2.5. Lemma. Suppose that a < 0. If $\varphi(\cdot) \in D$ then $\varphi < (-\infty, -a)$ if (and only if) $\check{\varphi} < (a, \infty)$.

PROOF. If $\varphi < (-\infty, -a)$ we can use 1.2 to assert that $\varphi()$ vanishes outside of some closed subinterval $[-\lambda, -\mu]$ of $(-\infty, -a)$. Therefore, $-\mu < -a$ and $a < \mu$, so that

$$[\mu,\infty)\subset(a,\infty).$$

If $x > \lambda$ and $t < \mu$ then $-x < -\lambda$ and $-\mu < -t$, which implies that $\varphi(-t) = 0 = \varphi(-x)$ (since $\varphi(\cdot)$ vanishes outside of the interval $[-\lambda, -\mu]$); consequently, $\check{\varphi}(\cdot)$ vanishes on the set $(-\infty, \mu) \cup (\lambda, \infty)$: this means that the support of $\check{\varphi}(\cdot)$ is contained in the interval $[\mu, \lambda]$: the conclusion $\check{\varphi} < (a, \infty)$ now comes from (1) and 1.2.

Conversely, suppose that $\check{\phi} < (a, \infty)$. From 1.2 it follows that $\check{\phi}()$ vanishes outside of some interval $[\mu, \lambda] \subset (a, \infty)$. Therefore, $a < \mu$ and $-\mu < -a$, so that

$$(2) \qquad (-\infty, -\mu] \subset (-\infty, -a).$$

If $t > -\mu$ and $x < -\lambda$ then $-t < \mu$ and $-x > \lambda$, which implies that $\check{\phi}(-t) = = \check{\phi}(-x) = 0$ (since $\check{\phi}()$) vanishes outside of $[\mu, \lambda]$); consequently, $\varphi()$ vanishes on the set $(-\infty, -\lambda) \cup (-\mu, \infty)$; therefore, the support of $\varphi()$ is contained in $[-\lambda, -\mu]$: the conclusion $\varphi < (-\infty, -a)$ is now immediate from (2).

2.6. Theorem. Suppose that a < 0. If T is a distribution, then

$$\bigcirc(T)\supset(a,\infty)$$
 if (and only if) $\bigcirc(\check{T})\supset(-\infty,-a)$.

PROOF. If $\bigcirc(T) \supset (a, \infty)$ then

(1)
$$T(\varphi_1) = 0 \quad \text{(for } \varphi_1 < (a, \infty)\text{)}.$$

If $\varphi < (-\infty, -a)$ then $\check{\varphi} < (a, \infty)$ (by 2.5), so that $T(\check{\varphi}) = 0$ (by (1)); consequently, $\check{T}(\varphi) = 0$ (by 2.2). We have just seen that $\check{T}(\varphi) = 0$ whenever $\varphi < (-\infty, -a)$: this means that $(\check{T}) \supset (-\infty, -a)$.

Conversely, suppose that $\bigcirc(\check{T})\supset(-\infty,-a)$: if $\varphi<(-\infty,-a)$ then $\check{T}(\varphi)=0$. Thus, by 2.2:

(2)
$$T(\check{\varphi}) = 0 \quad \text{(for } \varphi < (-\infty, -a)\text{)}.$$

If $\varphi_1 < (a, \infty)$ we set $\varphi() = \check{\varphi}_1()$; then

$$\varphi_1() = \check{\varphi}()$$

and $\check{\phi} < (a, \infty)$, whence $\varphi < (-\infty, -a)$ (by 2.5), and the equations

$$0 = T(\check{\varphi}) = T(\varphi_1)$$

come directly from (2) and (3). We have just seen that $T(\varphi_1) = 0$ whenever $\varphi_1 < (a, \infty)$: this means that $\bigcirc (T) \supset (a, \infty)$.

2.7. Lemma. If S and T are distributions such that

$$\bigcirc(S)\supset(-\infty,\sigma)$$
 and $\bigcirc(T)\supset(-\infty,\tau)$,

then S*T is a distribution such that

$$(2.8) \qquad (S*T)\supset (-\infty, \sigma+\tau);$$

moreover,

$$(2.9) S*T = T*S.$$

PROOF. Note that both S and T belong to D'_+ (see [8, p. 172]); note also that $\bigcirc(F)$ is the set-theoretic complement of Supp F. Conclusions 2.8 and 2.9 now follows from Théorème XIII in [8, p. 172].

2.10. Definition. If F_1 and F_2 are distributions such that

$$(2.11) \qquad \bigcirc (F_k) \supset (a_k, \infty) \quad \text{(for } k = 1, 2),$$

we set

$$(2.12) F_1 * F_2 = (\check{F} * \check{F_2})^{\check{}}.$$

2.13. Lemma. If F_1 and F_2 are distributions satisfying 2.11, then

$$(2.14) (F_1 * F_2) \supset (a_1 + a_2, \infty).$$

If f() and g() are in \mathcal{F}_{-} , then the equation

$$f*g(t) = \int_{-\infty}^{\infty} f(t-u)g(u) du$$
 (for $t \in \mathbf{R}$)

defines a function f*g() in \mathcal{F}_{-} such that

$$[f]^0 * [g]^0 = [f * g]^0.$$

PROOF. It is not hard to verify that * is the convolution product as defined in [10, pp. 123—124]; in consequence, 2.14 can be derived from Theorem 5.4—2 in [10, p. 125]; further, 2.15 is proved in [10, pp. 126—127]. The present lemma can be proved directly from 2.12; for example, to establish 2.14, observe that $\bigcirc(\check{F}_k)$ contains the interval $(-\infty, -a_k)$ (by 2.11 and 2.6), so that we may use 2.8 to assert that

$$\bigcirc (\tilde{F_1} * \tilde{F_2}) \supset (-\infty, -a_1 - a_2)$$
:

conclusion 2.14 now results from one more application of 2.6.

2.16. Lemma. If $L \in (\mathcal{L})$ and $\bigcirc (R) \supset (0, \infty)$ then L * R and R * L both belong to (\mathcal{L}) .

PROOF. From 1.16 it follows the existence of a number a < 0 such that $\bigcirc(L) \supset \bigcirc(a, \infty)$; we may therefore apply 2.14 to obtain

$$\bigcirc (L*R) \supset (a+0, \infty),$$

whence the conclusion $L*R\in(\mathcal{L})$ now comes from 1.16; on the other hand, the conclusion R*L=L*R comes from 2.12 and 2.9.

2.17. Definition. If F and G are distributions, we set

(2.18)
$$F \otimes G = -F_{-} * G_{-} + F_{+} * G_{+}.$$

2.19. Theorem. If F and G belong to B, then

$$(2.20) F \otimes G belongs to \mathfrak{B},$$

$$(2.21) (F \otimes G)_{-} = -F_{-} * G_{-},$$

and

$$(2.22) (F \otimes G)_{\perp} = F_{\perp} * G_{\perp};$$

moreover,

$$(2.23) F \in \mathfrak{B}_+ implies F \otimes G = F_+ * G_+ \in \mathfrak{B}_+$$

and

$$(2.24) F \in (\mathscr{L}) implies F \otimes G \in (\mathscr{L}).$$

PROOF. Clearly,

(1)
$$F \otimes G = A + B$$
, where $B = F_+ * G_+$

and

$$A = -F_- *G_-.$$

A distribution Q belongs to \mathfrak{B}_+ if (and only if) $\bigcirc(Q)$ includes the interval $(-\infty, 0)$: see 1.13 and 1.5. Since F_+ and G_+ belong to \mathfrak{B}_+ , we can use 2.7 to assert that

(3)
$$F_+ * G_+$$
 belongs to \mathfrak{B}_+ .

In view of (1)—(3), the conclusion $F \otimes G \in \mathfrak{B}$ can be obtained by proving that

(4)
$$F_- * G_-$$
 belongs to \mathfrak{B}_- .

Let us prove (4). From 1.18 we see that both F_- and G_+ belong to $(\mathcal{L})+[\mathcal{F}_-]^{\theta}$; therefore, the equations

$$F_{-} = L^{F} + [f]^{0}$$
 and $G_{-} = L^{G} + [g]^{0}$

hold for $L^F \in (\mathcal{L}), L^G \in (\mathcal{L}), f() \in \mathcal{F}_-, \text{ and } g() \in \mathcal{F}_-.$ Consequently,

(5)
$$F_{-} * G_{-} = L^{F} * L^{G} + L^{F} * [g]^{0} + [f]^{0} * L^{G} + [f]^{0} * [g]^{0}.$$

The three first terms on the right-hand side of (5) are of the form R * L (or L * R), where $\bigcirc(R) \supset (0, \infty)$ and $L \in (\mathcal{L})$; in view of 2.16, their sum is an element L_1 of (\mathcal{L}) :

(6)
$$F_{-} * G_{-} = L_{1} + [f]^{0} * [g]^{0}.$$

From (6) and 2.15 it follows that $F_-*G_-=L_1+[f*g]^0$, where $f*g()\in\mathscr{F}_-$. Therefore, F_-*G_- belongs to the space $(\mathscr{L})+[F_-]^0$: Conclusion (4) now comes from 1.18.

Having thus proved (4), Conclusions 2.20—2.22 follow directly from (1)—(4) and 1.20. It remains to prove 2.23—2.24. If $F \in \mathfrak{B}_+$ then $F_- = \mathbf{0}$ (by 1.21); consequently, $(F \otimes G)_- = \mathbf{0}$ (by 2.21), which implies $F \otimes G \in \mathfrak{B}_+$ (by 1.21) and $F \otimes G = F_+ * G_+$ (by 2.18). Finally, let us prove 2.24. If $F \in \mathscr{L}$ then $F \in \mathfrak{B}_-$ (by 1.18), so that $F_+ = \mathbf{0}$ and $F = F_-$ (by 1.22): from 2.18 it therefore follows that

$$(7) F \otimes G = -F * G_{-}.$$

Our conclusion $F \otimes G \in (\mathcal{L})$ is now obtained by setting F = L and $G_- = R$ in 2.16 (note that $O(G_-) \supset (0, \infty)$ since $G_- \in \mathfrak{B}_-$ and 1.12).

2.25. Notations. As indicated at the beginning of this section, the derivative of a distribution F is denoted ∂F (see [4, p. 323]); the Dirac distribution is denoted δ (it is defined by the equation $\delta(\varphi) = \varphi(0)$: see [4, p. 314]).

2.26. Theorem. If R, S, T belong to B, then

$$(2.27) R \otimes S = S \otimes R,$$

$$(2.28) R \otimes (S \otimes T) = (R \otimes S) \otimes T,$$

$$(2.29) \delta \otimes S = S_+,$$

$$\partial(R \otimes S) = -\partial R_{-} * S_{-} + \partial R_{+} * S_{+},$$

and

$$\partial([1]^0 \otimes S) = S.$$

PROOF. Note that $F \in B_+$ if (and only if) F is a distribution whose support is included in the half-open interval $[0, \infty)$ (see 1.13): we may therefore combine Remark 3 in [4, p. 385] with [4, p. 390] and [4, p. 392] to infer that

$$(1) R_+ * S_+ = S_+ * R_+,$$

(2)
$$R_{+}*(S_{+}*T_{+}) = (R_{+}*S_{+})*T_{+},$$

and

(3)
$$\partial(R_+ * S_+) = \partial R_+ * S_+.$$

Since $\bigcirc(F_{-})\supset(0,\infty)$ whenever $F\in\mathfrak{B}$, the corresponding equations

(i)
$$R_{-}*S_{-} = S_{-}*R_{-},$$

(ii)
$$R_{-}*(S_{-}*T_{-}) = (R_{-}*S_{-})*T_{-},$$

and

(iii)
$$\partial(R_- * S_-) = \partial R_- * S_-$$

can be obtained from (1)—(3) by applying 2.12, 2.16, and 2.13 (alternatively, (i)—(iii) can be obtained by verifying that they are consequences of [4, p. 390] and [4, p. 392]). The equation

$$R \otimes S = -S_- * R_- + S_+ * R_+$$

is from 2.18, (1), and (i); another application of 2.18 now gives 2.27. Next, Definition 2.18 gives

$$R \otimes (S \otimes T) = -R_{-} * (S \otimes T)_{-} + R_{+} * (S \otimes T)_{+}$$

so that, by 2.21-2.22:

$$R \otimes (S \otimes T) = R_- * (S_- * T_-) + R_+ * (S_+ * T_+);$$

we may now apply (2) and (ii) to obtain

$$R \otimes (S \otimes T) = (R_{-} * S_{-}) * T_{-} + (R_{+} * S_{+}) * T_{+};$$

but 2.21—2.22 then give

$$R \otimes (S \otimes T) = -(R \otimes S)_{-} * T_{-} + (R \otimes S)_{+} * T_{+}$$

and conclusion 2.28 is now immediate from 2.18.

Next, observe that δ belongs to \mathfrak{B}_+ ; therefore, $\delta_- = 0$ and $\delta_+ = \delta$; the equations

$$\delta \otimes S = \delta_+ * S_+ = \delta * S_+ = S_+$$

are from 2.18, from $\delta_+ = \delta$, and from Proposition 9 in [4, p. 391]. We still have to prove 2.30—2.31. From 2.18 it follows immediately that

$$\partial(R \otimes S) = -\partial(R_- * S_-) + \partial(R_+ * S_+)$$
:

Conclusions 2.30 is now immediate from (3) and (iii); on the other hand, the equations

(4)
$$\partial([1]^{0} \otimes S) = -\partial[1]^{0}_{-} * S + \partial[1]^{0}_{+} * S_{+} = \delta * S_{-} + \delta * S_{+}$$

are from 2.30 and 2.1; on the other hand, the equations

$$\delta * S_{\perp} + \delta * S_{\perp} = S_{\perp} + S_{\perp} = S$$

are from Proposition 9 in [4, p. 391] and 1.20. Conclusion 2.31 comes directly from (4)—(5).

2.32. Theorem. If f() and g() belong to \mathscr{F} , then $[f]^0 \otimes [g]^0 = [f \wedge g]^0$, where $f \wedge g()$ is the function in \mathscr{F} defined by

(2.33)
$$f \wedge g(t) = \int_{0}^{t} f(t-u)g(u) du \quad \text{(for } t \in \mathbf{R}\text{)}.$$

PROOF. From 2.18, 1.28, and 2.15 it follows that $[f]^0 \otimes [g]^0 = [h]^0$, where

(6)
$$h() = -f_{-}*g_{-}() + f_{+}*g_{+}();$$

the proof will therefore be completed by showing that $h()=f \land g()$. To begin with, suppose that $F() \in \mathscr{F}$ and note that the equations

(2.34)
$$F_{-}(t) = \begin{cases} F(t) & \text{for } t < 0 \\ 0 & \text{for } t \ge 0 \end{cases}$$

and

(2.35)
$$F_{+}(t) = \begin{cases} 0 & \text{for } t \leq 0 \\ F(t) & \text{for } t > 0 \end{cases}$$

are immediate consequences of 1.24—1.26. Next, it is not hard to verify that $f_+*g_+()=0$ on $(-\infty,0)$; therefore, (6) gives

(7)
$$h(t) = -f_{-}*g_{-}(t)$$
 (for $t < 0$).

If t < 0 then

(8)
$$f_{-} * g_{-}(t) = \int_{-\infty}^{0} f_{-}(t-u)g(u) du = \int_{t}^{0} f(t-u)g(u) du;$$

the first equation is from 2.34 (with F=g) and the second is obtained by observing that u>t implies t-u<0, whence $f_-(t-u)=f(t-u)$ (by 2.34 with F=f), whereas u<t implies t-u>0 and $f_-(t-u)=0$. From (8) and 2.33 it follows that

$$-f_{-}*g_{-}(t) = f \wedge g(t)$$
 (for $t < 0$);

combining with (7): $h()=f \land g()$ on $(-\infty, 0)$. Next, to prove the same relation on $(0, \infty)$, take t>0: the equations

(9)
$$f_{+}*g_{+}(t) = \int_{0}^{\infty} f_{+}(t-u)g(u) du = \int_{0}^{t} f(t-u)g(u) du$$

come from 2.35 (with F=g) and from the fact that $f_+(t-u)=0$ for u>t (see 2.35 with F=f). From (9) and 2.33 it follows that

(10)
$$f_{+}*g_{+}(t) = f \land g(t) \text{ (for } t > 0).$$

It is not hard to verify that $f_{-}*g_{-}(t)=0$ (for t>0); consequently, (6) gives

$$h(t) = f_+ *g_+(t)$$
 (for $t > 0$).

Combining with (10), we obtain: $h()=f \land g()$ on $(0, \infty)$; since we have already verified that $h()=f \land g()$ on $(-\infty, 0)$, we have concluded the proof.

(Received July 11, 1972., in revised form: March 22, 1974.)