On a matrix equation defined over a
commutative Euclidean ring

By BELA GYIRES (Debrecen)

1. In his paper [1] the author proved the following theorem:

Theorem 1.1. Let A, B be mXm and nXn matrices respectively defined over
the complex field. Necessary and sufficient conditions that A, B have 0 as an eigenvalue
of multiplicity 1 with Aay,= Bb,=0, are that two nonzero vectors a (of dimension m)
and b (of dimension n) exist such that the general solution of the matrix equation
AXB=0 is given by the expression X=7yaybs+ Ab;+a,w*, where the parameters
are y, A, w and A, o run through all vectors satisfying a*A=b*w=0.

We denoted here the transpose of a matrix, thus the row vectors by #.

In this paper partly we generalize this theorem partly we extend the validity
of this theorem for matrices defined over a commutative Euclidean ring.

2. Let A, B be m>m and nXn matrices respectively defined over the commuta-
tive Euclidean ring #. Let m—r, n—r be the ranks of the matrices 4 and B respec-
tively. Then ([2], 401, Satz 233) there exist invertible quadratic matrices P, R, T, S
defined over # such that the equalities
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hold. Here e, ..., ¢,,—, and e;, ..., €,_, are the elementary divisors of the matrices
A and B respectively. (1) and (2) are the so called normalform of the corresponding
matrices.
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Let
>
R=Ry,Run,)S= [S ]

n-sn
be a partition of R and S respectively, where the first and second indices denote
the number of the rows and of the columns respectively.

Theorem 2. 1. Let A, B be mXm and nXn matrices with normalforms (1) and
(2) respectively defined over the commutative Euclidean ring #. Necessary and sufficient
conditions that A, B have ranks m—r (r=0,1, ...,m) and n—s (s=0, 1, ..., n) res-
pectively that the general solution of the matrix equation AXB=0 is given by the
expression

(3) X — le‘ }'PS S!i! + AM‘S S.!ll + Rmfwrn!

where y,s, A5, ©,, are parameters defined over R on condition that if we complete
R, m-. by an arbitrary column of A, and S,_,, by an arbitrary row of ,, respectively
we obtain matrices with ranks m—r and n—s respectively.

If r=0 or s=0 then the corresponding members of (3) are equal to the zero
matrix.

Proor. Obviously that the equation AXB=0 is equivalent to
(PAR)(R'XS-')(SBT) = 0

and therefore to the equation A,YB,=0, where Y=R'XS~! and A4,, B, are defined
by the formulas (1) and (2) respectively. In consequence of these as the general solu-
tion of A,YB,=0 is given by the expression

?rs bfll—’
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(4) [am—rs (0)
where y,,, @, —,, b, .-, are parameters defined over 2, if and only if 4, and B, have
ranks m—r and n—s respectively. We obtained consequently:

Necessary and sufficient condition that A, B have rank m—r and n—s respectively
that the general solution of the matrix equation AXB=0 is given by X=RYS where
Y is equal to the matrix (4).

It remains to show that the solution X=RYS is equivalent to the expres-
sion (3).

If we introduce the following notations

Ly 0 0) (0 DBy
e [2’0) of - [af.) o) = [EO; ©) )’
then Y=Y, + Y,+ Y, and therefore we get
(5) X = RYS = RY,S+RY,;S+RY,S.
Considering that
RY,S = Ry, 7,sSms RYsS = Pum—1GmrsSins RY3S = Pobyn_ySy_.n
and that by the notations
(6) Prom-r8u-rs = Amss Bpu—ySy-sua = Opys
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we obtain (3) from the expression (5). Conversely we come to (5) from (3) only if
the equations (6) are compatible for given A,,, ®,, and for the unknown ga,,_,,,
b, ., respectively. Necessary and sufficient condition of these is that if we complete
R, n—, by an arbitrary column of A,,. and S,_,, by an arbitrary row of w,, res-
pectively then let us have matrices with ranks of R,, .-, and S, _,, respectively. Con-
sidering that R and S are invertible, the matrices R,,,,,, S,-, have ranks m—r, n—s
respectively. This completes the proof of the theorem 2.1.

Theorem 2.2. Let A, B, C be m X m, nxn, and m>xn matrices respectively defined
over the commutative Euclidean ring #. Let m—r,n—s and (1), (2) be the ranks
and the normalform of A, B respectively. The inhomogeneous equation

(7 AXB=C
is compatible if and only if the matrix C has the form
(8) C'= PIA4,C.BT,

where C, is an arbitrary matrix defined over R. In this case the general solution of
the equation (7) is given by the expression

where X is the general solution (3) of the homogeneous equation AXB=0.

Proor. Considering that (7) is equivalent to the equation P~ 'A4,YB,T!, the
existence of (8) is necessary for the compatibility of (7). But it is also sufficient.
Namely in the case (8) the equation (7) is satisfied by

(10) Z, = RG,S.
Indeed, taking (7) into account we get
(11) AZ,B = P-'(PAR)R-'RC,SS-'(SBT)T' = P-'4,C,B,T~ = C.

Denote Z an arbitrary solution of the equation (7). According to (11) the matrix
(10) satisfies also the equation (7), therefore X'=Z — Z, is a solution of the homogene-
ous equation AXB=0. Taking into consideration that the general solution of this
homogeneous equation is given by the expression (3) we get that the general solution
of (7) is the matrix (9) indeed.
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