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Remark on Ky Fan convexity

By ISTV�AN JO�O (Budapest)

Abstract. In the paper is proved that the Nikaido-Isolda’s theorem fails to hold
if concavity is replaced by Ky Fan concavity.

Let X, Y be arbitrary sets. The function

f : X × Y → R

is called Ky Fan concave in the variable x if

∀x1, x2 ∈ X ∀λ ∈ [0, 1] ∃x3 ∈ X ∀y.

f(x3, y) ≥ λf(x1, y) + (1− λ)f(x2, y).

The concavity with respect to y is defined symmetrically. In [1] the authors
stated the following

Theorem. There exists functions f1, f2 ∈ C∞([0, 1]× [0, 1]) such that
f1 is Ky Fan concave in the variable x, f2 is Ky Fan concave in the variable
y and the pair f1, f2 has no saddle point i.e. there is no point (x0, y0)
satisfying

f1(x0, y0) ≥ f1(x1y0) ∀x
f2(x0, y0) ≥ f2(x0y) ∀y.

This is a counterexample showing that the Nikadio-Isolda theorem
fails to hold if concavity is replaced by Ky Fan concavity. The proof
given in [1] was not correct; it suggested that there are polynomials f1, f2
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satisfying Theorem. In fact we do not know whether there are analytical
functions f1, f2 satisfying Theorem.

Proof of Theorem. Define the functions k1, k2 : [0, 1]× [0, 1] as fol-
lows. Let 0 < δ < 1

4 be fixed. For 0 ≤ x ≤ 1
4 the function k1((x), k2(x))

varies linearly from (0, 1) to
(

1
2 + δ, 1

2 − δ
)
; for 1

4 ≤ x ≤ 1
2 it goes linearly

from
(

1
2 + δ, 1

2 − δ
)

to (0, 0), for 1
2 ≤ x ≤ 3

4 from (0, 0) to
(

1
2 − δ, 1

2 + δ
)

and for 3
4 ≤ x ≤ 1 from

(
1
2 − δ, 1

2 + δ
)

to (1, 0).
We can suppose that ((k1(x), k2(x)) is extended linearly from

[
0, 1

4

]
to

(−∞, 1
4

]
and from

[
3
4 , 1

]
to

[
3
4 ,∞)

. Consider a function

ϕ ∈ C∞0 (R), suppϕ = [−δ, δ], ϕ ≥ 0, ϕ(x) = ϕ(−x)∀x,

∫ ∞

−∞
ϕ = 1.

The existence of a such a function is widely known.

Define
k̂1 = k1 ∗ ϕ k̂2 = k2 ∗ ϕ.

Introduce thes sets

A = {(k1(x), k2(x)) : x ∈ [0, 1]},
Â = {(k̂1(x), k̂2(x)) : x ∈ [0, 1]}.

Since the convolution by ϕ gives an average of the values ki(x), all points of
Â belongs to the (closed) convex hull of A. Hence Â lies in the triangle of
vertices (0, 0), (1, 0), (0, 1). On the other hand,

∫∞
−∞ xϕ(x)dx = 0 implies

that k̂i(x) = ki(x) whenever ki varies linearly in [x−δ, x+δ]. Consequently
Â contains the side [(1, 0)(0, 1)] of the above mentioned triangle. This
means that the function

f1(x, y) = (1− y)k̂1(x) + yk̂2(x)

is Ky Fan-concave in x; this follows easily from the fact that

∀x1, x2 ∈ [0, 1] ∀λ ∈ [0, 1] ∃x3 ∈ [0, 1] :

λk̂1(x) + 1(1− λ)k̂1(x2) ≤ k̂1(3),

λk̂2(x1) + (1− λ)k̂2(x2) ≤ k̂2(x3);

see [1], p. 138 or [2] p. 204-205 for more details. Investigate the set

C1 = {(x0, y0) : f1(x0, y0) = max
x∈[0,1]

f1(x, y0)}.
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For given y0, those values x0 are involved for which the perpendicular
projection of (k̂1(x0), k̂2)x0)) to the line along the vector (1−y0, y0) is the
farthest from the origin. Keeping in mind what has been proved about
the set Â we see that for 0 ≤ y0 < 1

2 only the point (1, 0) is projected,
for y0 = 1

2 the whole segment [(1, 0), (0,−1)] and for 1
2 < y0 ≤ 1 the only

point (0, 1). Consequently (using supp ϕ = [−δ, δ])

C1 = {1} ×
[
0,

1
2

)
∪

[
0,

1
4

]
×

{
1
2

}
∪

[
3
4
, 1

]
×

{
1
2

}
∪ {0} ×

(
1
2
, 1

]
.

Considered the function

f2(x, y) = −(x− y)2;

it is obviously concave hence also Ky Fan-concave in y. On the other hand

C2 = {(x0, y0) : f2(x0, y0) = max
y∈[0,1]

f2(x0, y)}

is the line segment y = x, 0 ≤ x ≤ 1 which does not meet C1,

C1 ∩ C2 = ∅
which proves Theorem. ¤
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