A note on primitive classes of arithmetic rings

By L. C. A. van LEEUWEN (Groningen)

Dedicated to the memory of my beloved friend Prof. Andor Kertész

1. In a recent paper [4] MICHLER and WILLE have shown: a primitive class **R** of (associative) rings consists of arithmetic rings if and only if **R** is generated by a finite set S of finite fields.

A class \mathbf{R} of (associative) rings is primitive if \mathbf{R} is closed with respect to subrings, epimorphic images and direct products, and a ring \mathbf{R} is arithmetic if the lattice of its two-sided ideals is distributive. \mathbf{R} is said to be the primitive class generated by S if \mathbf{R} is the smallest primitive class containing S.

It is the purpose of this note to investigate the character of the rings which belong to primitive classes of arithmetic rings.

A class of rings is called a radical-semisimple class if it is a radical class for some radical as well as a semisimple class for another radical. Radical-semisimple classes are completely described by STEWART [6]. WIEGANDT showed that a semisimple class is homomorphically closed if and only if it is a radical class. Let K_n be the class of all associative rings A such that $x^n = x$ for each $x \in A$ (n = 2, 3, ...). Then examples of radical semisimple classes are the classes K_n for n = 2, 3, ..., [7], [8]. In any class K_n there is only a finite set F_n of finite fields and $A \in K_n$ if and only if A is subdirect sum of fields $F \in F_n$, [3].

We show that a primitive class \mathbf{R} of rings consists of arithmetic rings if and only if \mathbf{R} is a radical semisimple class. So examples of primitive classes of arithmetic rings are the classes \mathbf{K}_n for $n=2, 3, \ldots$

2. A class **R** of rings is closed under extensions if $K/A \in \mathbb{R}$, $A \in \mathbb{R} \Rightarrow K \in \mathbb{R}$ whenever A is an ideal in K.

Now we have.

Theorem 1. Let \mathbf{R} be a primitive class of rings, where \mathbf{R} is not the class of all rings. Then the following are equivalent:

- (i) R is closed under extensions
- (ii) R is a radical class
- (iii) R is a semisimple class
- (iv) R is a radical-semisimple class
- (v) R is a class of arithmetic rings.

PROOF. (i) \Rightarrow (ii). (Theorem 34.1, [9]).

(ii) \Rightarrow (iii). Suppose **R** is a radical class. Then **R** is closed under complete direct sums and **R** is strongly hereditary imply that **R** is closed under subdirect sums. Hence **R** is a semisimple class ([1]).

(iii) ⇒ (iv). A homomorphically closed semisimple class is a radical-semisimple

class ([9]).

(iv) \Rightarrow (v). Let $\mathbf{D} = \{A | [a] = [a]^2 \text{ for each } a \in A, A \text{ a ring}\}$, where [a] is the subring of A, generated by a. Then if $\mathbf{R} \nsubseteq \mathbf{D}$, then \mathbf{R} is the class of all rings. ([6]). Hence $\mathbf{R} \subseteq \mathbf{D}$. Now we show that any ring R in \mathbf{R} is an arithmetic ring. Let A, B, C be ideals in R and let $a \in A \cap (B+C)$, a = b + c say, $b \in B$, $c \in C$. Then $a^2 = ab + ac \in (A \cap B) + (A \cap C)$. Cleary $a^n \in (A \cap B) + (A \cap C)$ for any $n = 2, 3, \ldots$ Now $[a] = [a]^2$ implies $a \in [a]^2$ i.e. a can be expressed as a finite sum $a = \sum_{i=2}^r k_i a^i$, $k_i \in \mathbf{Z} \Rightarrow a \in (A \cap B) + (A \cap C)$.

This implies that $A \cap (B+C) = (A \cap B) + (A \cap C)$.

Hence R is an arithmetic ring.

(v) \Rightarrow (i). Suppose $S=K/A\in \mathbb{R}$, $A\in \mathbb{R}$, where A is an ideal in K. Since **R** is a primitive class of arithmetic rings, it contains only a finite number of fields ([4], Hilfssatz 3), $\{\mathbf{Z}_{p_1}^{\mathbf{z_1}}, ..., \mathbf{Z}_{p_n}^{\mathbf{z_n}}\}=F$ say.

Any ring in \mathbb{R} is a subdirect sum of finite fields from F([4], Hilfssatz 4). Conversely, let R be a subdirect sum of finite fields from F. Since \mathbb{R} is closed under subdirect

sums (as a primitive class), $R \in \mathbb{R}$.

Hence $\mathbf{R} = \{A | A \text{ is a subdirect sum of fields from } F\}$. Then S is a subdirect sum of fields $\{\mathbf{Z}_{p_i}^{\alpha_i}\}$, A is a subdirect sum of rings $\{\mathbf{Z}_{p_j}^{\alpha_j}\}$, where each $\mathbf{Z}_{p_j}^{\alpha_j}$ has an identity.

Then K is a subdirect sum of fields $\{Z_{p,i}^{\alpha_i}\} \cup \{Z_{p,i}^{\alpha_j}\} \subseteq F$ ([5]), hence $K \in \mathbb{R}$.

Thus R has the extension property.

Note that any class K_n is a primitive class.

The fields of a given \mathbf{K}_n are exactly those in the corresponding F_n , where $R \in \mathbf{K}_n$ if and only if R is a subdirect sum of fields from F_n . It may be pointed out that for $n \neq m$, $F_n = F_m$ is possible and hence $\mathbf{K}_n = \mathbf{K}_m$, not as asserted in [7] Satz 1, 3. For example,

 $F_4 = \{ \mathbf{Z}_2, \mathbf{Z}_{2^2} \} = F_{10}$ (cf. [3]).

Since the K_n are strongly hereditary classes, every F_n is necessarily a strongly hereditary finite set of finite fields. However, not every strongly hereditary finite set of finite fields is some F_n , for $\{Z_2, Z_{2^2}, Z_3\}$ is such a set and is not equal to any F_n and is a proper subset of F_{13} . The precise result is:

a finite field $\mathbb{Z}_p^k \in F_n$ if and only if $p^k - 1$ is a divisor of n - 1 ([2], Lemma 2).

Remark. JIANG LUH has shown that each ring in K_n is a direct sum of finitely many p^k -rings (p a prime, k a positive integer). A ring R is called a p^k -ring if there exist a prime p and a positive integer k such that $x^{p^k} = x$ and px = 0 for every $x \in R$, [2].

Literature

- [1] E. P. Armendariz, Closure properties in radical theory, Pac. J. Math. 26 (1968), 1—7. [2] Luh, Jiang, On the structure of J-rings, Amer, Math. Monthly 74 (1967), 164—166.
- [3] L. C. A. VAN LEEUWEN, and T. L. JENKINS, A note on radical semisimple classes, Publ. Math. (Debrecen) 21 (1974), 179-184.
- [4] G. MICHLER and R. WILLE, Die primitiven Klassen arithmetischer Ringe, Math. Z. 113 (1970), 369-372.
- [5] R. L. SNIDER, Subdirect decompositions of extension rings, Mich. Math. Journal, 16 (1969), 225-226.
- [6] P. N. Stewart, Semisimple radical classes, Pac. J. Math. 32 (1970), 249-254.
- [7] F. A. Szász, Beiträge zur Radikaltheorie der Ringe, Publ. Math. (Debrecen) 17 (1970), 267—
- [8] R. Wiegandt, Homomorphically closed semisimple classes, Studia Univ. Babes—Bolyai, Cluj, Ser. Math.-Mech., 17, (2) (1972), 17—20.
- [9] R. Wiegandt, Radical and semisimple classes of rings, Queen's papers in pure and applied mathematics, no. 37, Queen's University Kingston, Ontario, Canada (1974).

(Received December 9, 1974.)