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1. Introduction. Let R be a commutative ring with unit. The zero-divisors of a
non-zero R-module M will be denoted by Z(M), i.e. Z(M)={r€ R/there exists 0+
meM with rm=0}. In [4] E. G. EvANs calls R a zero-divisor ring (Z.D.ring)
if Z(R/I) is a finite union of prime ideals for each proper ideal 7 of R. He demon-
strates that every non-zero finitely generated module M over a Z.D.ring has the
following property:

If 1is a finitely generated ideal of R contained in Z(M), then I is the annihilator
of some non-zero element of M.

In general, any R-module with this property is called a pseudo-Noetherian module.
The class of commutative rings determined by the following definition is examined
in [7], [8] and [9].

Definition. A pseudo-Noetherian ring is a coherent ring which has the property
that all of its non-zero finitely presented modules are pseudo-Noetherian.

These rings are interesting primarily because much of the theory of depth and
R-sequences developed for local Noetherian rings in [1] and [2] may be extended
to local *) pseudo-Noetherian rings.

It is evident from the above remarks that a coherent Z.D.ring is pseudo-
Noetherian. The converse is not necessarily true. For example, a Von Neumann
regular ring with infinitely many prime ideals is pseudo-Noetherian but not Z.D.
The purpose of this paper is to exhibit a local pseudo-Noetherian ring which is
not a Z.D.ring.

2. The Example. Let N represent the set of positive integers. Suppose {x,ncN}
is an infinite set of indeterminates and K is a field. Denote by R the subring of
K[[x, n€N]] consisting of all those power series whose expansions contain only fini-
tely many indeterminates.

CraiM. R is a local pseudo-Noetherian ring which is not a Z.D. ring.
(i) R is a pseudo-Noetherian ring.

*) By “local” ring we mean a possibly non-Noetherian ring with a unique maximal ideal.
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For each néN let R,=K[[x,, xa, ..., .r,,]] and notice that R is the union of the
chain of rings (R,),¢en. If n"=n, R, is isomorphic to a direct product of copies of R,
and hence, since R, is Noetherian, R, is a flat R,-module [3, Theorem 2.1]. Further-
more, since the inclusion R, R, is local, R, is a faithfully flat R,-module
[6, Section 4. A]. In [8] it is shown that a directed union of pseudo-Noetherian
domains, in which all inclusions are faithfully flat, is a pseudo-Noetherian ring.

For every n€N each element r€ R has a unique decomposition r=g,(r)+
+x,¥,(r) where ¢,(r) is that portion of » which is not divisible by x, and x,,(r)
is the remainder. The map ¢,:r—¢,(r) is an idempotent ring endomorphism
of R for each neN. These decompositions and endomorphisms are useful tools
in the following considerations.

To prove that R is not a Z.D.ring, it is necessary to show that there exists
an ideal 7 of R with the property that Z(R/I) is not a finite union of prime ideals.
The idea for the proof is derived from a paper of W. HEINZER and J. Oum in which
it is demonstrated that a ring R is Noetherian if (and only if) R[x] is a Z.D. ring
[5]. Consider the following polynomials defined by iteration.

Jo=X;
Lo = X3+ fi-- So-1 (MEN).

Let I represent the ideal of R generated by {x,.sf; fs.../, n€N}. It will be shown
that Z(R/I) has the desired property.
(i) {f,IneNYSZ(R/I).
Since IS fiR, x,¢ I and hence f,€Z(R/I). Now assume n=1 and x,., f; fs...
o Ay E member of 1. Then there exist 4; (j=1, 2, ..., N)in R such that x, ., f; fs...

sy = Z‘xjnflf Sih;. Now apply ¢30,...¢,,, to both sides of this equation

and then cancel N fa. Jfu—1 to Obtain x, . .€f,R. Since this is impossible, x, .. f; f5...
..fy—14 I and therefore f,€ Z(R/I).
(ii)) x, 6 Z(R/I)
Suppose to the contrary that x,€ Z(R/I). Among all 7€ R with h¢ 1 but x,hél,
N

pick one with a representation x,h= 3 x,,.f; fs...f,h, of minimum length N— M.
n=M
Since

Z \n+"‘fl f;.w (hu)'il

n=J

and

slt= 2 Secahifs 0] = 3 5iafifs e fuor (b€
n=M
we may assume in addition that ¢,(h,) = h, (M = n = N).
Now
G

Xoh = Xy fifs - I lk.\t i g, XosoSus1 ms2 ..._j’,',l,f/“”(h,,)] T
n=

N

T Z '\.n+=.f1.f:2 ‘--f;.‘i".wﬂ(kn)-

n=M+1
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For each n, M+1=n= N,
SusrSuse - o = O1(fusrSfuse - L) FxVai (P fuse - fo)-

Therefore

N
Yy [h—«\'u+sf1ﬁ---fu ;\%1 Xps oW (Fags1Sagse oo T)Wnr o (hy ]]

N
; Xns2P1(ars1 42 oo fn)‘n",\u-.:(hn)] ‘5

n=M+1

= Tusshifa oS [luct

N
+n=§+lx"+2flf2 "'ﬂl(pM-ﬂvE(kn)‘

From above

N
xh= 3 Xepaifa.. fuhse with @y (h) = h,(M = n = N).

n=M
N
Applying ¢, to both sides of this equation we obtain 0= 3 x,..¢,(fifs...f,)h, and
n=M
applying @, .. on this yields

N
0 =n=£lxn+2¢l(ﬁﬁ “’j;')(oMq-z(h,)-

Hence,

pe
0 = xps2p01(fifa oo Ss) im + 2§+lxn+2(pl(fl.f2 v Ju) X 2¥nrs2 ()

1.c.
0 = Xusa@rUifs oo fid) [hM+Fgﬂ.\-.mm(fmfm e s )|

Since x4 90:(f1fs...f3r) =0, the expression in square brackets is zero. Con-
sequently, for

N
W =h=xyisfifo o Iu Z XosoWi(Uns1Sarss oo )W (hy) (W 51T)

n=M+1
there is a shorter representation

N
xh = g XpsaS1So oo Ta@rsa(hy)s a contradiction.
n=M+1

(iv) Z(R/I) is not a finite union of prime ideals.

If Z(R/I) were a finite union of prime ideals then two different £, and f, (m=n)
would both lie in one prime ideal. But then x,=f, —f, fi...f,---fu—1 Would also
lie in that ideal which contradicts (iii).

Hence, R is not a Z.D. ring.

3. Remark. Let R=K][x,[n€N], can) be the localization of the polynomial
ring in infinitely many indeterminates at the maximal ideal generated by these
indeterminates. It is possible to show by a similar argument that R is also a local
pseudo-Noetherian ring which is not a Z.D.ring.
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