The groups of homothetic transformations in
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Dedicated to the memory of late Prof. Dr, E. T, Davies

§ 1. Introduction

In our previous papers [1, 2] '), we have discussed the transformation of curvature
tensors in an areal space of the submetric class by means of the conformal transfor-
mation, and have investigated several new tensors and their properties. In the mean
time, while examining the change of connection parameters under the conformal
change, we noticed a particular case in the transformation and subsequently the
theory of homothetic transformations was studied and discussed sufficiently in
[3] by making the use of the theory of Lie-derivatives. In the present paper, our
aim is to discuss the groups of homothetic transformations in areal spaces of the
submetric class.

In this paper, we employ the same notations and terminologies as those used
in our previous paper [3] without explanations. Moreover, in what follows, the
Latin indices A, i, j, ... run from 1 to n and Greek indices «, f3, y, ... run from 1 to
m (1 <=m=n) throughout this paper.

§ 2. Some preliminary results

In an n-dimensional areal space 4™ of submetric class with fundamental func-
tion ) F(x, p), with the normalized metric tensor g;;(x, p), and equipped with the
metric connection I'*/}(x, p) of KaAwAGucHI and TANDAI [7], two kinds of covariant
derivations of an absolute contravariant vector Xi(x, p) due to M. GAMA [5] may
be defined as follows:

2.1 = X = X5 L+ X0T*,,
(2.2) X} = X3+ X/CJ.3,

1) Numbers in brackets refer to the references at the end of the paper.
?) (x,p) = (X', p), PL=0x'[On".
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where

d
e 0P}’
and the symbols ‘the small vertical bar’ and a ‘long solidus’ denote the operators

of covariant derivations with respect to x* and p’ respectively.
As well known, in an A{™ the following relations hold good:

i
;=

I =TI*pi, Sk

FII‘ = O, pi“ = 0, g‘flk = 0 al'ld pf” = 0.
Now, in an A{™, let us consider an infinitesimal point transformation
(2.3) X = x'+8(x)dr,

where dt is an infinitesimal constant and &'(x) is a contravariant vector field de-
fined over the domain # of the space under consideration which is independent
of the direction and is also at least of class C*.

With respect to the transformation (2.3), T. IGARASHI [6] has already developed
the theory of Lie-derivatives in an A(™. Here we write down the Lie-derivatives
of a scalar f(x, p), vector X'(x, p) a mixed tensor T‘,‘(x p) and of the connection
parameters I'*§;(x, p) as below:

£f = f|iéi +f;;§é?’.-p2 "

(2.4) £X = X' fj-i-X‘;;,lffjp{—Xjffj,
(2.5) £ T}k = Thpl'+ Th &Pk — Thh+ Tinli + ThHék,
(2.6) £ = &+ R &'+ I'* jsi & phs

where the symbol £ denotes the operator of the Lie-differentiation process and
Riy(x, p) is the curvature tensor of the A{™ which is obtained as the coefficient of
the vector &'(x) in the commutation formula

&l i — iy = Ry

Further it is seen with ease that £p!{=0.

Now, we endeavour ourselves in deriving some formulae which will frequently
be used in the latter part of this paper. For the purpose in hand, let us first have
the identities:

2.7) T}ku;-}l Tjk";]l T r*mw Thlr*ﬂs-; Tkr“ 1’1—Tjik§';r*tf;ff’hs

(2.8) Tjtmm = T:ik|m|l' = TijMm F TMR?M T_mRum T;':H;'R’i:m-
Using (2.5) and (2.7), on one hand, we obtain
(29) (£T;:k)$,r £( k!)-) - 0

On the other hand, from (2.5) and (2.8), we can calculate that

(2.10) £(T',(|;) (T k)“ = T L ET y—Th £T* ) — T},,fr*k",— T'k,,(ff* AT LT
Next, we recall the formula (OM P. SINGH [3])

(2.11) {fr*jt);x EMpPu = £Ru+ )3 ET*Ppi—T* i3 ET* Q)i
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Employing the formula (2.10) for the normalized metric tensor [7] and using the
property g;;,=0, we find that
(2.12) Egwy = gt i+ g€ I+ gus; €T D3,

" . x .
from which, on putting C;;,? +Cj;, 2 = g;;3%2 = C;;,%, by straight forward calcula-
tion, we can have

2.13) x ?fr*}x = g"'[ff &)k + (£ ), j —:f gi)l —
—CL3EM )P —CLIET* D3+ 8" Cn J(E T W) P
Finally, using (2.2) and (2.4), after some calculation, we can derive the formula
(2.14) £XH-EXH: = X*£C}L5.
Now we consider a set of r infinitesimal point transformations

=x+80()d, abec,..=12,...,r.

If we denote the Lie-derivatives with respect to the vector &, by £, commutating
a
the order of operators £ and b£ on a scalar f(x, p), we obtain
a

('faf_fnf)f =f|f(§£r[j§g = fﬁlﬂu) +f;§(fﬂ|;§}£ - éﬁéﬂu)p!’is
which, on putting N e
£8, = & 8-y,
can be written as

(2.15) (E£)] = (EE—£6)f = (£ &)+ &y ph

Likewise, for the vector Ui(x, p), tensor T} (x, p) and components of connection
parameters I'*j, (x, p), following relations can be derived easily

(2.16) (EE)U = Ul(£ED + UM H(E SR Pi— U/ (£ &
(2.17) (f f) T}A = }k“(f &) +T}k::(f ﬁglu Pi— T;!k (bf C?L)u + Tl‘k(f f:.)u + T}a (bf fa)un
(2.18) EDT} = (£ )yt R (€ &0+ T i

Consequently, we can enunciate the

Theorem 2.1. In an A\™ if we apply the operations (f‘ £) to an arbitrary scalar

[f(x, p), vector U'(x, p), tensor Tjy(x, p) and the components of connection I'*},(x, p),
the results are also the Lie-derivatives of these quantities with respect to the vector
3 oo

b =

5D
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Furthermore, if we consider an r-parameter group G, of transformations whose
symbols are £f which are r-infinitesimal operators of an r-parameter group G,,
a

we have
(2.19) (££)f = Cuff or £& = Ch&,

where C§, said to be the structural constants of the group G,, are constants. Con-
sequently, the relations (2.16), (2.17) and (2.18) are reduced to

EHU' = CL£U', EHTh=CiiTh and (EHI*h= CLET*,

respectively. Hence, it follows:

Theorem 2.2. When &, are r-vectors of an r-parameter group G, of infinitesimal
transformations in an A™, the similar type of relations as (2.19) hold good for an
arbitrary scalar, vector, tensor and the components of connection I'*}, in an areal
space of submetric class.

§ 3. Group of homothetic transformations

In our previous paper [3], we have defined the homothetic transformation by
means of a relation. Here we start our discussion by giving the geometrical inter-
pretation of a homothetic transformation to show its physical significance in our
space and then we shall prove the validity of our relation (3.2) in [3].

In an A/™, let us consider a point transformation

ox!
Eri ek

which establishes a one to one correspondence between the points of a region R
and those of some other region R. Then we can assume that, under this transfor-

(3.1) X = X'(x' x% ..., x"), provided that

=i
1]

: pi2 _‘ i OX - % : . .
mation, p} is transformed to p;zp;w, an original point x' in R is carried to a

displaced point ¥ in R, and a point x'+dx'in R to a point ¥'+dx' in R. If the dis-
tance between two sufficiently near points x' and x'+dx’ is transformed to that
between the corresponding two sufficiently near points X' and X'+dx’ in a con-
stant ratio under the transformation (3.1), we call this transformation a homothetic
transformation in the space under consideration. In case the transformation (3.1)
is a homothetic one, a necessary condition what we have, is that two normalized.
metric tensors g;;(x, p) and g;;(x, p) bear a constant ratio i. e.,

(3.2) &ij(x, p) = kgi;(x, p),

where g;;(x, p) is the deformed counter part [4] of the normalized metric tensor
gi;(x, p) under the transformation (3.1) and k is a positive constant.

We now consider the case in which the point transformation (3.1) becomes an
infinitesimal one

(3.3) X = xl+ & (x) dr.
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In such a case, if the transformation (3.3) is an infinitesimal homothetic one,
then from (3.2), we must have

(3.4) £g; = 2Cgy;,

where C is a constant. Conversely, if (3.4) holds good, then applying the definition
of the deformed quantity of the normalized metric tensor g;;(x, p) [4], we can have
gi;=8i;+£g;dr from which we get g;;(x, p)=kg;;(x, p), where k(c, dr) is a positive
constant determined by ¢ and dr. Thus, we have.

Theorem 3.1. In order that an infinitesimal point transformation (3.3) in an
A be a homothetic one, it is necessary and sufficient that the relation (3.4) holds
good.

In relation (3.2), if k=1, the transformation (3.1) is a motion, and likewise,
when C in (3.4) is zero, the infinitesimal transformation (3.3) is also a motion [6].
Therefore, we shall consider only the case C0 throughout this paper and we call
a homothetic transformation for which C#0 (or which is not a motion) a proper
infinitesimal homothetic transformation.

Further, we suppose that each of r linearly independent infinitesimal operators
£ f defines a one parameter group of homothetic transformations. If any operator

£f is a linear combination of £/ and constant coefficients, then the set of these
operators £ f is said to be complete. Now the following theorem holds:

Theorem 3.2 In an A{™, if the infinitesimal operators £f are r-generators of a
i

complete set of one-parameter groups of homothetic transformations, then, they are
also generators of an r-parameter group of homothetic transformations.
If the symbols £/ are generators of r one-parameter groups of transformations,
a

we have (f f)f = of f or (f ﬂf)gi szf &i;» then the symbols bf Jf are generators of one
parameter groups whose vector fields are b.‘.' L. On the other hand, when the sym-
bols £f are generators of r one-parameter group of homothetic transformations,
then Gy virtue of (3.4), we have (f ﬁz‘.')guz(). Consequently, we get bfg,j:o. Further-
more, in case of £/ being r generators of an r-parameter groups of transformations,
from theorem 2.GZ, it is evident that (ff)g,-j=£g,-j=C§a fg,-j, where Cj, are the

structural constants of the group, but for an r-parameter group of homothetic
transformations, we also have (af £)f=0 and £g;;=2C,g;;. Therefore, we at once
a a

find that C§,C.=0. Hence, summarizing, the results from above, it follows:
Theorem 3.3. In an A{™ if the symbols £f are generators of r one-parameter
groups of homothetic transformations, then, tkeasymbals bf f are those of a one-para-
meter group of areal motions in the same space.
Theorem 3.4. In an A™, if the symbols a£ f are r generators of an r-parameter

group of homothetic transformations with homothetic constants C,, then we have a
relations C§,C.=0 between the structural constants C§, and the homothetic con-
stants C,.

5%
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Finally, we note that if £ S are generators of an r-parameter group G, of trans-
formations, the totality of £ f determines in general a group of transformations

known as derived group whlch is either G, itself or a normal subgroup of G.. Hence,
from this and theorem 3.6, we state

Theorem 3.5. The derived group of an r-parameter group of homothetic transfor-
wations in an A™ is a group of areal motions in the same space.

§ 4. Integrability conditions of £g,,=2Cg,;

Applying (2.5) to g;;, in virtue of g;;,=0 and on putting g;;:} = xu-;;':, if we
introduce (3.4), we have

x 2 v
(4.1) £g; = gnChi+euli+Cijn i énph = 2Cgy;

Next, on makmg use of formula (2.10) for g;;, employing (3.4) again, and knowing
that g;;,,=0, it is obviously seen that £I*}=0. Thus, from (2.6), we get

(4.2) £} = &+ Ry & +T* )58 pk = 0.

We shall now endeavour ourselves in considering the conditions that, equation
(4.1) admits a set of solutions {'(x) and C, &'(x) being functions of x* only and C
a constant. Clearly, any solution £’(x) of (4.1) always satisfies the equations (4.2).
Therefore, our conditions are the integrability conditions of the differential equations.
The equations (4.2) with the conditions (4.1) may be written as a mixed system of
partial differential equations

PR R e N UG X o a8 Ci=0, C5=0,
gll‘jlk == "_'Rjklél_' ;h-GPIPA 0"
together with the condition

gt + g +Cij. 1 &t = 2Cg;;.
When an infinitesimal point transformation (3 3) is a homothetic one, from (3.4),

by means of (2.9) and because of g;;: = C,.. %, first we can have

ij* P
4.3) a) £g' = —2Cg¥,  b) £C,;.% = 2CC;;.7.

Secondly, from the above relations and in virtue of g" C,,J 3 —C,.‘, we can deduce
that

(4.4) £ C ,',j,‘ =)
Now, taking aid of (4.2), from (2.11) and (2.9), we can get with case
(4.5) £Riy = 0,



The groups of homothetic transformations ... 69

Itis well known that in an A{™ the connection I'*j, (x, p) of KAWAGUCHI and TANDAI
[7] satisfies the famous identity of Ricci that is, the associated covariant derivative
of normalized matric tensor g;; is zero, so we have

Gk = 8ipsx— &3 Tk — g T ik— gk = 0.
From this, we can easily obtain

. . 1 ;. & . PR &y P . i o
s = {Ji}—-;{(?},;r I+ Cis 3 T 1 — 8" Chas s T 1n}-
Differentiating these equation with respect to p;,, we have

L3 x X »
Pt = %[C},f!k +Ct. 2 —Ch-¥ a8 —
(4.7)

g o 2 % " % L
—(C},;r*,i,;'+C£,;'r*,:,:f_‘Cj;‘,?r*ﬁ;fgm)f’;]

Further, making the use of formula (2.10), (4.2), (4.3) and (4.4), it can be verified
that

»

(4.8) £CH e m 0, £C50a= 2Chl:
Operating £ on both sides of (4.7), using (4.3), (4.4) and (4.8), we obtain
(49) £kt =—3 ClALM* 3t +CLAET* 38— Cos HE T s 2 g™ pl,.
Finaly, on transvecting (4.9) with pi, we can find that
(4.10) WiRiE 8 ph = 0.
Where

Wili = 8,662 +1(C},304+Ci. 26— g"Cpu, Dl

Since we notice that the mn*-rowed determinant W constructed of WJi? with
respect to the system of indices (ikx) and (y/2) doesn’t vanish identically in the con-
sidered domain. Therefore, from (4.10), we get (£I'*7:¥)p,,=0. Substituting this
result in (4.9), we obtain £I'*},; ¥=0. Consequently, we remark that conditions (4.5)
and (4.6) due to (4.2) are not needed to be considered both at a time, for the latter
is a consequence of (4.4). Therefore, we shall only consider the conditions (4.4),

(4.5) and their successive covariant derivatives.
Now we consider first the condition (4.4). Making use of (2.9) for ij“ ‘and
emplying (4.4), we see that £6‘},§::;‘=0. Again, following the same procedure for

the repeated partial derivatives of Cj,7 with respect to pj, we can get

o
£C5,5:0:8::5% =0, »=123,...

Since the left hand side of this equation is throughout homogeneous with respect
to pi, so because of the reason £p? =0, we note that this equation retains all the
preceding one. Therefore, the above equation can be written as

X
i Aopp.pae.ces s
£C),3; 05008 = 0,

FEFAN LR AR
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Of course, by means of the formula (2.7), it can be seen that the conditions
obtained from (4.4) by applying first the covariant differentiation and next the partial
differentiation and those obtained vice versa are equivalent. Thus, we consider
those conditions which are obtained from (4.4) by applying successively only the
partial differentiations with respect to pj i.e.,

J*T? 5?50

£CI Aoty ﬂz----;l;e = 0.

Now, following the validity of our above statement, by repeated covariant
differentiation of this latter equation, we get
(fC' ot % ““”;,)Itllkal |;,r—0 f:],2,3,...,

J",sl, :g

which are the conditions so obtained from (4.4) by successive partial and covariant
differentiations.

Secondly, we consider the condition (4.6). The implication of the formula (2 9)
for the tensor R’ together with the condition (4.5) yields the result £R! H, 2
=(£Rj;;):2=0. Furthermore, on one hand, applying the formula (2.10) to F*j,,, & WO
have

£t = ED e+ T R Dy =T €D ) — T4 £ 8 —
—T* €D =T s 5D ET* D P
and, on the other hand, if we apply the operator £ to the relation (Om P. SINGH [3])
Ripst = (T D — (T sy — T AT Bt + TR AT 58
We obtain
ER i = £ i — £ kst —ET S D T i =T R E T D +
+EM GO i — A E T 5D

Substituting the former into the latter one and employing (4.2), (4.6) and its
covariant derivatives, we get £ Rj,,;? =0, from which it implies that the equations
obtained from (4.5) by partial differentiation with respect to p} doesn’t give further
new conditions.

Again, from (4.5), by using the formula (2.10) and (4.2), we obtain (£RU,‘)|,I—0.
Here we can also see that the conditions obtained from (4.5) by first applying the
partial differentiation w.r.t. p} and then covariant differentiation, and those obtained
vice versa are equivalent. Thus, we can also realize with ease that the partial differen-
tiation of the above equations with respect to p} doesn’t give new conditions.

From the latest equation, we may find that (£R};); ,,=0, but in a likewise
manner, we can again show that the partial derivative of this equation w.r.t. p}
doesn’t give further new conditions.

Repeating the similar process, we get at last

(£ R’i'jt)ulusl---!'q =

From the above discussion, we can give the
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Theorem 4.1. In order that (4.1) have a set of solutions &'(x) which are only
point functions, and C which is a constant, it is necessary and sufficient that the equations

(4.11) g &+ gt +Cip 2 Pk = 2Cgy;,

and

12 {(fcf’?-sx-s.?"‘?s,)ltum =0,
(fRUt)m]r,],‘.i:, =0, t,4g=0,1,2,..

be algebraially consistent in &', &'; and C.

Clearly, the solutions of (4.11) and (4.12) are linearly homogenous in &, &/;
and C, and there are lN (N+1) linearly independent equations in (4.11). There-
fore the maximum number of linearly independent solutions &/, &f; and C which

satisfy (4.11) and (4.12), is 5 2 N(N+1)+1. Consequently, it fo]lows the

Theorem 4.2. In order that the space A™ admit r(é%N(N +1)+1) linearly

independent proper infinitesimal homothetic transformations, it is necessary and suf-
ficient that (4.11) and (4.12) involve N(N+1)+1—r linearly independent equations
and the others be consequences of them.

In case of r linearly independent infinitesimal homothetic transformations, if

we denote them by X' =x"+g,",(x)dr, any &i(x) which satisfies (4.1), is a linear com-

bination of Ef, (x) with constant coefficients. But in virtue of theorem 2.1 and theorem
3.1, as a fact is obvoius that I,:t‘ &! also satisfy (4.1). Consequently, f&i should neces-

sarily be the linear combination of Ef,(x) with constant coefficients C. Thus, from
theorem 3.5 and theorem 4.2, it follows:

Theorem 4. 3. In order that the the space AY™ admit an r-parameter group of
poper infinitesimal homothetic transformations, it is necessary and sufficient that
(4.11) and (4.12) involve N(N+1)+1—r linearly independent equations and the
others be consequences of them.

At last, we devote ourselves to determine the condition that the space A™
admits a group of proper infinitesimal homothetic transformations of maximum

order %N(N +1)+1. In order to be the case, a necessary and sufficient condition

what we have, is that the quations ij,‘;*O and £ R, =0 should identicially be

satisfied for any &, &, and C such that

(4.13) £g,= 5(!]"{'5“{‘{'5”1:&“{72.=2Cglj>
where
tffu — gu.éf‘;-
When the space A{™ admits a group of proper infinitesimal homothetic trans-
formations of maximum order, from (4.4) and (4.5), we have
(414) £Cj’; j!ylhéh+cjsy’s |ﬁf’:| J,,Cm'i'cmy‘f j’h = O

(4.15) £Rj, = jk:|ﬁf"+R}u;;5:nPﬁ— 1;15|n+Rui‘5|;+Rfrb;§|k+ijn§|:=0-
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In (4.14) and (4.15), the coefficients of " and &5, are

C}»;M; (C},ﬂa‘if’ﬁ 1’36'+C.:!A5"+(‘1M0h)
and ’ . : ‘ _
Risins (Riws ¥ ph— Riy 05+ Ry 0% + Rigy 0% + Ry, 01),
respectively.
Since the vector field ¢'(x) is arbitrary and independent of direction in itself,
therefore it is immediately obvious that

(4.16) Cl = 0; Cla;xph_Ch,380+Cl 284+ ClL28 = 0,
(4.17) Rigpn = 03 Rig3 ¥ ph— Rl 05+ Ry 0% + R 0t + Riy 0 = 0.

Hence, in the case under consideration, for (4.13) holds good, from the second equa-
tions of (4.16) and (4.17), we must have

},‘; = 0 Ell'ld R‘,“ = O

But, it we consider the first equation of (4.16) and this last equation, then in virtue
of theorem 6.2 of GAmA [5], we see that they constitute the conditions for the space

A,™ to be Minkowskian. Moreover, the equation Cj,7=0 alone shows that the ten-
sor gi; does not depend upon pi i.e., the space A!™ is a Riemannian space, and the
equation R_,,‘,—O shows that the space A" is locally Euclidean.

Conversely, if C' 4=0 and R’ J.I,—O then the second of eqnatmns (4.16) and
(4. l?) hold, an consequently, (4. 12) is also valid. Hence the converse is also true,
that is, the space A\™ admits a group of proper infinitesimal homothetic transfor-
mations of maximum order. Thus, we have

Theorem 4.4. In order that the space Ay™ admits a group of proper infinitesimal
homothetic transformations of maximum order, it is necessary and sufficient that the
space be locally Euclidean.

We now recall that if the curvature tensor Rj, of an A™ (n=2) satisfies the

relation
(4.18) R}u = K(dig k= Ok gi)s

where K said to be the Riemannian curvature of our space, is a constant, then the
space is a Riemannian space with constant curvature [8].
Operating £ on both the sides of (4.18), introducing (3.4) and then in virtue

of (4.5), we have
f.R?;m = (”"" ])KCagjk = 0.

from which for n=2, and C, =0, we get K=0. Substituting this in (4.18), we notice
that R, =0. Thus our space is locally Euclidean. Hence. we can state the

Theorem 4.5. In order that the space A{™ admits a group of proper infinitesimal
homothetic transformations of maximum order, it is necessary and sufficient that the
space be a Riemannian space with constant curvature.

Theorem 4.6. If the space A\™ of constant curvature admits a group of proper
infinitesimal homothetic transformations, the space must be locally Euclidean.
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