Axiomatic foundation of the n-dimensional
Mobius geometry

By VLADIMIR VOLENEC (Zagreb)

1. Introduction

G. EwALD [5] gave a simple system of axioms for the Mdbius plane. In that
plane there are only two fundamental concepts: the fundamental elements are
circles and the fundamental relation is the relation of orthogonality of two circles.
Another system of axioms for the M&bius plane was given in [8]. The analogous
axiomatic construction of the n-dimensional Mdbius space will be given here. Our
axiomatic theory has only one set of fundamental elements, one fundamental rela-
tion and four axioms. Another system of axioms for the n-dimensional Md&bius
space was given by H. MAURER [6).

2. Axioms

Let S be any nonempty set of elements which we call hyperspheres and let
1" be a binary relation on it. If for hyperspheres a, b the relation a_ L b is valid,
then we say that the hypersphere a is orthogonal to the hypersphere 5. Let n be
any natural number.

Definition 1. An ordered (n+2)-tuple A=(ay,a,, ..., a,,,) of hyperspheres
is called an (n+ 1)-simplexoid iff there is an ordered (n + 2)-tuple B=(b,, b, ..., b, . )
of hyperspheres such that

(1) (Vo, Be{1,2,...,n+2})[a, Lby < a = B].
The notion of simplexoid is due to M. EsSer [4].

From Definition 1 it follows immediately

Theorem 1. If (ay, @, ..., a,.5) is an (n+1)-simplexoid and =, a,, ..., a,:»
is any permutation of the indices 1,2, ..., n+2, then (a,,, a,,, ..., a,, ) is an (n+1)-
simplexoid too.

Theorem 2. If (ay, @y, ..., G,.2) is an (n+1)-simplexoid, then a,.ay, ..., a,.»
are different hyperspheres.
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PROOF. Let o, f€{l,2,...,n+2},a#p. By Definition | there is an ordered
(n+2)-tuple (b,, bs, ..., b,,5) of hyperspheres such that the relation (1) holds.
Then a; 1 b,. If a,=a; were valid, then a, | b, would follow, which is impossible.
Hence a,#ay.

Definition 2. A set BS S of hyperspheres is called an independent set with
respect to the relation of orthogonality or shortly | -independent set iff there is
an (n+1)-simplexoid (a,, as, ..., a,,,) such that BE {a,, a,, ..., @, ).

From this definition follows

Theorem 3. Every subset of an J_-:'ndependen.t set af hyperspheres is an | -
independent set.

Definition 3. We say that the set AS S of hyperspheres is orthogonal to the
set BE S of hyperspheres and write A L Biff a | bfor Yac A and ¥ be B. In particular
if B={b} is a singleton we say that the set 4 of hyperspheres is orthogonal to the
hypersphere b and write 4 | b, and if A= {a} is a singleton we say that the hypersphere
a is orthogonal to the set B of hyperspheres and write a | B.

‘ Definition 4. The structure (S, L) is called an n-dimensional Mdbius space
& S1. (Va,beS)[aLb = b 1al]
S2. (Vay,a,, ..., a,,,1€ S)(3b€ S){a,, as, ..., Gy} LB
S3. (34, a5, ..., Ay 3€ S)[DES = 1 ({ay, ay, ..., G419} L D))
S4. If A = {a,,a,, ...,a,,,) is an | -independent then
(¥ b, c€ S)[A L{b,c} = b = .

Theorem 4. If (a,, a,, ..., a,,.) is an (n+ 1)-simplexoid, then there is one and
only one ordered (n+2)-tuple B=(by, by, ..., b,.s) of hyperspheres such that the
relation (1) is valid. Then B is also an (n+ 1)-simplexoid.

PrOOF. Let (a,,ay, ...,a,,3) is an (n+1)-simplexoid. By Definition 1 there
is an ordered (n+2)-tuple B=(b,, b,. ..., b,..) of hyperspheres such that (1) holds.
But, by S1, from (1) it follows

(Va, Be{L, 2, ..., n+2))[by La, = a = ],

and by Definition 1 B is an (n+ 1)-simplexoid. Suppose that there is an (n+ 1)-simp-
lexoid B =(by, bs, ..., b,.,) such that

(2) (Va, fe{1,2,...,n+2))[a, L by = a #= f].
From (1) and (2) it follows
(3) (Ve {1, 2 coo s B2 {0y +o05 Gamits B as ones Unsa) L [0as B}

On the other hand, by Definition 2 we get that

(4) (Vae{l,2,...,n+2){ay, ..., G4_1,@y41, .-, Gy42} is an L -independent set.
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By S4 from (3) and (4) it follows
(Va€e{l,2,...,n+2))b, = b,
i.e. B=9B’, and the theorem is proved.

Definition 5. Two (n+ 1)-simplexoides A =(a,, a@,, ..., @,+3), B=(by, b, ..., b,. )
will be called dual (n+ 1)-simplexoides and will be written A=d(B) or B=d(A)
iff the relation (1) holds.

From Definition 1 and S1 follows

Theorem 5. (YA, BS S)[A LB = B 1 A]l; (YacS)(VB< S)[a 1 B« B al.

3. | -independent sets

Theorem 6. The set A={a,, a, ..., a,.,} of hyperspheres is an | -independent
set iff there is no hypersphere b such that A1 b.

Proor. Let A={a,,a,, ..., a,,,} be the given set of hyperspheres. Suppose
that

(5) beS = (A4 LDb).
By S2 there are hyperspheres b,, b, ..., b, , such that

(Va€{l,2,...,n+2){ay, ... s Gyys gyry oov s Aypq} L By,

If for some a€{l,2,...,n+2} it were a, L b,, then it should be A1 b,, contrary

to hypothesis (5). Therefore (1) holds, i.e. A=(a,, a,, ..., a,.5) is an (n+ 1)-sim-

plexoid and hence A4 is an | -independent set. Conversely, let 4 be an | -independent

set, i.e. let A=(a,, as, ..., a,,2) be an (n+1)-simplexoid. Furthermore let B=

=d(N), B=(b,, bs, ..., b,,,). By Definition 5 and S4 5, is the only hypersphere

such that {a,, ..., a,.} L b,. By Definition 51 (a, L b,), and the relation (5) follows.
From S3 and Theorem 6 we get

Theorem 7. There are hyperspheres a,, a,, ..., a,., such that {a,, a,, ..., a,.,)
is an | -independent set.

Theorem 8. If (a,, as, ..., a,.3), (by, by, ..., b,.5) are dual (n+1)-simplexoides
and ¢, is a hypersphere such that ~ (¢, L by), then (¢y, as, ..., a,.,) is an (n-+1)-sim-
plexoid.

ProoF. By Definition 5 and S+ b, is the unique hypersphere such that {a,, ...,
...y @,49) L by, and as is by the hypothesis —i(c; L b,), it follows that

beES =1 ({cy) Gy --. 5 Gy in) L D)

By Theorem 6 {c,.a,,...,a,.5} is an | -independent set, i.e. (¢, s, ..., a,,s)
is an (n+ 1)-simplexoid.

Theorem 9. For Yc¢,€S, {¢,} is an | -independent set.
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Proor. By Theorem 7 there is an (n+1)-simplexoid =(a,,a,, ..., a,,).
Let B=d(N), B=(b,, bs, ..., b,+,). Then B={b,, b,, ..., b,,,} is an L -independent
set, and from Theorem 6 follows

cES="1(cLB).

Therefore there is a hypersphere in B which is not orthogonal to ¢;. Because of
the symmetry we may suppose —1(c, L b,), and then, by Theorem 8 (¢, as, ..., a,.,)
is an (n+ 1)-simplexoid, i.e. {¢,} is an L -independent set.

Theorem 10. If ¢,, ¢, are different hyperspheres, then {c,, ¢,} is an | -independ-
ent set.

PrOOF. By Theorem 9 {c,} is an L -independent set, and there is an (n+1)-
simplexoid A =(¢,, a,, ..., a,;») wWith the hypersphere ¢, as one element. Let B =d(),
B=(b,, b, ..., b,,:). By Definition 5 and S4 ¢, is the unique hypersphere such
that ¢, L {b, ..., b,+.}, and because of c¢,#c,, there is at least one hypersphere
in the set {b,, ..., b, ,} which is not orthogonal to ¢,. By symmetry we may assume
that 71(c; L by), and then by Theorem 8 it follows that (¢, ¢,, @3, a,.,) is an (n+1)-
simplexoid, and therefore {c,, ¢,} is an L -independent set.

Theorem 11. Let me{2, ..., n+2}. If {c;, ..., €y-1}E S in an | -independent set
and ¢,,, d,, such hyperspheres that

({clq ey Cm-d} i dm) & o8 (Cm _L dm)’
then {¢,, ..., Cu—1» C} is an L -independent set.

ProOF. By the hypothesis there is an (n+1)-simplexoid U= (c,, ..., Cp-1-
Ay ooy Qyiy). Let B=d(A), B=(b,, bs, ..., b,,,). By Theorem 6 it follows that there
is no hypersphere which is orthogonal to the set 4={c,, ..., Cyys Qs -.-» Gpsa)-
Hence there is at least one hypersphere in 4 which is not orthogonal to 4,,. But
{eyy ..y €u—1)Ld,, and by symmetry we can suppose that —(a,Ld,). Then by
Theorem 8 D=(by, ..., bp_1s s D1y --s busa) 18 an (n+ 1)-simplexoid. Let
E=d(D), €=(e,, €y, ..., ¢,,2) and a€{l, ...,m—1}. By Definition 1 it follows for
the (n+1)-simplexoides D, € that e, | b, for VB€(1,2, ..., n+2}\ {m, 2} and ¢, L d,,.
By the hypothesis it is ¢, L d,,, and for the (n+ 1)-simplexoides 2, B we have from
Definition 1 ¢, L by for Ve {l, 2, ..., n+2}\ {m, «}. Hence

{(.\R‘Fl} Jl—{bl' i 'b:r—l‘- |ﬁa‘rl' 2o If:'m—l" dm!bm+l! Vb bn-u}-
But
: . obi alns i iita Bantia TES S

is an | -independent set, and by S4 it follows ¢,=¢, for vac{l, ..., m—1}, ie.
E=(cy, ..., Cp—1s €+ ---» €,1+2). By the hypothesis we have —1(c,, L d,,) and by Theorem
8 it follows that (¢y, ..., Cpi—1s Coms €m+1s ---» €ns2) i8S @an (n-+1)-simplexoid. Hence
{¢s ...y €1y Cn) is an L -independent set.

Theorem 12. Let me {2, ...,n+2). If ¢;, Cay ..., Cps da, .... d,, are hyperspheres
such that ¢, L d; for Yac{l,2,...,m}, YBe{a+1,..,m} and —\(c, . d,) for Fa€
€{2, ..., m}, then {c,, ¢, ..., ¢,,} is an | -independent set.
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PRroOOF. The theorem can be proved by induction. For m =2 the statement follows
by Theorems 9 and 11. If {cy, ..., ¢,,—,} is an L -independent set, then by Theorem
11 {¢, ..., €-1, €y} is an | -independent set too.

Theorem 13. Let me{l,2,...,n+1}). If A=(ay,ay, ..., 8,43), B=(by, by, ...,
vy by o) are dual (n+ 1)-simplexoides and ¢, d hyperspheres such that ¢1 {b, ., ...,
oy byyo) and {ay, ..., a,} 1 d, then c1 d.

ProOF. If m=1, thena, L dand c L {b,, ..., b,,,}. By Definition 1 and S4 it follows
c=ay, hence c1d. If m=n+1, then ¢1b,,, and {a,, ..., a,,,} L d. By Definition
1 and S4 it follows d=b,.,, hence ¢ L d. Let now me¢ {2, ..., n}. Then ¢ L {b,1,...,
.oos byso) and {ay, ..., a,} L d. By Definition 5 it follows that a, | b, for Ya€{l, 2, ...,
.on+1} and VBe{a+1,..,n+1}, and (Ta,Lb,) for Yac{2, ...,n+1}. Let us
suppose, contrary to the statement, that —1 (¢ L d). Put

’ ’ ’ ’ ;
ay = dyy ooy Gy = Ay iy = € Omyps = Quins coe s lyyn = Uy
’ ’ ’ ’ »
bl o bh -'-’bm s bma bm+l =d, bm+2 e bm+lc reey bu+2 - bn+l-

Then a; L by for Va€{l,2,...,n+2}, Vpe{a+1,...,n+2} and —1(a;Lb;) for Vac
€{2, ...,n+2}). From Theorem 12 for m=n+2 it follows that {aj, a3, ..., a,,5}=
={a;, ..., @y, C, psy, -, Ay41} 18 an 1 -independent set. Then by Theorem 6 it
follows that there is no hypersphere which is orthogonal to the set {a,, ..., a,,, ¢,
813, i) But by Definition’ § it follows {o,; ..., 8. Gu¢iy s B3 LB s
and by the hypothesis c¢1b,,,. Hence {a,, ...,a,, ¢ Gpsys ..., Gye1} L b,1o. This
contradiction proves the statement of the theorem.

4. Subspaces

Definition 6. If P, Q are nonempty sets of hyperspheres, then we say that P
is saturated with Q or that Q saturates P iff:

Ml1. P1Q,
M2. (Vs€S) [sLQ = seP].
An equivalent form of Definition 6 is obviously

Theorem 14. If P, Q are nonempty sets of hyperspheres, then P is saturated
with Q iff P is the set of all hyperspheres p such that p 1 Q.

We shall say, by convention, that the set S of all hyperspheres is saturated
with the empty set @, and conversely that 0 is saturated with S, since here the con-
ditions M1 and M2 are satisfied in a trivial way.

Definition 7. A set P of hyperspheres will be called the subspace of the space
(S, L) iff there is a set Q of hyperspheres such that P is saturated with Q.

Definition 8. Two subspaces P, Q of the space (S, L) will be called complemen-
tary subspaces, and it will be written P=C(Q) or Q=C(P), iff P is saturated with
Q and Q is saturated with P.

Obviously S=C(0), 0=C(S).

From Definitions 6 and 8 it follows at once
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Theorem 15. The sets P, Q of hyperspheres are complementary subspaces of
the space (S, 1) iff:

Ml1. P10,

M2. (VseS)[s LQ = s€ P},

M3. (VsES)[s L P= sc Q]

Analogously, from Theorem 14 and Definition 8 we get

Theorem 16. The sets P, Q of hyperspheres are complementary subspaces of
the space (S, L) iff:

a) (VseS)[s LQ < seP),

b) (Vs€S)[s L P scQ]

It is obvious that the set P in Definition 6 is uniquely determined by the set
Q (the converse is not generally valid), and hence each subspace of the space (S, 1)
is uniquely determined by its complementary subspace.

Theorem 17. If P,, Q, and P,, Q, are two pairs of complementary subspaces of
the space (S, L), then the relations Py P, and Q, > Q, are equivalent.

Proor. It is obvious that from P,c P, follows Q,=20Q,. If it were Q,=Q, then
it would follow P;=P,. Hence Q, © Q,. The converse is proved analogously.

Theorem 18. If the set P of hyperspheres is saturated with the set Q of hyperspheres
and Q is saturated with the set P, of hyperspheres then P, Q are complementary sub-
spaces of the space (S, 1 ).

PROOF. Since Q is saturated with P, and P is saturated with Q, it follows by
Definition 6

(6) Py 10,
(7) (VseS)[Py Ls = s€ Q),
(8) PLO,
9 (Vs€S)[s L Q = s€Pl.

Let s€P,. Then by (6) s Q and by (9) we get s€ P. Hence P,= P. Now, let s€S.
If PL s, then P, | s and by (7) s€ Q. Hence

(10) (VsES)[PLs = s€ Q).

From (8), (9) and (10) we get by Theorem 15 that P and Q are complementary subspa-
ces of the space (S, 1).
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5. Basic sets and dimension of a subspace

Definition 9. We say that a subspace P of the space (S, L) is- generated by
the set P, of hyperspheres (or that the set P, is the set of generators of the subspace
P), and write P=(P,), iff there is a set Q of hyperspheres such that P is saturated
with Q and Q is saturated with P,.

From the proof of Theorem 18 it follows that (P,)= P implies P, P.

Theorem 19. If P, is a nonempty set of hyperspheres, then there is a set PSP,
of hyperspheres such that P, is an | -independent set and (P,)=(P,).

PrROOF. There is a greatest number m, mé {—1, 0, 1, ..., n}, such that there exists
an (n+ 1)-simplexoid with m+2 elements from the set P,. Let ‘P=(p,, ps, ..., Puss)
be such an (n+1)-simplexoid and let p,, ..., p,+. be its elements from the set P,.
Put Py={p,, ..., Pm+2}- Let O, Q be the sets of hyperspheres saturated with P,, P, and
P, P the sets of hyperspheres saturated with Q, Q, respectively. Then, by Definition
9 it follows P=(P,), P=(P,). It is necessary to prove that P=P. By Theorem 18
P, Q resp. P, Q are complementary subspaces of the space (S, 1) and it is sufficient
to prove 0=0. If g€Q, then P,1 q and by P,C P, it follows P, g, hence ¢¢Q.
Therefore we have Q< (0. We prove 0 S Q. There are two cases:

1) m=n. The elements of the set Py={p,, ps, ..., Pn+2} constitute an (n+1)-
simplexoid P=(p,, Pss --., Pus2) and by Theorem 6 it follows Q =0, wherefrom by
QS0 we get 0=0, and so 0=0.

2) me{—1,0,1,..,n—1). Let g€Q. Then Pylgq, ie. {py;s ..., Pmss}Ll@q.
If it were g4 Q, a hypersphere p’€ P, would exist such that —1(p’.L ¢) and then by
Theorem 11 the subset {p,, ..., pn+2 P }EP, would be an | -independent set,
which contradicts the definition of the number m. Therefore g€ Q, and Q< Q.

Definition 10. The set of generators P of the subspace P of the space (S, L)
will be called the basic set of that subspace iff P is an L -independent set.

Theorem 20. If P, Q are nonempty complementary subspaces of the space (S, L),
then there is at least one pair of dual (n+ 1)-simplexoides R=(py, Pas ..., Ppss)y Q=
=Gy, Gas - Guss) Of hyperspheres and a uniquely determined number mée {—1, 0,

1, ...,n—1)}, such that P={{p,, ..., Pu+2})s O={{Qu+35 --+» Gus3})-

PrROOF. Obviously (P)=P. By Theorem 19 there is a set PS P of hyperspheres

such that (P)=P and P is an | -independent set. Let p,, ..., Ppso, me{—1,0,1, ...,
...,n—1} be the elements of the set P. Then these hyperspheres are elements of
an (n+1)-simplexoid P=(p;, P2, ...s Pus2)- Let Q=d(P), Q=(q1, 925 ---s Gu+2)-
The set Q consists of all those hyperspheres that are orthogonal to the set P and
by Definition 5 it follows ¢, s, ... §u+2€Q. Let O={Gns3s ---s Gus2}. OWing to

0co,
(1) plLQ

is valid for vp€ P. Conversely, if for some p£ S (11) is valid, then by Theorem 13 it
follows p | q for all hyperspheres ¢ for which

(12) Plgqg.
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But, since P is a set of generators of P, from (12) if follows g€ Q and hence pl ¢
for Yq€Q. By Definition 6 p€P. Therefore Q is a set of generators of Q. Suppose
now that there are two pairs, identical or different, of dual (n+ 1)-simplexoides
of hyperspheres

V=P Des s s Paith 8= (G Qs 505 %)
and

iB’= {p;)P;$---1P;+2)9 Q= (Q;'!qga "-aq;+2)
and numbers m, m"€{—1,0, 1, ..., n—1} such that

P = {pl' ...,pm+2}g P’ = {p;n ---sp;l'-l-?}

are the sets of generators of P and

Q = {'?m-t-aa "-sqln+2}v Q’ = {q;r+3v sq;u}

the sets of generators of Q. We show that m=m’. Suppose e.g. that m<=m’. Then
me{—1,0, 1, ..., n—2}. Therefore there are no more than n+ 1 hyperspheres among
the hyperspheres

(]3) pl!""pm+2vp;t’+s' .—-;P;.;.g

and by S2 there is a hypersphere ¢ which is orthogonal to each of the hyperspheres
(13). The hypersphere g is orthogonal to the set P, and as (P)=P, we get ¢gcQ.
On the other hand from (P")=P it follows P’S P and hence P’ | q. Therefore {p], ...
cees P+ P 435 +os Pns2)-L g, which contradicts Theorem 6. According to this it
cannot be m=m’, and by symmetry it cannot be m’<m either. Thus m=m".

By Theorem 20 and Definition 10 it follows that each nonempty subspace of
the space (S, L) has a basic set and that all basic sets have the same number of hyper-
spheres which is precisely m+2, me{—1,0, 1, ..., n}. For the basic set of the sub-
space S we can take each | -independent subset of n+2 hyperspheres. This property
enables us to give the following definition:

Definition 11. The number of elements of any basic set of a nonempty subspace
P of the space (S, L) diminished by 2 is called the dimension of P with respect
to the relation ““ 1 " or the | -dimension of P. If the | -dimension of P is m, then we
write dim, P=m. In particular we define dim 0= —2.

Obviously dim | S=n.

By Theorem 20 and Definitions 10 and 11 it follows immediately

Theorem 21. If P and Q are complementary subspaces of the space (S, 1),
then dim ; P+dim , Q=n—2.

Theorem 22. If P, and P, are subspaces of the space (S, 1) then from P,C P,
it follows dim , P,<dim, P,.

ProOF. Obviously from P,cP, it follows dim, P,=dim, P,. Suppose that
dim, P,=dim , P,. Then the basic sets of the subspaces P, and P, have the same
number of elements, and each basic set of P, is simultaneously the basic set of P,.
As the subspace is uniquely determined by each of its sets of generators, it follows
P,=P, in contradiction with the hypothesis P, P,. Therefore dim . P,=dim, P,.
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Theorem 23. If P is a subspace of the space (S, 1), then the relation dim | P= —1
is valid iff the set P has exactly one element. For Y/ p € S the set {p,} is the subspace of
the space (S, 1).

PROOF. Let P be a subspace of the space (S, 1 ). If P contains exactly one ele-
ment then by Theorem 9 it follows that dim, P= —1. Conversely, let dim, P= —1.
If then subspace P would contain two different hyperpherses then by Theorem 10 it
would be dim  P=0 which is impossible. On the other hand from P=0 it would
follow by Definition 11 that dim ; P= —2. Therefore the subspace P contains exactly
one hypersphere. Let now p, be any hypersphere, and let P=({p,}). Then dim , P=
= —1. Let Q=C(P). By Theorem 9 there is an (n+ 1)-simplexoid B =(p,, ps, -..,
...+ Pu+2) With the hypersphere p, as one element. Let Q=d(P), Q=(qGy, Ga, ..-» Gn+2)-
By Definition 5 p, L {q., ..., g,+2}, and since the set Q is saturated (Theorem 18)
with the set {p,}, it follows that g,, ..., q,+.€0Q. Since {g,, ..., g,+2} is an | -inde-
pendent set, dim, Q=n—1, wherefrom by Theorem 21 it follows that dim , P= —1.
Therefore, together with dim, P= —1, we get dim. P= —1, and by the first part
of the theorem it follows P={p,}. '

6. Intersection and sum of subspaces

Theorem 24. If' P,, Q, and P,, Q, are two pairs of complementary subspaces
of the space (S, 1) then P, P, is a subspace too. If Q=C (P, Py) then Q=(Q,'JQ,).

PrOOF. Let Q be the set of hyperspheres saturated with the set P, P,. As
the sets P,, P,, Q are saturated with the sets Q,, Q,, P, P, respectively, so by
Definition 6 it follows that

(14) P,

(15) (VseS)[s L O, = s€ P
(16) P;10,,

(17) : (Vs€S)[s L O, = s€ Py,
(18) (P,NP)LO,

(19) (Vs€S)(PLNPy) Ls = s€ Q).

Let s€ P,(\P,. Then from (14) and (16) follows s | Q,, s | Q,. Hence s 1 (Q;UQ,).
Therefore we have

(20) (P Py) L(Q,UQy).

Let now s€S. If s 1 (Q,UQ,), then s Q,,sL Q,, and by (15) and (17) it follows
SEP,, SEP,, i.e. s€ P, P,. Therefore we have

(21) (Vs€S)[s L(Q,UQ;) = s€ P, N Py).

-
1D
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From (20) and (21) it follows by Definition 6 that P,(| P, is saturated with the set
0,UQ,. Thus by Definition 9 (Q,UQ,)=0 and hence 0 20,!JQ,. Let now s¢ S.
If s1 Q then 51 (Q,'JQ@,) and by (21) we get s€ P,(| P,. Therefore

(22) (VsES)[s LQ = se P, Py).

From (18), (19) and (22) it follows by Theorem 15 that P, P,, Q are complementary
subspaces of the space (S, L).

Definition 12. The subspace Q of the space (S, L), which is complementary
to the intersection P;[1P, of two subspaces P;, P, with P,=C(Q,), P,=C(Q,),
will be called the sum of the subspaces Q,, Q,, and will be written Q=0Q, + Q..

From Theorem 24 and Definition 12 it follows Q,+ Q,=(Q,U Q,).

Theorem 25. If P,, P, are two subspaces of the space (S, 1), then
c(P.N P?) = C(P)+C(R), C(P,+P) =C(P)NC(R).

PROOF. Let Q, = C(P;), Q.= C(P,). By Definition 12 P, P,, Q,+ Q. and P, + P,
Q,1Q, are two pairs of complementary subspaces of the space (S, L ). Therefore

C(P,N1Py) = Q1+ Qy = C(P)+C(Py), C(P+Py) = 0,110, = C(P)\C(Py).

Theorem 26. If P is a subspace of the space (S, 1) with dim, P=m, mé
e{—=1,0,1,....,n—1}, and if {py,....»}EP, k€{l,....,m+1} is an 1 -independent
set, then there are hyperspheres py .y, ..., Pu+2€ P such that {py, ..., Pis Prs1s ---s Pmss}
is a basic set of the subspace P. ;

Proor. The greatest number of elements of any | -independent subset of the
subspace P equals dim, P+2=m+2. As k<=m+2, there is a hypersphere p, .,
in the set P~ {p,, ..., pi}, such that {p,, ..., p,, py+1} is an L -independent set. The
statement of the theorem follows inductively.

Theorem 27. If P,, P, are two subspaces of the space (S, 1) then
(23) dim (P, P,)+dim (P, + P,) = dim, P,+dim _ P,.

Proor. Let dim, P,=i, dim, Py=j, dim, (P,(1Py,)=k. Then obviously k=i,
k =j. The greatest number of elements of any | -independent subset of the subspaces
Py, Py, P\ Py is i+2,j+2, k+2, respectively. First we prove the inequality

(24) dim, (P, +P,) = i+j—k.

We distinguish two cases:

1) ke{—1,0,1,...,n}. Let {py, ..., Prs2} be a basic set of the subspace P, (| P,.
By Theorem 26 there are hyperspheres p; .4, ..., p;+2€ Py such that {p,, ... pii.}is
a basic set of the subspace P;, which incase k=1 is reduced to {p,. ..., px+2}- Similarly,
there are hyperspheres p;.g, ..., Pi+j-x+2€P such that {p;, ..., priss Pitss -
<oy Pi+ j-k+2} 18 a basic set of the subspace P,, which in case k=j is reduced to {p,, ...,
cors Prsa) IF Qy=C(Py), Q.=C(P,) then by Definition 12 Q,NQ,=C(P,+Py).
Since {py, ..., Pesas Prsss ---s Pi+2) IS the basic set of the subspace P,, by Theorem 18
and Definition 9 it follows that for ¥s€ S the relation {p,, ..., Pri2s Pisgs ooy Piva) LS
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is valid iffs€Q,. Similarly the relation {p,, ..., Pei2s Pivas s Pisj—gsa) L5 is
equivalent with s€Q,. Therefore for ¥s€S the relation

§00s i v DdnsDaias ivei Do Prsasvivs Pisj-k+2} LS

is equivalent with s€Q,/1Q,, and by Theorem 14 the set Q,1Q, is saturated with
the set
[Ph coros Prt2s Press oovs Pigas Pigss «oos [’i+j-k+z}-

Since on the other hand the set P, + P, is saturated with the set Q,1Q,, by Definition
9 it follows that {p,, ..., p;s j—x+2} is the set of generators of the subspace P,+ P,.
Since the | -dimension of the subspace P,+ P, is equal to the greatest number of
the elements of any | -independent subset of the set {p,,..., p;; ;_x+2} diminished by
2, relation (24) follows at once.

2) k=~2. Now P,(1P,=0. If {p,,...,p;+2} is a basic set of the subspace
P, and {p;.g, .... pis j+4} is a basic set of the subspace P,, then similarly as in the
case 1) we prove that {p,, ..., pii2, Pisas ---s Pis 44} i @ set of generators of the
subspace P,+P,, and hence dim . (P,+ P,)=i+j+2, wherefrom by k= —2 the
relation (24) again follows.

Thus in both cases the relation (24) holds. By Definition 12 Q,+Q,= C(P, P,),
and by the use of Theorem 21 we get

(25) dim, (Q,N Q) = n—2—dim _ (P, + P,),
(26) dim (Q,+Q,) = n—2—dim (P, Py),
(27) dim, 9, =n—2—-dim P, dim, Q, = n—-2—dim_  P,.

From (24) by the definition of the numbers 7, /, & it follows

(28) dim, (P, Py)+dim (P, + P,) = dim_ P, +dim_ P,.

Similarly

(29) dim (Q,(Q,)+dim_(Q,+Q,) = dim  Q,+dim, Q,,
and hence by (25), (26) and (27) it follows

(29) dim, (P, + P,)+dim (P, P,) = dim, P,+dim, P,.

From (28) and (29) we get just the required relation (23).
Theorem 28. If P and Q are subspaces of the space (S, L) then

dim, [PNC(Q)] = dim, P—dim Q+dim, [C(P)N Q].

Proor. By Theorem 21 dim [P C(Q)=n—2—dim,K C[PNC(Q)], and as
by Theorem 25 C[PNC(Q)]=C(P)+C[C(Q)=C(P)+Q, so dim, [P(1C(Q)]=
=n—2—dim, [C(P)+Q]. By Theorem 27 dim, [C(P)+Q]=dim, C(P)+
+dim, Q—dim, [C(P)"NQ], and hence dim_ [P C(Q)]=n—2—dim, C(P)—
~dim , Q+dim, [C(P)NQ]. By Theorem 21 n—2—dim, C(P)=dim, P, and
therefore the required equation follows.

7+



100 Vladimir Volenec

7. Induced Mobius geometries

Definition 13. A hypersphere s will be called a point-hypersphere or shortly
a point iff s Ls.

Definition 14. The subspace P of the space (S, 1) will be called regular iff
P C(P)=0 and singular otherwise.

Theorem 29. If a subspace P of the space (S, 1) contains no point P is a regu-
lar subspace.

PrOOF. Suppose that P is a singular subspace. Then by Definition 14 there is a
hypersphere p€ P(\C(P) and by the property M1 it follows p.L p, i.e. p is a point,
which is in contradiction with the hypothesis.

Theorem 30. If P is a regular subspace of the space (S, 1) and P, is a subspace
of (S, L) such that P,S P, then dim, [P(NC(Py)]=dim, P—dim k6 P,—2.

Proor. By Definition 14 PN C(P)=0 and hence P,(1C(P)=0. Since dim, 0=
= —2, the statement follows immediately from Theorem 28.

Theorem 31. If P is a regular subspace of the space (S, L) with dim, P=m,
me{0, 1, ...,n—1}, and {p,, ..., p}, k€{l, ...,m+2} is an 1 -independent subset of
P, then there is an (m+ 1)-simplexoid with elements from P, so that p,, ..., p; are the
elements of that (m+ 1)= simpleoxid.

ProOF. If k<m+2 then by Theorem 26 there are hyperspheres py .y, ..., Ps26P
such that {p,, ..., p.+2} is a basic set of the subspace P. For k=m+ 2 this statement
is trivially realized. Let be now P,={{py, ..., Pa=15sPa+1s ---» Pm+2}) for Ya€{l, ...,
....m+2}., Then P,cP and dim, P,=m—1. Hence by Theorem 30
dim, [P C(P,)]=—1, and by Theorem 23 it follows that the subspace P C(P,)
contains exactly one hypersphere. Denote this hypersphere with g,. For Yac{l, ...,
..., m+2} we have ¢, PN C(P,) and hence ¢,€ C(P,). By the property M1 it follows
{P1s s Pa=1y Pas1s oy Pm+2}-L G, Suppose now that p, L q,. Then {p,, ..., pia} L
1 g,. Since {p,, ..., Pm+2} is the basic set of the subspace P, ¢,€C(P). From ¢, P
and ¢,€C(P) by Definition 14 we get that P is a singular subspace, contrary to
hypothesis. Therefore

(Vo (L, ..., m+ 2D [p. L gs = o = f],
i.6. (Pys ..oy Pms2) 18 an (m+1)-simplexoid with the elements from P.
Definition 15. If P is a subset of § and “ T ™ a binary relation on P such that
(Vp,qeP)[pTq<p Lq),

then we say that ** T ™ is the relation on P induced by the relation of orthogonality.
From Theorem 31 and Definitions 1, 2 and 15 it follows immediately

Theorem 32, If P is a regular subspace of the space (S, L) and *“ T " is the
relation on P induced by the relation of orthogonality, then every | -independent
subset of P is a T-independent set.

The converse of Theorem 32 is also true, even under weaker conditions.
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Theorem 33. If P is a subspace of the space (S, 1) and *“ T the relation on
P induced by the relation of orthogonality, then every T -independent subset of P
is an | -independent set.

Proor. Let {py, ..., p}, k€{l, ..., m+2} be a T -independent subset of P. Then
by Definition 2 there is an (m+1)-simplexoid P=(p,, ..., Pm+2) With elements
P1s ---» Px and moreover some elements py .1, ..., Pu+2€P. Let Q=d(P), Q=(q,, ...,
..-s @m+2)- The statement of the theorem will be proved if we prove that Py={p,, ...,
...y Pm+2} 18 an L -independent set. Suppose, to the contrary, that P, is not an L-
independent set. By Theorem 19 there is an | -independent subset P, of P, such
that the sets P, and P, generate the same subspace Q of the space (S, L ). By sym-
metry we can suppose that Py={p,, ..., p;}, j€ {2, ..., m+2). Since by Definition
| P,1 g, and hence P, 1 q,, and since P, is a basic set of the subspace Q of (S, L),
hence g,€ C(Q). Since on the other hand p,€ P,S Q, by the property M1 it follows
pil gy, i.e. p; Tq,, which contradicts Definition 5. This proves our statement.

Now we can prove

Theorem 34. If P is a regular subspace of the space’(S, 1) with dim, P=m,
me{0, 1, ...,n—1}, and if* T 7 is the relation on P induced by the relation of orthogona-
lity, then (P, T) is an m-dimensional Mobius space.

PrOOF. The property S1 of the structure (P, T) follows from the same property
of the structure (S, 1 ). Let Py={py, ..., p+1} be any subset of P. Let further Q=
=(P,). Then QP and dim, Q=m—1. Thus by Theorem 30 it follows dim, [P
N C(Q)]= —1. This by Theorem 23 means that the subspace P\ C(Q) contains at
least one hypersphere ¢g. Then g€ P and g€ C(Q), and by the property M1 it follows
Pyl gq, ie. P, Tgq. In particular {p,, ..., pn+1} T ¢, that proves the property S2 of
the structure (P, T). If P is a T -independent set, then by Theorem 33 P,is an L -
independent set and hence dim, Q=m—1. Therefore dim, [PMNC(Q)]=—1, and
by Theorem 23 there is exactly one hypersphere g€ P C(Q), i.e. a hypersphere ¢
such that {p,, ..., p+1} T4, which proves the property S4 of the structure (P, T).
Let now {p,, ..., Pm+2} be any basic set of the subspace P. If there were a hypersphere
q€P such that {py, ..., pus2} T 4, i.8. {p1, ..., Pusa} Ll g, it would be g€ C(P), and
hence g€ P C(P), which is impossible, while P is a regular subspace of the space
(S, L). Thus the property S3 of the structure (P, T) is proved, and by Definition
4 it follows that (P, T) is an m-dimensional Mdbius space.

By the definition of the relation *“ T ™ and the definition of subspaces it follows
immediately that every subspace of the space (P, T) is also a subspace of the space
(S, L) and conversely that every subspace of the space (S, 1) which is a subset
of P, is also a subspace of the space (P, T).

Finally, by Theorems 32 and 33 we get

Theorem 35. If P is a regular subspace of the space (S, L), T the relation
on P induced by the relation of orthogonality, and Q any subspace of the space (P, T),
and hence also a subspace of the space (S, 1), then dim, Q=dim, Q.

Therefore, the structure of the space (P, T) is identical with the structure
of the subspace P induced by the structure of the space (S, 1).
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8. Remark

By the comparison of system of axioms S1-—S4 and system of axioms Pl—P4
from [7] it follows that an n-dimensional M&bius space is in fact an (7 + 1)-dimensional
pre-projective space. (About the pre-projective plane see the articles [1], [2] and [3]
of V. DEVIDE.)
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