Axiomatic foundation of the n-dimensional Möbius geometry

By VLADIMIR VOLENEC (Zagreb)

1. Introduction

G. EWALD [5] gave a simple system of axioms for the Möbius plane. In that plane there are only two fundamental concepts: the fundamental elements are circles and the fundamental relation is the relation of orthogonality of two circles. Another system of axioms for the Möbius plane was given in [8]. The analogous axiomatic construction of the *n*-dimensional Möbius space will be given here. Our axiomatic theory has only one set of fundamental elements, one fundamental relation and four axioms. Another system of axioms for the *n*-dimensional Möbius space was given by H. MÄURER [6].

2. Axioms

Let S be any nonempty set of elements which we call hyperspheres and let " \perp " be a binary relation on it. If for hyperspheres a, b the relation $a \perp b$ is valid, then we say that the hypersphere a is orthogonal to the hypersphere b. Let n be any natural number.

Definition 1. An ordered (n+2)-tuple $\mathfrak{A} = (a_1, a_2, ..., a_{n+2})$ of hyperspheres is called an (n+1)-simplexoid iff there is an ordered (n+2)-tuple $\mathfrak{B} = (b_1, b_2, ..., b_{n+2})$ of hyperspheres such that

(1)
$$(\forall \alpha, \beta \in \{1, 2, ..., n+2\})[a_{\alpha} \perp b_{\beta} \Leftrightarrow \alpha \neq \beta].$$

The notion of simplexoid is due to M. ESSER [4]. From Definition 1 it follows immediately

Theorem 1. If $(a_1, a_2, ..., a_{n+2})$ is an (n+1)-simplexoid and $\alpha_1, \alpha_2, ..., \alpha_{n+2}$ is any permutation of the indices 1, 2, ..., n+2, then $(a_{\alpha_1}, a_{\alpha_2}, ..., a_{\alpha_{n+2}})$ is an (n+1)-simplexoid too.

Theorem 2. If $(a_1, a_2, ..., a_{n+2})$ is an (n+1)-simplexoid, then $a_1, a_2, ..., a_{n+2}$ are different hyperspheres.

PROOF. Let $\alpha, \beta \in \{1, 2, ..., n+2\}, \alpha \neq \beta$. By Definition 1 there is an ordered (n+2)-tuple $(b_1, b_2, ..., b_{n+2})$ of hyperspheres such that the relation (1) holds. Then $a_{\beta} \perp b_{\alpha}$. If $a_{\alpha} = a_{\beta}$ were valid, then $a_{\alpha} \perp b_{\alpha}$ would follow, which is impossible. Hence $a_{\alpha} \neq a_{\beta}$.

Definition 2. A set $B \subseteq S$ of hyperspheres is called an independent set with respect to the relation of orthogonality or shortly \perp -independent set iff there is an (n+1)-simplexoid $(a_1, a_2, ..., a_{n+2})$ such that $B \subseteq \{a_1, a_2, ..., a_{n+2}\}$.

From this definition follows

Theorem 3. Every subset of an \perp -independent set of hyperspheres is an \perp -independent set.

Definition 3. We say that the set $A \subseteq S$ of hyperspheres is orthogonal to the set $B \subseteq S$ of hyperspheres and write $A \perp B$ iff $a \perp b$ for $\forall a \in A$ and $\forall b \in B$. In particular if $B = \{b\}$ is a singleton we say that the set A of hyperspheres is orthogonal to the hypersphere b and write $A \perp b$, and if $A = \{a\}$ is a singleton we say that the hypersphere a is orthogonal to the set a of hyperspheres and write $a \perp B$.

Definition 4. The structure (S, \perp) is called an *n*-dimensional Möbius space iff:

S1.
$$(\forall a, b \in S)[a \perp b \Rightarrow b \perp a]$$
.

S2.
$$(\forall a_1, a_2, ..., a_{n+1} \in S)(\exists b \in S)\{a_1, a_2, ..., a_{n+1}\} \perp b$$
.

S3.
$$(\exists a_1, a_2, ..., a_{n+2} \in S)[b \in S \Rightarrow \neg (\{a_1, a_2, ..., a_{n+2}\} \perp b)].$$

S4. If
$$A = \{a_1, a_2, \dots, a_{n+1}\}$$
 is an \perp -independent then

$$(\forall b, c \in S)[A \perp \{b, c\} \Rightarrow b = c].$$

Theorem 4. If $(a_1, a_2, ..., a_{n+2})$ is an (n+1)-simplexoid, then there is one and only one ordered (n+2)-tuple $\mathfrak{B} = (b_1, b_2, ..., b_{n+2})$ of hyperspheres such that the relation (1) is valid. Then \mathfrak{B} is also an (n+1)-simplexoid.

PROOF. Let $(a_1, a_2, ..., a_{n+2})$ is an (n+1)-simplexoid. By Definition 1 there is an ordered (n+2)-tuple $\mathfrak{B} = (b_1, b_2, ..., b_{n+2})$ of hyperspheres such that (1) holds. But, by S1, from (1) it follows

$$(\forall \alpha, \beta \in \{1, 2, ..., n+2\})[b_{\beta} \perp a_{\alpha} \Leftrightarrow \alpha \neq \beta],$$

and by Definition 1 \mathfrak{B} is an (n+1)-simplexoid. Suppose that there is an (n+1)-simplexoid $\mathfrak{B}' = (b'_1, b'_2, ..., b'_{n+2})$ such that

(2)
$$(\forall \alpha, \beta \in \{1, 2, ..., n+2\})[a_{\alpha} \perp b'_{\beta} \Leftrightarrow \alpha \neq \beta].$$

From (1) and (2) it follows

(3)
$$(\forall \alpha \in \{1, 2, ..., n+2\}) \{a_1, ..., a_{\alpha-1}, a_{\alpha+1}, ..., a_{n+2}\} \perp \{b_\alpha, b'_\alpha\}.$$

On the other hand, by Definition 2 we get that

(4)
$$(\forall \alpha \in \{1, 2, ..., n+2\}) \{a_1, ..., a_{\alpha-1}, a_{\alpha+1}, ..., a_{n+2}\}$$
 is an \perp -independent set.

By S4 from (3) and (4) it follows

$$(\forall \alpha \in \{1, 2, ..., n+2\})b_{\alpha} = b'_{\alpha},$$

i.e. $\mathfrak{B} = \mathfrak{B}'$, and the theorem is proved.

Definition 5. Two (n+1)-simplexoides $\mathfrak{A} = (a_1, a_2, ..., a_{n+2}), \mathfrak{B} = (b_1, b_2, ..., b_{n+2})$ will be called dual (n+1)-simplexoides and will be written $\mathfrak{A} = d(\mathfrak{B})$ or $\mathfrak{B} = d(\mathfrak{A})$ iff the relation (1) holds.

From Definition 1 and S1 follows

Theorem 5. $(\forall A, B \subseteq S)[A \perp B \Rightarrow B \perp A]; (\forall a \in S)(\forall B \subseteq S)[a \perp B \Leftrightarrow B \perp a].$

3. ⊥-independent sets

Theorem 6. The set $A = \{a_1, a_2, ..., a_{n+2}\}$ of hyperspheres is an \perp -independent set iff there is no hypersphere b such that $A \perp b$.

PROOF. Let $A = \{a_1, a_2, ..., a_{n+2}\}$ be the given set of hyperspheres. Suppose that

$$(5) b \in S \Rightarrow \neg (A \perp b).$$

By S2 there are hyperspheres $b_1, b_2, ..., b_{n+2}$ such that

$$(\forall \alpha \in \{1, 2, ..., n+2\})\{a_1, ..., a_{\alpha-1}, a_{\alpha+1}, ..., a_{n+2}\} \perp b_{\alpha}.$$

If for some $\alpha \in \{1, 2, ..., n+2\}$ it were $a_{\alpha} \perp b_{\alpha}$, then it should be $A \perp b_{\alpha}$, contrary to hypothesis (5). Therefore (1) holds, i.e. $\mathfrak{A} = (a_1, a_2, ..., a_{n+2})$ is an (n+1)-simplexoid and hence A is an \perp -independent set. Conversely, let A be an \perp -independent set, i.e. let $\mathfrak{A} = (a_1, a_2, ..., a_{n+2})$ be an (n+1)-simplexoid. Furthermore let $\mathfrak{B} = d(\mathfrak{A})$, $\mathfrak{B} = (b_1, b_2, ..., b_{n+2})$. By Definition 5 and S4 b_1 is the only hypersphere such that $\{a_2, ..., a_{n+2}\} \perp b_1$. By Definition $5 \neg (a_1 \perp b_1)$, and the relation (5) follows.

From S3 and Theorem 6 we get

Theorem 7. There are hyperspheres $a_1, a_2, ..., a_{n+2}$ such that $\{a_1, a_2, ..., a_{n+2}\}$ is an \perp -independent set.

Theorem 8. If $(a_1, a_2, ..., a_{n+2})$, $(b_1, b_2, ..., b_{n+2})$ are dual (n+1)-simplexoides and c_1 is a hypersphere such that $(c_1 \perp b_1)$, then $(c_1, a_2, ..., a_{n+2})$ is an (n+1)-simplexoid.

PROOF. By Definition 5 and S \cdot b_1 is the unique hypersphere such that $\{a_2, ..., a_{n+2}\} \perp b_1$, and as is by the hypothesis $\neg (c_1 \perp b_1)$, it follows that

$$b \in S \Rightarrow \neg (\{c_1, a_2, \dots, a_{n+2}\} \perp b).$$

By Theorem 6 $\{c_1, a_2, ..., a_{n+2}\}$ is an \perp -independent set, i.e. $(c_1, a_2, ..., a_{n+2})$ is an (n+1)-simplexoid.

Theorem 9. For $\forall c_1 \in S$, $\{c_1\}$ is an \perp -independent set.

But

PROOF. By Theorem 7 there is an (n+1)-simplexoid $\mathfrak{A} = (a_1, a_2, ..., a_{n+2})$. Let $\mathfrak{B} = d(\mathfrak{A})$, $\mathfrak{B} = (b_1, b_2, ..., b_{n+2})$. Then $B = \{b_1, b_2, ..., b_{n+2}\}$ is an \bot -independent set, and from Theorem 6 follows

$$c \in S \Rightarrow \neg (c \perp B).$$

Therefore there is a hypersphere in B which is not orthogonal to c_1 . Because of the symmetry we may suppose $\neg (c_1 \bot b_1)$, and then, by Theorem 8 $(c_1, a_2, ..., a_{n+2})$ is an (n+1)-simplexoid, i.e. $\{c_1\}$ is an \bot -independent set.

Theorem 10. If c_1 , c_2 are different hyperspheres, then $\{c_1, c_2\}$ is an \perp -independent set.

PROOF. By Theorem 9 $\{c_1\}$ is an \bot -independent set, and there is an (n+1)-simplexoid $\mathfrak{A} = (c_1, a_2, ..., a_{n+2})$ with the hypersphere c_1 as one element. Let $\mathfrak{B} = d(\mathfrak{A})$, $\mathfrak{B} = (b_1, b_2, ..., b_{n+2})$. By Definition 5 and S4 c_1 is the unique hypersphere such that $c_1 \bot \{b_2, ..., b_{n+2}\}$, and because of $c_1 \ne c_2$, there is at least one hypersphere in the set $\{b_2, ..., b_{n+2}\}$ which is not orthogonal to c_2 . By symmetry we may assume that $\neg (c_2 \bot b_2)$, and then by Theorem 8 it follows that (c_1, c_2, a_3, a_{n+2}) is an (n+1)-simplexoid, and therefore $\{c_1, c_2\}$ is an \bot -independent set.

Theorem 11. Let $m \in \{2, ..., n+2\}$. If $\{c_1, ..., c_{m-1}\} \subseteq S$ in an \bot -independent set and c_m , d_m such hyperspheres that

$$(\{c_1,\ldots,c_{m-1}\}\perp d_m) \& \neg (c_m \perp d_m),$$

then $\{c_1, ..., c_{m-1}, c_m\}$ is an \perp -independent set.

PROOF. By the hypothesis there is an (n+1)-simplexoid $\mathfrak{A}=(c_1,\ldots,c_{m-1},a_m,\ldots,a_{n+2})$. Let $\mathfrak{B}=d(\mathfrak{A}),\,\mathfrak{B}=(b_1,b_2,\ldots,b_{n+2})$. By Theorem 6 it follows that there is no hypersphere which is orthogonal to the set $A=\{c_1,\ldots,c_{m-1},a_m,\ldots,a_{n+2}\}$. Hence there is at least one hypersphere in A which is not orthogonal to d_m . But $\{c_1,\ldots,c_{m-1}\}\perp d_m$, and by symmetry we can suppose that $\neg(a_m\perp d_m)$. Then by Theorem 8 $\mathfrak{D}=(b_1,\ldots,b_{m-1},d_m,b_{m+1},\ldots,b_{n+2})$ is an (n+1)-simplexoid. Let $\mathfrak{E}=d(\mathfrak{D}),\,\mathfrak{E}=(e_1,e_2,\ldots,e_{n+2})$ and $\alpha\in\{1,\ldots,m-1\}$. By Definition 1 it follows for the (n+1)-simplexoides $\mathfrak{D},\,\mathfrak{E}$ that $e_\alpha\perp b_\beta$ for $\forall\,\beta\in\{1,2,\ldots,n+2\}\setminus\{m,\alpha\}$ and $e_\alpha\perp d_m$. By the hypothesis it is $c_\alpha\perp d_m$, and for the (n+1)-simplexoides $\mathfrak{A},\,\mathfrak{B}$ we have from Definition 1 $c_\alpha\perp b_\beta$ for $\forall\,\beta\in\{1,2,\ldots,n+2\}\setminus\{m,\alpha\}$. Hence

$$\{c_{\alpha}, e_{\alpha}\} \perp \{b_1, \dots, b_{\alpha-1}, b_{\alpha+1}, \dots, b_{m-1}, d_m, b_{m+1}, \dots, b_{n+2}\}.$$

is an \perp -independent set, and by S4 it follows $e_{\alpha} = c_{\alpha}$ for $\forall \alpha \in \{1, ..., m-1\}$, i.e. $\mathfrak{E} = (c_1, ..., c_{m-1}, e_m, ..., e_{n+2})$. By the hypothesis we have $\neg (c_m \perp d_m)$ and by Theorem 8 it follows that $(c_1, ..., c_{m-1}, c_m, e_{m+1}, ..., e_{n+2})$ is an (n+1)-simplexoid. Hence $\{c_1, ..., c_{m-1}, c_m\}$ is an \perp -independent set.

Theorem 12. Let $m \in \{2, ..., n+2\}$. If $c_1, c_2, ..., c_m, d_2, ..., d_m$ are hyperspheres such that $c_{\alpha} \perp d_{\beta}$ for $\forall \alpha \in \{1, 2, ..., m\}$, $\forall \beta \in \{\alpha+1, ..., m\}$ and $\neg (c_{\alpha} \perp d_{\alpha})$ for $\forall \alpha \in \{2, ..., m\}$, then $\{c_1, c_2, ..., c_m\}$ is an \perp -independent set.

PROOF. The theorem can be proved by induction. For m=2 the statement follows by Theorems 9 and 11. If $\{c_1, ..., c_{m-1}\}$ is an \perp -independent set, then by Theorem 11 $\{c_1, ..., c_{m-1}, c_m\}$ is an \perp -independent set too.

Theorem 13. Let $m \in \{1, 2, ..., n+1\}$. If $\mathfrak{A} = (a_1, a_2, ..., a_{n+2})$, $\mathfrak{B} = (b_1, b_2, ..., b_{n+2})$ are dual (n+1)-simplexoides and c, d hyperspheres such that $c \perp \{b_{m+1}, ..., b_{n+2}\}$ and $\{a_1, ..., a_m\} \perp d$, then $c \perp d$.

PROOF. If m=1, then $a_1 \perp d$ and $c \perp \{b_2, ..., b_{n+2}\}$. By Definition 1 and S4 it follows $c=a_1$, hence $c \perp d$. If m=n+1, then $c \perp b_{n+2}$ and $\{a_1, ..., a_{n+1}\} \perp d$. By Definition 1 and S4 it follows $d=b_{n+2}$, hence $c \perp d$. Let now $m \in \{2, ..., n\}$. Then $c \perp \{b_{m+1}, ..., ..., b_{n+2}\}$ and $\{a_1, ..., a_m\} \perp d$. By Definition 5 it follows that $a_\alpha \perp b_\beta$ for $\forall \alpha \in \{1, 2, ..., ..., n+1\}$ and $\forall \beta \in \{\alpha+1, ..., n+1\}$, and $(\neg a_\alpha \perp b_\alpha)$ for $\forall \alpha \in \{2, ..., n+1\}$. Let us suppose, contrary to the statement, that $\neg (c \perp d)$. Put

$$a'_1 = a_1, \dots, a'_m = a_m, \quad a'_{m+1} = c, \quad a'_{m+2} = a_{m+1}, \dots, a'_{n+2} = a_{n+1},$$

 $b'_1 = b_1, \dots, b'_m = b_m, \quad b'_{m+1} = d, \quad b'_{m+2} = b_{m+1}, \dots, b'_{n+2} = b_{n+1}.$

Then $a'_{\alpha} \perp b'_{\beta}$ for $\forall \alpha \in \{1, 2, ..., n+2\}$, $\forall \beta \in \{\alpha+1, ..., n+2\}$ and $\neg (a'_{\alpha} \perp b'_{\alpha})$ for $\forall \alpha \in \{2, ..., n+2\}$. From Theorem 12 for m=n+2 it follows that $\{a'_1, a'_2, ..., a'_{n+2}\} = \{a_1, ..., a_m, c, a_{m+1}, ..., a_{n+1}\}$ is an \bot -independent set. Then by Theorem 6 it follows that there is no hypersphere which is orthogonal to the set $\{a_1, ..., a_m, c, a_{m+1}, ..., a_{n+1}\}$. But by Definition 5 it follows $\{a_1, ..., a_m, a_{m+1}, ..., a_{n+1}\} \perp b_{n+2}$, and by the hypothesis $c \perp b_{n+2}$. Hence $\{a_1, ..., a_m, c, a_{m+1}, ..., a_{n+1}\} \perp b_{n+2}$. This contradiction proves the statement of the theorem.

4. Subspaces

Definition 6. If P, Q are nonempty sets of hyperspheres, then we say that P is saturated with Q or that Q saturates P iff:

M1. $P \perp Q$,

M2. $(\forall s \in S) [s \perp Q \Rightarrow s \in P]$.

An equivalent form of Definition 6 is obviously

Theorem 14. If P, Q are nonempty sets of hyperspheres, then P is saturated with Q iff P is the set of all hyperspheres p such that $p \perp Q$.

We shall say, by convention, that the set S of all hyperspheres is saturated with the empty set \emptyset , and conversely that \emptyset is saturated with S, since here the conditions M1 and M2 are satisfied in a trivial way.

Definition 7. A set P of hyperspheres will be called the subspace of the space (S, \perp) iff there is a set Q of hyperspheres such that P is saturated with Q.

Definition 8. Two subspaces P, Q of the space (S, \perp) will be called complementary subspaces, and it will be written P = C(Q) or Q = C(P), iff P is saturated with Q and Q is saturated with P.

Obviously $S = C(\emptyset)$, $\emptyset = C(S)$.

From Definitions 6 and 8 it follows at once

Theorem 15. The sets P, Q of hyperspheres are complementary subspaces of the space (S, \perp) iff:

M1. $P \perp Q$,

M2. $(\forall s \in S)[s \perp Q \Rightarrow s \in P]$,

M3.
$$(\forall s \in S)[s \perp P \Rightarrow s \in Q]$$
.

Analogously, from Theorem 14 and Definition 8 we get

Theorem 16. The sets P, Q of hyperspheres are complementary subspaces of the space (S, \perp) iff:

- a) $(\forall s \in S)[s \perp Q \Leftrightarrow s \in P]$,
- b) $(\forall s \in S)[s \perp P \Leftrightarrow s \in Q]$.

It is obvious that the set P in Definition 6 is uniquely determined by the set Q (the converse is not generally valid), and hence each subspace of the space (S, \perp) is uniquely determined by its complementary subspace.

Theorem 17. If P_1 , Q_1 and P_2 , Q_2 are two pairs of complementary subspaces of the space (S, \bot) , then the relations $P_1 \subset P_2$ and $Q_1 \supset Q_2$ are equivalent.

PROOF. It is obvious that from $P_1 \subset P_2$ follows $Q_1 \supseteq Q_2$. If it were $Q_1 = Q_2$ then it would follow $P_1 = P_2$. Hence $Q_1 \supset Q_2$. The converse is proved analogously.

Theorem 18. If the set P of hyperspheres is saturated with the set Q of hyperspheres and Q is saturated with the set P_0 of hyperspheres then P, Q are complementary subspaces of the space (S, \bot) .

PROOF. Since Q is saturated with P_0 and P is saturated with Q, it follows by Definition 6

$$(6) P_0 \perp Q,$$

$$(7) \qquad (\forall s \in S)[P_0 \perp s \Rightarrow s \in Q],$$

(8)
$$P \perp Q$$
,

$$(9) \qquad (\forall s \in S)[s \perp Q \Rightarrow s \in P].$$

Let $s \in P_0$. Then by (6) $s \perp Q$ and by (9) we get $s \in P$. Hence $P_0 \subseteq P$. Now, let $s \in S$. If $P \perp s$, then $P_0 \perp s$ and by (7) $s \in Q$. Hence

$$(10) (\forall s \in S)[P \perp s \Rightarrow s \in Q].$$

From (8), (9) and (10) we get by Theorem 15 that P and Q are complementary subspaces of the space (S, \perp) .

5. Basic sets and dimension of a subspace

Definition 9. We say that a subspace P of the space (S, \perp) is generated by the set P_0 of hyperspheres (or that the set P_0 is the set of generators of the subspace P), and write $P = \langle P_0 \rangle$, iff there is a set Q of hyperspheres such that P is saturated with Q and Q is saturated with P_0 .

From the proof of Theorem 18 it follows that $\langle P_0 \rangle = P$ implies $P_0 \subseteq P$.

Theorem 19. If P_0 is a nonempty set of hyperspheres, then there is a set $\overline{P}_0 \subseteq P_0$ of hyperspheres such that \overline{P}_0 is an \perp -independent set and $\langle \overline{P}_0 \rangle = \langle P_0 \rangle$.

PROOF. There is a greatest number $m, m \in \{-1, 0, 1, ..., n\}$, such that there exists an (n+1)-simplexoid with m+2 elements from the set P_0 . Let $\mathfrak{P}=(p_1, p_2, ..., p_{n+2})$ be such an (n+1)-simplexoid and let $p_1, ..., p_{m+2}$ be its elements from the set P_0 . Put $\overline{P}_0 = \{p_1, ..., p_{m+2}\}$. Let Q, \overline{Q} be the sets of hyperspheres saturated with P_0, \overline{P}_0 and P, \overline{P} the sets of hyperspheres saturated with Q, \overline{Q} , respectively. Then, by Definition 9 it follows $P = \langle P_0 \rangle$, $\overline{P} = \langle \overline{P}_0 \rangle$. It is necessary to prove that $P = \overline{P}$. By Theorem 18 P, Q resp. $\overline{P}, \overline{Q}$ are complementary subspaces of the space (S, \bot) and it is sufficient to prove $Q = \overline{Q}$. If $q \in Q$, then $P_0 \bot q$ and by $\overline{P}_0 \subseteq P_0$ it follows $\overline{P}_0 \bot q$, hence $q \in \overline{Q}$. Therefore we have $Q \subseteq \overline{Q}$. We prove $\overline{Q} \subseteq Q$. There are two cases:

1) m=n. The elements of the set $\overline{P}_0 = \{p_1, p_2, ..., p_{n+2}\}$ constitute an (n+1)-simplexoid $\mathfrak{P} = (p_1, p_2, ..., p_{n+2})$ and by Theorem 6 it follows $\overline{Q} = \emptyset$, wherefrom by $Q \subseteq \overline{Q}$ we get $Q = \emptyset$, and so $Q = \overline{Q}$.

2) $m \in \{-1, 0, 1, ..., n-1\}$. Let $q \in \overline{Q}$. Then $\overline{P}_0 \perp q$, i.e. $\{p_1, ..., p_{m+2}\} \perp q$. If it were $q \notin \overline{Q}$, a hypersphere $p' \in P_0$ would exist such that $\neg (p' \perp q)$ and then by Theorem 11 the subset $\{p_1, ..., p_{m+2}, p'\} \subseteq P_0$ would be an \perp -independent set, which contradicts the definition of the number m. Therefore $q \in Q$, and $\overline{Q} \subseteq Q$.

Definition 10. The set of generators P of the subspace P of the space (S, \perp) will be called the basic set of that subspace iff P is an \perp -independent set.

Theorem 20. If P, Q are nonempty complementary subspaces of the space (S, \perp) , then there is at least one pair of dual (n+1)-simplexoides $\mathfrak{P}=(p_1, p_2, ..., p_{n+2})$, $\mathfrak{Q}=(q_1, q_2, ..., q_{n+2})$ of hyperspheres and a uniquely determined number $m \in \{-1, 0, 1, ..., n-1\}$, such that $P=\langle \{p_1, ..., p_{m+2}\} \rangle$, $Q=\langle \{q_{m+3}, ..., q_{n+2}\} \rangle$.

PROOF. Obviously $\langle P \rangle = P$. By Theorem 19 there is a set $\overline{P} \subseteq P$ of hyperspheres such that $\langle \overline{P} \rangle = P$ and \overline{P} is an \bot -independent set. Let $p_1, ..., p_{m+2}, m \in \{-1, 0, 1, ..., ..., n-1\}$ be the elements of the set P. Then these hyperspheres are elements of an (n+1)-simplexoid $\mathfrak{P} = (p_1, p_2, ..., p_{n+2})$. Let $\mathfrak{Q} = d(\mathfrak{P})$, $\mathfrak{Q} = (q_1, q_2, ..., q_{n+2})$. The set Q consists of all those hyperspheres that are orthogonal to the set P and by Definition 5 it follows $q_{m+3}, ..., q_{n+2} \in Q$. Let $\overline{Q} = \{q_{m+3}, ..., q_{n+2}\}$. Owing to $\overline{Q} \subseteq Q$,

$$(11) p \perp Q$$

is valid for $\forall p \in P$. Conversely, if for some $p \in S$ (11) is valid, then by Theorem 13 it follows $p \perp q$ for all hyperspheres q for which

(12)
$$\overline{P} \perp q$$
.

But, since \overline{P} is a set of generators of P, from (12) if follows $q \in Q$ and hence $p \perp q$ for $\forall q \in Q$. By Definition 6 $p \in P$. Therefore \overline{Q} is a set of generators of Q. Suppose now that there are two pairs, identical or different, of dual (n+1)-simplexoides of hyperspheres

$$\mathfrak{P} = (p_1, p_2, \dots, p_{n+2}), \quad \mathfrak{Q} = (q_1, q_2, \dots, q_{n+2})$$

and

$$\mathfrak{P}' = (p'_1, p'_2, \dots, p'_{n+2}), \quad \mathfrak{Q}' = (q'_1, q'_2, \dots, q'_{n+2})$$

and numbers $m, m' \in \{-1, 0, 1, ..., n-1\}$ such that

$$\bar{P} = \{p_1, \dots, p_{m+2}\}, \quad \bar{P}' = \{p'_1, \dots, p'_{m'+2}\}$$

are the sets of generators of P and

$$\overline{Q} = \{q_{m+3}, \dots, q_{n+2}\}, \quad \overline{Q}' = \{q'_{m'+3}, \dots, q'_{n+2}\}$$

the sets of generators of Q. We show that m=m'. Suppose e.g. that m < m'. Then $m \in \{-1, 0, 1, ..., n-2\}$. Therefore there are no more than n+1 hyperspheres among the hyperspheres

(13)
$$p_1, \ldots, p_{m+2}, p'_{m'+3}, \ldots, p'_{n+2}$$

and by S2 there is a hypersphere q which is orthogonal to each of the hyperspheres (13). The hypersphere q is orthogonal to the set \overline{P} , and as $\langle \overline{P} \rangle = P$, we get $q \in Q$. On the other hand from $\langle \overline{P}' \rangle = P$ it follows $\overline{P}' \subseteq P$ and hence $\overline{P}' \perp q$. Therefore $\{p'_1, \ldots, p'_{m'+2}, p'_{m'+3}, \ldots, p'_{n+2}\} \perp q$, which contradicts Theorem 6. According to this it cannot be m < m', and by symmetry it cannot be m' < m either. Thus m = m'.

By Theorem 20 and Definition 10 it follows that each nonempty subspace of the space (S, \perp) has a basic set and that all basic sets have the same number of hyperspheres which is precisely m+2, $m \in \{-1, 0, 1, ..., n\}$. For the basic set of the subspace S we can take each \perp -independent subset of n+2 hyperspheres. This property enables us to give the following definition:

Definition 11. The number of elements of any basic set of a nonempty subspace P of the space (S, \bot) diminished by 2 is called the dimension of P with respect to the relation " \bot " or the \bot -dimension of P. If the \bot -dimension of P is m, then we write $\dim_{\bot} P = m$. In particular we define $\dim_{\bot} \emptyset = -2$.

Obviously $\dim_{\perp} S = n$.

By Theorem 20 and Definitions 10 and 11 it follows immediately

Theorem 21. If P and Q are complementary subspaces of the space (S, \perp) , then $\dim_{\perp} P + \dim_{\perp} Q = n - 2$.

Theorem 22. If P_1 and P_2 are subspaces of the space (S, \perp) then from $P_1 \subset P_2$ it follows $\dim_{\perp} P_1 < \dim_{\perp} P_2$.

PROOF. Obviously from $P_1 \subset P_2$ it follows $\dim_{\perp} P_1 \leq \dim_{\perp} P_2$. Suppose that $\dim_{\perp} P_1 = \dim_{\perp} P_2$. Then the basic sets of the subspaces P_1 and P_2 have the same number of elements, and each basic set of P_1 is simultaneously the basic set of P_2 . As the subspace is uniquely determined by each of its sets of generators, it follows $P_1 = P_2$ in contradiction with the hypothesis $P_1 \subset P_2$. Therefore $\dim_{\perp} P_1 < \dim_{\perp} P_2$.

Theorem 23. If P is a subspace of the space (S, \bot) , then the relation $\dim_{\bot} P = -1$ is valid iff the set P has exactly one element. For $\forall p_1 \in S$ the set $\{p_1\}$ is the subspace of the space (S, \bot) .

PROOF. Let P be a subspace of the space (S, \bot) . If P contains exactly one element then by Theorem 9 it follows that $\dim_\bot P = -1$. Conversely, let $\dim_\bot P = -1$. If then subspace P would contain two different hyperpherses then by Theorem 10 it would be $\dim_\bot P \ge 0$ which is impossible. On the other hand from $P = \emptyset$ it would follow by Definition 11 that $\dim_\bot P = -2$. Therefore the subspace P contains exactly one hypersphere. Let now p_1 be any hypersphere, and let $P = \langle \{p_1\} \rangle$. Then $\dim_\bot P \ge -1$. Let Q = C(P). By Theorem 9 there is an (n+1)-simplexoid $\mathfrak{P} = (p_1, p_2, ..., ..., p_{n+2})$ with the hypersphere p_1 as one element. Let $\mathfrak{Q} = d(\mathfrak{P})$, $\mathfrak{Q} = (q_1, q_2, ..., q_{n+2})$. By Definition 5 $p_1 \bot \{q_2, ..., q_{n+2}\}$, and since the set Q is saturated (Theorem 18) with the set $\{p_1\}$, it follows that $q_2, ..., q_{n+2} \in Q$. Since $\{q_2, ..., q_{n+2}\}$ is an \bot -independent set, $\dim_\bot Q \ge n-1$, wherefrom by Theorem 21 it follows that $\dim_\bot P \le -1$. Therefore, together with $\dim_\bot P \ge -1$, we get $\dim_\bot P = -1$, and by the first part of the theorem it follows $P = \{p_1\}$.

6. Intersection and sum of subspaces

Theorem 24. If P_1 , Q_1 and P_2 , Q_2 are two pairs of complementary subspaces of the space (S, \perp) then $P_1 \cap P_2$ is a subspace too. If $Q = C(P_1 \cap P_2)$ then $Q = \langle Q_1 \cup Q_2 \rangle$.

PROOF. Let Q be the set of hyperspheres saturated with the set $P_1 \cap P_2$. As the sets P_1 , P_2 , Q are saturated with the sets Q_1 , Q_2 , $P_1 \cap P_2$ respectively, so by Definition 6 it follows that

$$(14) P_1 \perp Q_1,$$

$$(\forall s \in S)[s \perp Q_1 \Rightarrow s \in P_1],$$

$$(16) P_2 \perp Q_2,$$

$$(\forall s \in S)[s \perp Q_2 \Rightarrow s \in P_2],$$

$$(18) (P_1 \cap P_2) \perp Q,$$

$$(\forall s \in S)[(P_1 \cap P_2) \perp s \Rightarrow s \in Q].$$

Let $s \in P_1 \cap P_2$. Then from (14) and (16) follows $s \perp Q_1$, $s \perp Q_2$. Hence $s \perp (Q_1 \cup Q_2)$. Therefore we have

$$(20) (P_1 \cap P_2) \perp (Q_1 \cup Q_2).$$

Let now $s \in S$. If $s \perp (Q_1 \cup Q_2)$, then $s \perp Q_1$, $s \perp Q_2$, and by (15) and (17) it follows $s \in P_1$, $s \in P_2$, i.e. $s \in P_1 \cap P_2$. Therefore we have

$$(21) \qquad (\forall s \in S)[s \perp (Q_1 \cup Q_2) \Rightarrow s \in P_1 \cap P_2].$$

From (20) and (21) it follows by Definition 6 that $P_1 \cap P_2$ is saturated with the set $Q_1 \cup Q_2$. Thus by Definition 9 $\langle Q_1 \cup Q_2 \rangle = Q$ and hence $Q \supseteq Q_1 \cup Q_2$. Let now $s \in S$. If $s \perp Q$ then $s \perp (Q_1 \cup Q_2)$ and by (21) we get $s \in P_1 \cap P_2$. Therefore

$$(22) \qquad (\forall s \in S)[s \perp Q \Rightarrow s \in P_1 \cap P_2].$$

From (18), (19) and (22) it follows by Theorem 15 that $P_1 \cap P_2$, Q are complementary subspaces of the space (S, \perp) .

Definition 12. The subspace Q of the space (S, \perp) , which is complementary to the intersection $P_1 \cap P_2$ of two subspaces P_1, P_2 with $P_1 = C(Q_1), P_2 = C(Q_2)$, will be called the sum of the subspaces Q_1, Q_2 , and will be written $Q = Q_1 + Q_2$. From Theorem 24 and Definition 12 it follows $Q_1 + Q_2 = \langle Q_1 \cup Q_2 \rangle$.

Theorem 25. If P_1 , P_2 are two subspaces of the space (S, \perp) , then

$$C(P_1 \cap P_2) = C(P_1) + C(P_2), \quad C(P_1 + P_2) = C(P_1) \cap C(P_2).$$

PROOF. Let $Q_1 = C(P_1)$, $Q_2 = C(P_2)$. By Definition 12 $P_1 \cap P_2$, $Q_1 + Q_2$ and $P_1 + P_2$, $Q_1 \cap Q_2$ are two pairs of complementary subspaces of the space (S, \perp) . Therefore

$$C(P_1 \cap P_2) = Q_1 + Q_2 = C(P_1) + C(P_2), \quad C(P_1 + P_2) = Q_1 \cap Q_2 = C(P_1) \cap C(P_2).$$

Theorem 26. If P is a subspace of the space (S, \bot) with $\dim_{\bot} P = m, m \in \{-1, 0, 1, ..., n-1\}$, and if $\{p_1, ..., p_k\} \subseteq P, k \in \{1, ..., m+1\}$ is an \bot -independent set, then there are hyperspheres $p_{k+1}, ..., p_{m+2} \in P$ such that $\{p_1, ..., p_k, p_{k+1}, ..., p_{m+2}\}$ is a basic set of the subspace P.

PROOF. The greatest number of elements of any \perp -independent subset of the subspace P equals $\dim_{\perp} P + 2 = m + 2$. As k < m + 2, there is a hypersphere p_{k+1} in the set $P \setminus \{p_1, ..., p_k\}$, such that $\{p_1, ..., p_k, p_{k+1}\}$ is an \perp -independent set. The statement of the theorem follows inductively.

Theorem 27. If P_1 , P_2 are two subspaces of the space (S, \perp) then

(23)
$$\dim_{\perp} (P_1 \cap P_2) + \dim_{\perp} (P_1 + P_2) = \dim_{\perp} P_1 + \dim_{\perp} P_2.$$

PROOF. Let $\dim_{\perp} P_1 = i$, $\dim_{\perp} P_2 = j$, $\dim_{\perp} (P_1 \cap P_2) = k$. Then obviously $k \le i$, $k \le j$. The greatest number of elements of any \perp -independent subset of the subspaces $P_1, P_2, P_1 \cap P_2$ is i+2, j+2, k+2, respectively. First we prove the inequality

$$(24) dim_{\perp}(P_1 + P_2) \leq i + j - k.$$

We distinguish two cases:

1) $k \in \{-1, 0, 1, ..., n\}$. Let $\{p_1, ..., p_{k+2}\}$ be a basic set of the subspace $P_1 \cap P_2$. By Theorem 26 there are hyperspheres $p_{k+3}, ..., p_{i+2} \in P_1$ such that $\{p_1, ..., p_{i+2}\}$ is a basic set of the subspace P_1 , which in case k=i is reduced to $\{p_1, ..., p_{k+2}\}$. Similarly, there are hyperspheres $p_{i+3}, ..., p_{i+j-k+2} \in P$ such that $\{p_1, ..., p_{k+2}\}$. Similarly, ..., $p_{i+j-k+2}\}$ is a basic set of the subspace P_2 , which in case k=j is reduced to $\{p_1, ..., p_{k+2}, p_{i+3}, ..., ..., p_{k+2}\}$. If $Q_1 = C(P_1)$, $Q_2 = C(P_2)$ then by Definition 12 $Q_1 \cap Q_2 = C(P_1 + P_2)$. Since $\{p_1, ..., p_{k+2}, p_{k+3}, ..., p_{i+2}\}$ is the basic set of the subspace P_1 , by Theorem 18 and Definition 9 it follows that for $\forall s \in S$ the relation $\{p_1, ..., p_{k+2}, p_{k+3}, ..., p_{i+2}\} \perp s$

is valid iff $s \in Q_1$. Similarly the relation $\{p_1, ..., p_{k+2}, p_{i+3}, ..., p_{i+j-k+2}\} \perp s$ is equivalent with $s \in Q_2$. Therefore for $\forall s \in S$ the relation

$$\{p_1,\ldots,p_{k+2},p_{k+3},\ldots,p_{i+2},p_{i+3},\ldots,p_{i+j-k+2}\} \perp s$$

is equivalent with $s \in Q_1 \cap Q_2$, and by Theorem 14 the set $Q_1 \cap Q_2$ is saturated with the set

$$\{p_1,\ldots,p_{k+2},p_{k+3},\ldots,p_{i+2},p_{i+3},\ldots,p_{i+j-k+2}\}.$$

Since on the other hand the set $P_1 + P_2$ is saturated with the set $Q_1 \cap Q_2$, by Definition 9 it follows that $\{p_1, ..., p_{i+j-k+2}\}$ is the set of generators of the subspace $P_1 + P_2$. Since the \perp -dimension of the subspace $P_1 + P_2$ is equal to the greatest number of the elements of any \perp -independent subset of the set $\{p_1, ..., p_{i+j-k+2}\}$ diminished by 2, relation (24) follows at once.

2) k=-2. Now $P_1 \cap P_2 = \emptyset$. If $\{p_1, ..., p_{i+2}\}$ is a basic set of the subspace P_1 and $\{p_{i+3}, ..., p_{i+j+4}\}$ is a basic set of the subspace P_2 , then similarly as in the case 1) we prove that $\{p_1, ..., p_{i+2}, p_{i+3}, ..., p_{i+j+4}\}$ is a set of generators of the subspace $P_1 + P_2$, and hence $\dim_{\perp}(P_1 + P_2) \le i + j + 2$, wherefrom by k = -2 the relation (24) again follows.

Thus in both cases the relation (24) holds. By Definition 12 $Q_1 + Q_2 = C(P_1 \cap P_2)$, and by the use of Theorem 21 we get

(25)
$$\dim_{\perp}(Q_1 \cap Q_2) = n - 2 - \dim_{\perp}(P_1 + P_2),$$

(26)
$$\dim_{\perp}(Q_1 + Q_2) = n - 2 - \dim_{\perp}(P_1 \cap P_2),$$

(27)
$$\dim_{\perp} Q_1 = n - 2 - \dim_{\perp} P_1, \quad \dim_{\perp} Q_2 = n - 2 - \dim_{\perp} P_2.$$

From (24) by the definition of the numbers i, j, k it follows

(28)
$$\dim_{\perp}(P_1 \cap P_2) + \dim_{\perp}(P_1 + P_2) \leq \dim_{\perp}P_1 + \dim_{\perp}P_2.$$

Similarly

(29)
$$\dim_{\mathbb{R}} (Q_1 \cap Q_2) + \dim_{\mathbb{R}} (Q_1 + Q_2) \leq \dim_{\mathbb{R}} Q_1 + \dim_{\mathbb{R}} Q_2$$

and hence by (25), (26) and (27) it follows

(29)
$$\dim_{\perp}(P_1 + P_2) + \dim_{\perp}(P_1 \cap P_2) \ge \dim_{\perp}P_1 + \dim_{\perp}P_2.$$

From (28) and (29) we get just the required relation (23).

Theorem 28. If P and Q are subspaces of the space (S, \perp) then

$$\dim_{\mathbb{R}}[P \cap C(Q)] = \dim_{\mathbb{R}} P - \dim_{\mathbb{R}}[Q + \dim_{\mathbb{R}}[C(P) \cap Q].$$

PROOF. By Theorem 21 $\dim_{\perp}[P\cap C(Q)]=n-2-\dim_{\perp}C[P\cap C(Q)]$, and as by Theorem 25 $C[P\cap C(Q)]=C(P)+C[C(Q)]=C(P)+Q$, so $\dim_{\perp}[P\cap C(Q)]=n-2-\dim_{\perp}[C(P)+Q]$. By Theorem 27 $\dim_{\perp}[C(P)+Q]=\dim_{\perp}C(P)+\dim_{\perp}Q-\dim_{\perp}[C(P)\cap Q]$, and hence $\dim_{\perp}[P\cap C(Q)]=n-2-\dim_{\perp}C(P)-\dim_{\perp}Q+\dim_{\perp}[C(P)\cap Q]$. By Theorem 21 $n-2-\dim_{\perp}C(P)=\dim_{\perp}P$, and therefore the required equation follows.

7. Induced Möbius geometries

Definition 13. A hypersphere s will be called a point-hypersphere or shortly a point iff $s \perp s$.

Definition 14. The subspace P of the space (S, \perp) will be called regular iff $P \cap C(P) = \emptyset$ and singular otherwise.

Theorem 29. If a subspace P of the space (S, \perp) contains no point P is a regular subspace.

PROOF. Suppose that P is a singular subspace. Then by Definition 14 there is a hypersphere $p \in P \cap C(P)$ and by the property M1 it follows $p \perp p$, i.e. p is a point, which is in contradiction with the hypothesis.

Theorem 30. If P is a regular subspace of the space (S, \perp) and P_0 is a subspace of (S, \perp) such that $P_0 \subseteq P$, then $\dim_{\perp} [P \cap C(P_0)] = \dim_{\perp} P - \dim_{\perp} P_0 - 2$.

PROOF. By Definition 14 $P \cap C(P) = \emptyset$ and hence $P_0 \cap C(P) = \emptyset$. Since $\dim_{\perp} \emptyset = -2$, the statement follows immediately from Theorem 28.

Theorem 31. If P is a regular subspace of the space (S, \bot) with $\dim_{\bot} P = m$, $m \in \{0, 1, ..., n-1\}$, and $\{p_1, ..., p_k\}$, $k \in \{1, ..., m+2\}$ is an \bot -independent subset of P, then there is an (m+1)-simplexoid with elements from P, so that $p_1, ..., p_k$ are the elements of that (m+1) = simpleoxid.

PROOF. If k < m+2 then by Theorem 26 there are hyperspheres $p_{k+1}, \ldots, p_{m+2} \in P$ such that $\{p_1, \ldots, p_{m+2}\}$ is a basic set of the subspace P. For k=m+2 this statement is trivially realized. Let be now $P_{\alpha} = \langle \{p_1, \ldots, p_{\alpha-1}, p_{\alpha+1}, \ldots, p_{m+2}\} \rangle$ for $\forall \alpha \in \{1, \ldots, \ldots, m+2\}$. Then $P_{\alpha} \subset P$ and $\dim_{\perp} P_{\alpha} = m-1$. Hence by Theorem 30 $\dim_{\perp} [P \cap C(P_{\alpha})] = -1$, and by Theorem 23 it follows that the subspace $P \cap C(P_{\alpha})$ contains exactly one hypersphere. Denote this hypersphere with q_{α} . For $\forall \alpha \in \{1, \ldots, \ldots, m+2\}$ we have $q_{\alpha} \in P \cap C(P_{\alpha})$ and hence $q_{\alpha} \in C(P_{\alpha})$. By the property M1 it follows $\{p_1, \ldots, p_{\alpha-1}, p_{\alpha+1}, \ldots, p_{m+2}\} \perp q_{\alpha}$. Suppose now that $p_{\alpha} \perp q_{\alpha}$. Then $\{p_1, \ldots, p_{m+2}\} \perp q_{\alpha}$. Since $\{p_1, \ldots, p_{m+2}\}$ is the basic set of the subspace P, $q_{\alpha} \in C(P)$. From $q_{\alpha} \in P$ and $q_{\alpha} \in C(P)$ by Definition 14 we get that P is a singular subspace, contrary to hypothesis. Therefore

$$(\forall \alpha, \beta \in \{1, ..., m+2\})[p_{\alpha} \perp q_{\beta} \Leftrightarrow \alpha \neq \beta],$$

i.e. $(p_1, ..., p_{m+2})$ is an (m+1)-simplexoid with the elements from P.

Definition 15. If P is a subset of S and " \top " a binary relation on P such that

$$(\forall p, q \in P)[p \top q \Leftrightarrow p \perp q],$$

then we say that " \top " is the relation on P induced by the relation of orthogonality. From Theorem 31 and Definitions 1, 2 and 15 it follows immediately

Theorem 32. If P is a regular subspace of the space (S, \bot) and " \top " is the relation on P induced by the relation of orthogonality, then every \bot -independent subset of P is a \top -independent set.

The converse of Theorem 32 is also true, even under weaker conditions.

Theorem 33. If P is a subspace of the space (S, \perp) and " \top " the relation on P induced by the relation of orthogonality, then every \top -independent subset of P is an \perp -independent set.

PROOF. Let $\{p_1, ..., p_k\}$, $k \in \{1, ..., m+2\}$ be a \top -independent subset of P. Then by Definition 2 there is an (m+1)-simplexoid $\mathfrak{P}=(p_1, ..., p_{m+2})$ with elements $p_1, ..., p_k$ and moreover some elements $p_{k+1}, ..., p_{m+2} \in P$. Let $\mathfrak{Q}=d(\mathfrak{P})$, $\mathfrak{Q}=(q_1, ..., ..., q_{m+2})$. The statement of the theorem will be proved if we prove that $P_0=\{p_1, ..., ..., p_{m+2}\}$ is an \bot -independent set. Suppose, to the contrary, that P_0 is not an \bot -independent set. By Theorem 19 there is an \bot -independent subset \overline{P}_0 of P_0 such that the sets P_0 and \overline{P}_0 generate the same subspace Q of the space (S, \bot) . By symmetry we can suppose that $\overline{P}_0=\{p_2, ..., p_j\}$, $j\in \{2, ..., m+2\}$. Since by Definition 1 $P_0\bot q_1$ and hence $\overline{P}_0\bot q_1$, and since \overline{P}_0 is a basic set of the subspace Q of (S, \bot) , hence $q_1\in C(Q)$. Since on the other hand $p_1\in P_0\subseteq Q$, by the property M1 it follows $p_1\bot q_1$, i.e. $p_1\top q_1$, which contradicts Definition 5. This proves our statement. Now we can prove

Theorem 34. If P is a regular subspace of the space (S, \bot) with $\dim_{\bot} P = m$, $m \in \{0, 1, ..., n-1\}$, and if " \top " is the relation on P induced by the relation of orthogonality, then (P, \top) is an m-dimensional $M\ddot{o}bius$ space.

PROOF. The property S1 of the structure (P, \top) follows from the same property of the structure (S, \bot) . Let $P_0 = \{p_1, ..., p_{m+1}\}$ be any subset of P. Let further $Q = = \langle P_0 \rangle$. Then $Q \subset P$ and $\dim_{\bot} Q \subseteq m-1$. Thus by Theorem 30 it follows $\dim_{\bot} [P \cap C(Q)] \cong -1$. This by Theorem 23 means that the subspace $P \cap C(Q)$ contains at least one hypersphere q. Then $q \in P$ and $q \in C(Q)$, and by the property M1 it follows $P_0 \bot q$, i.e. $P_0 \top q$. In particular $\{p_1, ..., p_{m+1}\} \top q$, that proves the property S2 of the structure (P, \top) . If P is a \top -independent set, then by Theorem 33 P_0 is an \bot -independent set and hence $\dim_{\bot} Q = m-1$. Therefore $\dim_{\bot} [P \cap C(Q)] = -1$, and by Theorem 23 there is exactly one hypersphere $q \in P \cap C(Q)$, i.e. a hypersphere q such that $\{p_1, ..., p_{m+1}\} \top q$, which proves the property S4 of the structure (P, \top) . Let now $\{p_1, ..., p_{m+2}\} \to q$, i.e. $\{p_1, ..., p_{m+2}\} \bot q$, it would be $q \in C(P)$, and hence $q \in P \cap C(P)$, which is impossible, while P is a regular subspace of the space (S, \bot) . Thus the property S3 of the structure (P, \top) is proved, and by Definition 4 it follows that (P, \top) is an m-dimensional Möbius space.

By the definition of the relation " \top " and the definition of subspaces it follows immediately that every subspace of the space (P, \top) is also a subspace of the space (S, \bot) and conversely that every subspace of the space (S, \bot) which is a subset of P, is also a subspace of the space (P, \top) .

Finally, by Theorems 32 and 33 we get

Theorem 35. If P is a regular subspace of the space (S, \bot) , " \top " the relation on P induced by the relation of orthogonality, and Q any subspace of the space (P, \top) , and hence also a subspace of the space (S, \bot) , then $\dim_{\bot} Q = \dim_{\top} Q$.

Therefore, the structure of the space (P, \top) is identical with the structure

of the subspace P induced by the structure of the space (S, \perp) .

8. Remark

By the comparison of system of axioms S1—S4 and system of axioms P1—P4 from [7] it follows that an n-dimensional Möbius space is in fact an (n+1)-dimensional pre-projective space. (About the pre-projective plane see the articles [1], [2] and [3] of V. Devide.)

Bibliography

- [1] V. Devidé, Plane pre-projective geometries. Glasnik Mat.—Fiz. Astr. 20 (1965), 251—260.
- [2] Pre-geometric relations. Glasnik Mat. 4 (24) (1969), 243—253.
- [3] Some properties of pre-geometric binary relations. Publikacije Elektrotehn. fak. Univ. u Beogradu № 274—№ 301 (1969), 61—78.
- [4] M. Esser, Self-dual postulates for n-dimensional geometry. Duke Math. J. 18 (1951), 475—479.
- [5] G. EWALD, Begründung der Geometrie der ebenen Schnitte einer Semiquadrik. Arch. Math. 8 (1957), 203—208.
- [6] H. MÄURER, Ein axiomatischer Aufbau der mindestens 3-dimensionalen Möbius-Geometrie. Math. Z. 103 (1968), 282—305.
- [7] V. VOLENEC, Axiomatic foundation of *n*-dimensional pre-projective geometry. *Glasnik Mat.* **7 (27)** (1972), 93—107.
- [8] An axiomatic foundation of the circle plane with orthogonality. *Glasnik Mat.* 8 (28) (1973), 85—92.

INSTITUTE OF MATHEMATICS, UNIVERSITY OF ZAGREB

(Received November 5, 1973.)