Extensions of almost diffuse, countably almost diffuse and c₀-operators

By E. TARAFDAR (St. Lucia, Qld)

In [1] Folais and Singer have introduced the classes of almost diffuse and countably almost diffuse operators mapping a space C([0, 1]) into a Banach space X.

WHITLEY [2] has shown the validity of the results of [1] when S is an arbitrary compact Hausdorff space and has also introduced a class of operators called c_0 -operators mapping a space C(S) into a Banach space. All these classes of operators include compact and weakly compact operators and have many other properties (see [1] and [2]). The following wellknown result is due to LINDENSTRAUSS [3]:

The second conjugate X^{**} of a Banach space is a P_{λ} space \Leftrightarrow each weakly compact (resp. compact) operator from X into a Banach space Y has a weakly compact (resp. compact) extension \tilde{T} from $Z(Z\supset X)$ into Y with $\|\tilde{T}\| \le \lambda \|T\|$. (For definition

of a P_{λ} space, $\lambda \ge 1$ see DAY [4], p. 94.)

Since almost diffuse, countably almost diffuse and c_0 -operators are defined only on the spaces C(S) and it is wellknown that $C(S)^{**}$ is a P_1 space for any compact Hausdorff space S (e.g. see Goodner [5], p. 106), an analogue of the above result of Lindenstrauss for these operators will be the following: Each almost diffuse (resp. countably almost diffuse, resp. c_0 -) operator T mapping a space C(S) into a Banach space X has an almost diffuse (resp. a countably almost diffuse, resp. a c_0 -) extension T mapping C(Q) ($C(Q) \supset C(S)$) into X with $\|T\| = \|T\|$. In this note we prove this result in the particular case when Q = A, the unit ball of $C(S)^*$.

We now state the following definitions as given in [1] and [2].

S is a compact Hausdorff space and X any Banach space. The oscillation of a bounded linear operator $T: C(S) \to X$ at a point $s \in S$ is denoted by $W_T(s) = W(T, s)$ and is defined to be the supremum over all positive α satisfying the following: for every neighborhood \cup of s there is a function f, of norm ≤ 1 in C(S), which vanishes outside of \cup with $||Tf|| \geq \alpha$.

Let $T: C(S) \to X$ be a bounded linear operator. Then T is almost diffuse if the set of diffusion points of T, $D(T) = W_T^{-1}(0)$, is dense. T is countably almost diffuse if the set of concentration points, $\gamma(T) = \{s: s \in S, W_T(s) > 0\}$, is countable and T is c_0 -operator if for each $\varepsilon > 0$, the set $\{s: s \in S, W_T(s) > \varepsilon\}$ is finite.

Let Y be a Banach space and Λ be the unit ball in Y^* . Then Λ is a compact Hausdorff space in the weak*-topology (the Y-topology of Y^* in the terminology of Dunford and Schwarz [6]). Y is isometrically isomorphic to a closed subspace of the Banach space $C(\Lambda)$ where \varkappa is the corresponding isometric isomorphism

116 E. Tarafdar

of Y onto a closed subspace of $C(\Lambda)$ and is defined as follows: for each $y \in Y$, $\varkappa(y) =$ the restriction of $\varkappa_1(y)$ to Λ where \varkappa_1 is the natural embedding of Y into Y^{**} (see DUNFORD and SCHWARZ [6], con. 3, p. 424). We first prove the following lemma:

Lemma. For every bound linear operator $T:C(S) \to X$ mapping a space C(S) into an arbitrary Banach space X, there exists a bounded linear operator $\tilde{T}:C(\Lambda) \to X$ such that $\tilde{T} \varkappa = T$ and $\|\tilde{T}\| = \|T\|$ where Λ is the unit ball in $C(S)^*$ and \varkappa has the corresponding meaning as explained above. In other words every bounded linear operator $T:C(S) \to X$ has a bounded linear extension $\tilde{T}:C(\Lambda) \to X$ with $\|\tilde{T}\| = \|T\|$.

PROOF. By lemma 7 of DUNFORD and SCHWARTZ ([6], p. 442) there is a homeomorphism λ of S onto a subset of Λ where Λ has weak*- topology and λ is defined by $\lambda: s \to x_s^*$ for each $s \in S$ and x_s^* is defined by $x_s^*(f) = f(s)$, $f \in C(S)$. We now construct

our required operator \tilde{T} .

Let f_1 be an arbitrary element of $C(\Lambda)$. Then the restriction \tilde{f}_1 of f_1 to $\lambda(S)$ is a continuous map on $\lambda(S)$ where $\lambda(S)$ has the relative weak*-topology. Thus the composition $\tilde{f}_1\lambda$ is a continuous map on S. We set $\tilde{T}f_1=T\tilde{f}_1\lambda$ for each $f_1\in C(\Lambda)$. Clearly \tilde{T} is well defined and linear. We next prove the boundedness of \tilde{T} . We observe that $\|\tilde{f}_1\lambda\| = \sup_{s \in S} |\tilde{f}_1\lambda(s)| = \sup_{x^* \in \lambda(S)} |\tilde{f}_1(x^*)| \le \sup_{x^* \in \Lambda} |f_1(x^*)| = \|f_1\|$. Hence $\|\tilde{T}f_1\| = \|T\tilde{f}_1\lambda\| \le \|T\| \|\tilde{f}_1\lambda\| \le \|T\| \|f_1\|$. Hence \tilde{T} is bounded and moreover

$$\|\tilde{T}\| \le \|T\|.$$

Next, we prove that $\tilde{T}\varkappa = T$. Let $f \in C(S)$ be arbitrary and $\varkappa f = g$. We first see that $\tilde{g}\lambda = f$ where \tilde{g} is the restriction of g to $\lambda(S)$. For each $s \in S$,

$$\tilde{g}\lambda(s) = \tilde{g}(x_s^*) = g(x_s^*)$$
 as $x_s^* \in \lambda(S)$,
 $= \varkappa f(x_s^*) = x_s^*(f)$ by definition of \varkappa
 $= f(s)$ by definition of x_s^* .

Thus $\tilde{g}\lambda = f$. Hence $\tilde{T}\varkappa f = \tilde{T}g = T(\tilde{g}\lambda) = Tf$. Now $||T|| = ||\tilde{T}\varkappa|| \le ||\tilde{T}|| \, ||\varkappa|| = ||\tilde{T}||$. Combining this with (1), we obtain $||\tilde{T}|| = ||T||$. This completes the proof.

Let $T: C(S) \to X$ be any bounded linear operator. We suppose that \tilde{T} hasbeen obtained as in the above lemma. Remembering all the notations used in the proof of the above lemma we note the following facts:

(1) Every point $y \in [\lambda(S)]^c$ (complement of $\lambda(S)$ in Λ) is a diffusion point of \tilde{T} , i.e., $W_{\tilde{T}}(y) = 0$ for each $y \in [\lambda(S)]^c$.

PROOF. Let $\varepsilon > 0$ be any number. Now $0 = [\lambda(S)]^c$ is a neighborhood of y in Λ . Let f be any function in $C(\Lambda)$ such that $||f|| \le 1$ and f vanishes outside of 0. Obviously $\tilde{f}\lambda(s) = 0$ for each $s \in S$, where \tilde{f} is the restriction of f to $\lambda(S)$ as before. Hence $||\tilde{T}f|| = ||T\tilde{f}\lambda|| = 0 < \varepsilon$. Thus $(W_{\tilde{T}}y) = 0$. (Notice that same 0 works for each $\varepsilon > 0$).

(2) If y is a concentration point of \tilde{T} , i.e., $y \in \gamma(\tilde{T})$, then (i) $y \in \gamma(\tilde{T}) \cap \lambda(S)$, (ii) $s = \lambda^{-1}(y) \in \gamma(T)$ and (iii) furthermore if $W_{\tilde{T}}(y) > \alpha$, $\alpha > 0$, then $W_{T}(s) > \alpha$.

PROOF. (i) follows from (1). Let $W_{\tilde{T}}(y) > \varepsilon$, $\varepsilon > 0$. Let N be a neighborhood of s in S. Then $\lambda(N)$ is a neighborhood of y in $\lambda(S)$. We can find a neighborhood Q of y in Λ such that $Q \cap \lambda(S) = \lambda(N)$. Since $W_{\tilde{T}}(y) > \varepsilon$. There exists a function f in $C(\Lambda)$ such that f vanishes outside of Q, $||f|| \le 1$ and $||\tilde{T}f|| > \varepsilon$. Let \tilde{f} be the restriction

of f to $\lambda(S)$. Obviously \tilde{f} vanishes outside of $\lambda(N)$ in $\lambda(S)$ (i.e. outside of $\lambda(N)$ relative to $\lambda(S)$). We consider the function $\tilde{f}\lambda$ in C(S). Clearly $\tilde{f}\lambda$ vanishes outside of N and moreover as in the proof of the lemma, $\|\tilde{f}\lambda\| \leq \|f\| \leq 1$. Also as in the proof the lemma $\|T\tilde{f}\lambda\| = \|Tf\| > \varepsilon$. Thus it follows that $W_T(s) > \varepsilon$ and $s \in \gamma(T)$. Hence both (ii) and (iii) are proved.

(3) If s is a diffusion point of T, i.e., if $s \in D(T)$ then $\lambda(s) \in D(\tilde{T})$.

PROOF. That $\lambda(s) \in D(T)$ follows directly from (2). We are now in a position to prove the following theorem:

Theorem. For each almost diffuse (resp. countably almost diffuse, resp. c_0 -) operator $T:C(S) \rightarrow X$ mapping a space C(S) into an arbitrary Banach space X, there is an almost diffuse (resp. a countably almost diffuse, resp. a c_0 -) operator $T:C(\Lambda) \rightarrow X$ such that T = T and T = T, where T = T and T = T and T = T, where T = T and T = T and T = T.

PROOF. By the above lemma, for each bounded linear operator $T: C(S) \to X$, there is a bounded linear operator $\tilde{T}: C(\Lambda) \to X$ such that $\tilde{T} \varkappa = T$ and $\|\tilde{T}\| = \|T\|$. We prove that \tilde{T} is the required operator in each case.

Let T be almost diffuse. Then D(T) is dense in S. Hence $\lambda(D(T))$ is dense in $\lambda(S)$ as λ is a homeomorphism. Evidently $\lambda(D(T)) \cup [\lambda(S)]^c$ is dense in Λ . By using the facts (1) and (3), we have $\lambda D(T) \cup [\lambda(S)]^c \subseteq D(\tilde{T})$. Hence $D(\tilde{T})$ is dense in Λ . Thus \tilde{T} is almost diffuse.

Next, let T be countably almost diffuse. Then $\gamma(T)$ is countable. By the fact 2 (ii) it follows that $\lambda^{-1}(\gamma(\tilde{T})) \subseteq \gamma(T)$. Now since λ is a homeomorphism, it follows that $\gamma(\tilde{T})$ is countable. Hence \tilde{T} is countably almost diffuse.

Finally, let T be c_0 -operator. If possible, suppose that \tilde{T} is not a c_0 -operator. Then there is a number $\alpha > 0$ such that the set $A = \{y : y \in \Lambda, W_T(y) > \alpha\}$ is infinite. By the fact 2 (i), $A = \{y : y \in \lambda(S), W_T(y) > \alpha\}$. Now $\lambda^{-1}(A) = \{s : s \in S, \lambda(s) \in A\} = \{s : s \in S, \lambda(s) \in A, W_T(s) > \alpha\}$, by 2 (iii), $\subseteq \{s : s \in S, W_T(s) > \alpha\}$. Since $\lambda^{-1}(A)$ is infinite, λ being a homeomorphism, it follows that $\{s : s \in S, W_T(s) > \alpha\}$ is infinite. This contradicts that T is a c_0 -operator. Hence \tilde{T} is a c_0 -operator.

Remark. Note that all the above results will also hold if Λ is replaced by the weak*-closure of the set of extremal points of Λ .

References

- C. Folas and I. Singer, Points of diffusion of linear operators and almost diffuse operators in spaces of continuous functions, Math. Z. 87 (1965), 434—450. MR31, 5093.
- [2] R. WHITLEY, The oscillation of an operator, Trans. Amer. Math. Soc. 165 (1972), 65—7.
- [3] J. LINDENSTRAUSS, Extension of compact operators, Mem. Amer. Math. Soc. 48 (1964). MR31, 3828.
- [4] M. DAY, Normed linear spaces, Academic Press, New York; Berlin, 1962. MR26, 2847.
- [5] D. B. GOODNER, Projection in normed linear spaces, Trans. Amer. Math. Soc. 69 (1950), 89—108.
- MR12, 266.
 [6] N. DUNFORD and J. T. SCHWARTZ, Linear operators. I: (General theory, pure and appl. math., Vol. 7), New York and London, 1958. 22, 8302.

UNIVERSITY OF QUEENSLAND, ST. LUCIA, QLD.

(Received 12. February, 1974.)