Extensions of almost diffuse,
countably almost diffuse and c,-operators

By E. TARAFDAR (St. Lucia, Qld)

In [1] Foiais and SINGER have introduced the classes of almost diffuse and
countably almost diffuse operators mapping a space C([0, 1]) into a Banach space X.

WHITLEY [2] has shown the validity of the results of [1] when S is an arbitrary
compact Hausdorff space and has also introduced a class of operators called ¢,-
operators mapping a space C(5) into a Banach space. All these classes of operators
include compact and weakly compact operators and have many other properties
(see [1] and [2]). The following wellknown result is due to LINDENSTRAUSS [3]:

The second conjugate X ** of a Banach space is a P, space <> each weakly com-
pact (resp. compact) operator from X into a Banach space Y has a weakly compact
(resp. compact) extension 7 from Z(Z>X) into Y with |T|=2||T|. (For definition
of a P, space, A=1 see DAy [4], p. 94.)

Since almost diffuse, countably almost diffuse and c¢y-operators are defined
only on the spaces C(S) and it is wellknown that C(S)** is a P, space for any com-
pact Hausdorff space S (e.g. see GOODNER [5], p. 106), an analogue of the above
result of Lindenstrauss for these operators will be the following: Each almost diffuse
(resp. countably almost diffuse, resp. ¢,-) operator 7" mapping a space C(S) into a
Banach space X has an almost diffuse (resp. a countably almost diffuse, resp. a
¢,-) extension T mapping C(Q) (C(Q)> C(S)) into X with |T|=| 7. In this note
we prove this result in the particular case when Q= A, the unit ball of C(S)".

We now state the the following definitions as given in [1] and [2].

S is a compact Hausdorfl space and X any Banach space. The oscillation of
a bounded linear operator 7: C(S)- X at a point s€ S is denoted by Wy (s) =W(T, s)
and is defined to be the supremum over all positive « satisfying the following: for
every neighborhood U of s there is a function /, of norm =1 in C(S), which vanishes
outside of U with | 7f||=a.

Let T:C(S)—~X be a bounded linear operator. Then 7 is almost diffuse if
the set of diffusion points of 7, D(T)=W;'(0), is dense. T is countably almost
diffuse if the set of concentration points, y(7)={s: s€ S, Wy (5)=0}, is countable
and T is cy-operator if for each é=0, the set {s:5€ S, Wy (s)=¢} is finite.

Let ¥ be a Banach space and A be the unit ball in Y*. Then A is a compact
Hausdorff space in the weak*-topology (the Y-topology of Y* in the terminology
of DUNFORD and SCHWARZ [6]). Y is isometrically isomorphic to a closed subspace
of the Banach space C(A) where » is the corresponding isometric isomorphism
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of Y onto a closed subspace of C(A) and is defined as follows: for each y€ Y, x(y)=
the restriction of »,(y) to A where %, is the natural embedding of Y into Y** (see
DunrorD and SCHWARZ [6], con. 3, p. 424). We first prove the following lemma:

Lemma. For every bound linear operator T:C(S)-~X mapping a space C(S)
into an arbitrary Banach space X, there exists a bounded linear operator T:C(A) =X
such that Tx=T and |T'||=|T| where A is the unit ball in C(S)* and x has the cor-
responding meaning as explained abore. In other words every bounded linear operator
T:C(S)~X has a bounded linear extension T:C(A)—~X with |T||=|T)|.

PrROOF. By lemma 7 of DUNFORD and SCHWARTZ ([6], p. 442) there is a homeo-
morphism Z of S onto a subset of A where A has weak*- topology and 7 is defined
by 4:5—x7% for each s€ S and x% is defined by x%(f)=/(s), f€ C(S). We now construct
our required operator 7T,

Let f; be an arbitrary element of C(A). Then the restriction f; of f; to A(S)
is a continuous map on 4(S) where /(S) has the relative weak*-topology. Thus
the composition f, 4 is a continuous map on S. We set 7f; =177, /. for each f,€C(4).
Clearly T is well defined and linear. We next prove the boundedness of 7. We observe

that | /2] = sup 1fi2()| = A Ifl ()| = sup I/(x)| = fil. Hence | Thi =
= THil = |IT|| 11 f,x|| = ||T| |1fl|i Hence Ti 15 bounded and moreover
(1 17 = I7).

Next, we prove that Tx=T. Let f€C(S) be arbitrary and »f=g. We first see that
g7=f where g is the restriction of g to A(S). For each s€ S,

gA(s) = (x3) = g(x3) as xg€A(S),
= xf(x;) = x; (f) by definition of
= f(s) by definition of x].

Thus gi=f. Hence Tuf=Tg=T(g:)=Tf. Now |T|=|Tx|=|T|lx|=|T|. Com-
bining this with (1), we obtain ||T'||=| T||. This completes the proof.

Let T:C(S)— X be any bounded linear operator. We suppose that 7 hasbeen
obtained as in the above lemma. Remembering all the notations used in the proof
of the above lemma we note the following facts:

(1) Every point y€[4(S)]° (complement of /(S) in A) is a diffusion point of
T, i.e., Wi(»)=0 for each ye[A(S))F.

PrOOF. Let £=0 be any number. Now 0=[4(S)]° is a neighborhood of y in
A. Let f be any function in C(A) such that | f||=1 and f vanishes outside of 0.
Obv:ouslv fr(s)= 0 for each s€ S, where f is the restriction of f to A(S) as before.
Hence |]Tf1'=|!?]z||—0«a Thus (W5y)=0. (Notice that same 0 works for each
£=0).

(2) If y is a concentration point of T, i.e., yey(T), then (i) y€y(THNA(S), (ii)
s=2"Yv)ey(T) and (iii) furthermore if W5(y)=a, =0, then Wy(s)=a.

PROOE. (i) follows from (1). Let W5 (y)=e, ¢=0. Let N be a neighborhood of
s in S. Then Z(N) is a neighborhood of y in A(S). We can find a neighborhood Q
of y in A such that QN A(S)=A(N). Since Wj(y)=e¢. There exists a function f in
C(A) such that f vanishes outside of Q, | f]=1 and || Tf|=e. Let f be the restriction
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of f to 4(S). Obviously f vanishes outside of A(N) in A(S) (i.e. outside of 4(N)
celative to £(S)). We consider the function f2 in C(S). Clearly /2 vanishes outside
of N and moreover as in the proof of the lemma, |fi|=|f|=1. Also as in the
proof the lemma || 7/4| = || Tf||=e¢. Thus it follows that Wy (s)=¢ and s€y(T). Hence
both (ii) and (iii) are proved. N

(3) If s is a diffusion point of T, i.e., if s¢ D(T) then A(s)eD(T).

Proor. That A(s)e D(T) follows directly from (2). We are now in a position
to prove the following theorem:

Theorem. For each almost diffuse (resp. countably almost diffuse, resp. cy-)
operator T:C(S)—~X mapping a space C(S) into an arbitrary Banach space X, there
is an almost diffuse (resp. a countably almost diffuse, resp. a cy-) operator T:C(A)—~X
such that Tx=T and || f{ﬁ =|T|, where A and x have the same meaning as in the above
lemma.

PrROOF. By the above lemma, for each bounded linear operator T:C(S)—~JX,
there is a bounded linear operator T:C(A)— X such that Tx=7T and |T||=| 7. We
prove that 7' is the required operator in each case.

Let 7 be almost diffuse. Then D(T) is dense in S. Hence A(D(7)) is densein
/(S) as 4 is a homeomorphism. Evidently A(D(T))U[A(S)] is dense _in A. By
using the facts (1) and (3), we have AD(T)U[A(S))]°S D(T). Hence D(T) is dense
in A. Thus 7 is almost diffuse.

Next, let 7" be countably almost diffuse. Then y(7) is countable. By the fact
2 (ii) it follows that A= (y(7))< (7). Now since 4 is a homeomorphism, it follows
that y(T) is countable. Hence T is countably almost diffuse.

Finally, let 7 be c¢,-operator. If possible, suppose that T is not a ¢,-operator.
Then there is a number =0 such that the set 4={y: y€A, Wi(y)=a} is infinite.
By the fact 2 (i), A={y:y€A(S), W5 (y)=a}. Now i 1 (A)={s:s5€S, A(s) €A4A}=
={s5:5€S, A(s)€A, Wi (s)=ua}, by 2 (iii), S{s:5€S, Wr(s)>a}. Since i71(4) is
infinite, /2 being a homeomorphism, it follows that {s:s€S, Wr(s)=a} is infinite.
This contradicts that T is a ¢,-operator. Hence T is a ¢,-operator.

Remark. Note that all the above results will also hold if A is replaced by the weak*-
closure of the set of extremal points of A.
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