On a problem of Graham

By E. ERDOS and E. SZEMEREDI (Budapest)

GraHAM stated the following conjecture: Let p be a prime and ay, ...,a, p
1.

non-zero residues (mod p). Assume that if 2 &a;,6=0 or 1 (not all ¢=0) is a
i=1

P
multiple of p then > ¢; is uniquely determined. The conjecture states that in this
i=1

case there are only two distinct residues among the a’s.

We are going to prove this conjecture for all sufficiently large p, in fact we will
prove a sharper result. To extend our proof for the small values of p would require
considerable computation, but no theoretical difficulty.

Our proof is surprisingly complicated and we are not convinced that a simpler
proof is not possible, but we could not find one.

First we prove

Theorem 1. Let n, be sufficiently small, n<ny, p=>po(n): A={ay, ..., a},
I=n"""p is a set of non-zero residues mod p. Assume that for every t the number
of indices i satisfying a,=t (mod p) is less than n«p. Then

I
ga;,=r(modp) & =0 or 1, not all ¢ =0
i=1

is solvable for every r (mod p).
This theorem is perhaps of some interest in itself and easily implies Grahams
conjecture in case each residue ossurs with a multiplicity <#,p. To see this observe

that if n},"“’-c:,—: we can split our set a, ..., a, into two disjoint sets which satisfy

r .4
the requirements of Theorem 1 and thus 2 g cannot be unique for > &4, =0
i=1 i=1
(mod p). ,
Now we prove Theorem 1. Put 5'/'°=4. First we prove the following.

Now denote by F(D) the set of all residues of the form ' gx; and with
x;¢D
X+Y={x+y; xcX,yeY} ¢

Lemma. Let BC A, |Bl:=-l'i[— (|A|=1=0p). Then there is a D B so that |F(D)|

2 9
_l;D|_

is greater than
& 25°
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To prove the Lemma observe that we can assume that there is a B, B, |B,|>
== |B| that every residue occurs in B, with a multiplicity at least »2p'*. For if
not then a simple argument shows that B contains more that 3p'/* distinct residues

and then by a theorem of Erdds and Heilbronn 2 ga;=r (modp) is solvable
acA

for all r [1] which contradicts our hypothesis.
Henceforth we only consider B,. By the theorem of Dirichlet to every b€ B,

i 1 : :
there is an integer rb-c—é—,_; so that the residue of 7,-b (mod p) is an absolute value
< 0*p. We want to show that there is a b< B, for which this 7,5 (mod p) is an absolute

3

0 i3 e : 0
value = =4 The number of distinct b’s in B, is greater than & (B, has at least

0 ; .
—p elements and at most nyp of them are in the same congruence class). Now there

1 ; | gl , :
are at most — choices for 7, thus there are at most — distinct b’s for which 7,-b

o2 &
iy ] Yol Yol e
is in the same residue class, hence there are at most — -2 — =— distinct values
02 "8y 4y
i g 0° . B sy
of b for which 7, - b is not greater than T but since there are more than p= distinct
b’s in B, there is a be B, for which
_ & .
(M “Bj;*flfa-blﬁ5zf’
as stated.

Now we are ready to construct D. We can assume without loss of generality
that 1 occurs in B, (and is different from the b which we just constructed). Now

3
our set D consists of 1, [%] b’s and [—ga] I’s (by our conditions we have at least

n*p'’? 1’s and b’s). It easily follows from (1) that the number of sums > ¢,d,, d,cD is
at least

N

I ) f .
(2) follows from r,,--_-[-SE] and d=n""" which proves the Lemma.
Unit D from 4 and apply the Lemma repeatedly. Thus we obtain disjoint
sets D;, 1 =i=r each of which satisfy the Lemma and their union has at least @

elements (since by the Lemma if

|A| i‘z‘-g-p

LJ]

we can select another set D, ,,).
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Now denote by F(D;) the set of all residues of the form > '&;d, by our

Lemma dyen;
1
Now clearly
(&) F [,U D;] = F(D,)+ F(D,)+ -+- + F(D,).
=1

By the Cauchy—Davenport theorem [2]

r r
F [‘l__Jl D,] = min [p, ‘21' [F(D,)[] =p
by (3), (4) and (5), which completes the proof of Theorem 1.

Henceforth we can assume that at least one residue occurs at least n,p times
amongst the &’s. Without loss of generality we can assume that this residue is 1
and that | occurs t=n,p times.

PRI . 9

We have to distinguish several cases. First assume t:--l-o p. Several subcases
have to be distinguished. First assume that all a’s are =p—t, | <a¢,<...<a,_=p—t.
Let a,+...+a,=p—1t be the smallest k& with this property, k<p—1 is easy to see
also a,+...+a,.,=p is obvious thus

oG+ .. +aq+(p—ay—a,—...—aq)l and a+..+a ., +(p—a,—...—a))l
.
give two representations of 0 with different >'¢;.
i=1

Thus at least one of the a’s are =p—1. Clearly one cannot have two incongruent
a’s in (p—t, p) otherwise > g; is clearly not unique. Let p—r<a,_,<p. If a, =1t
it must clearly occur with multiplicity one (since otherwise 1>5P again gives
non-uniqueness for > g). Observe that in this case a,+...+a,_,_,=2(p—1—1)=
=p—tsince t=p—2. Let now k be the smallest integer satisfying

I>=a+..+a,=p—t
and now a,_,+(p—a,-)1 and a;+...+a+(p—a,—...—a)1 give two different
values for Zp' ¢; what is contradiction.
Thus \;Elcan assume a,_,<1. But then a,+a,_,<p and thus we again get using

[
p—a,_, resp. p—a,—a,_, ones two different values of >'¢;. This disposes the
i=1

case (- 2?
107

Henceforth assumelqup‘zrgl—% p. Again we have to distinguish several cases.

; f " 5
First assume that there are at most 100 residues amongst the a’s greater than
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L
t ’ y -t p
100" Since there are p—1t a’s not congruent | there clearly are at least PT%-I a’s

greater than one but less than ——. Their sum is thus greater than p—1r. Let a,+ ...

..+a, the smallest r for whli:(l)loal+...+a,§p—r then also a;+...+a,+a,.,<
=p—t+ SO{‘O thus a,+...+a,+(p—a,—...—a,)+1 and a,+...+a,+a,.,+(p—
—a;—...—a,—a,,,) 1 again give two different values for fzp' €.

Henceforth we can assume that there are at least Tw a’s greater than ﬁ and
in fact we can assume that they are all less than pT (since as we proved in the
previous case at most one a can be greater than p;r)‘

Let now S, be a set of —— a&’s which are congruent one and S, a disjoint set

IOO

1 ; . ; .
of 00 28 which are also congruent one. Let @ be one of the residues in

. P_—f]
[100’ 3 . Clearly

IF@US$,)| = ]‘?T’O e —556 and |F(4—S,—S,—a)| >
(6)
|A| =[Sy =[Sl =1 = p——=—=— 1.
Thus by Cauchy-Davenport
[F@aUS,UA—8,—S;—a) = min{p,|F(aUS§,)|+ |F(4—S,— S.—a)l} = p.
Hence

(7 O=oy:14 23 a,a, al_r—-—’—
i

100"
Now we again have to distinguish two cases. Assume first
2 %= Mop (1= nep).

As stated previously we can assume by the theorem of Erdés and Heilbronn

that the number of distinct a’s is less than 3)p thus we can assume xal::-n—; /3
o ' 2 .
Thus by the theorem of Dirichlet there is an s= 2"‘ for which

it i3 t
Isa,| = p'*= =

e 200"
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If sa,:a-p—-i—o—é- then sa,+(p—sa,)1 and 233,——(;3—250,)1 give two representa-

tions of D with different > ¢;. Thus we can assume sa, < but then sa, can be

200
replaced by sa; ones from S, and since sa;#s this again gives two distinct value

of Je.
i
Thus we can assume > o, <nip. Thus we have at least p—t—q.,p:—p—;as

distinct from 1 which have not been used in (7). By Erdés—Heilbronn (as used before)

at least one of these a’s have a high multiplicity and thus there is an sa-:m Thus

o< since otherwise we could replace sa of the ones by sa and thus we again

t
100
get two distinct values of ;.

Now we omit from A all the a’s occuring in (6) and we obtain a new set A’

Using (6) for A” we again get representation of 0 (7’) (we remark that we can assume

that «, in (7) and o in (7") are both =t——— thus we do not run out of ones).

100
Adding the two representations of D we obtain our contradiciton.
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