On regular polynomial matrices I.
A new criterion for a polynomial matrix to be simple

By ANNA LEE (Budapest)

1. Introduction

There is an extensive literature about polynomial matrices, beginning with
works of Weierstrass and Kronecker and giving new results even in our days (cf.
[1]—[9]). The first investigations were related to the problem of simultaneous trans-
formation of two quadratic forms into sums of quadrats. The discussions of Weierstrass
in this topic lead to his theory of elementary divisors. In the treatment of polynomial
matrices of higher degree there is also made use of the right and left sided division
of the polynomial matrix in question by another polynomial matrix ([3]—[7]).
But even up to now the theory of elementary divisors proved to be the most effective
tool in the investigations, giving a rather precise information about the structure
of some polynomial matrices.

Polynomial matrices play an important role in the modern discussion of damped
vibrating systems. The importance of such matrices — especially simple ones —
is fairly demonstrated in LANCASTER’s book [7]. Here there is also a bibliography
of polynomial matrices.

The present paper is an introductory note on our investigations in this field.
The method applied is different from both the theory of elementary divisors an
the method of one-sided division as well. We will analyse the reduced adjoint of
the polynomial matrix in question (i.e. the adjoint, divided by the gcd of its elements),
and the derivatives of this matrix. This new aproach is useful for the very reason,
since the comparison of statements obtained by the different methods yields some-
times interesting new results. (c. f. [11])

2. Perliminaries

We begin with some definitions, since the use of several notions concerning
polynomial matrices is not uniform.

A polynomial matrix (or lambda-matrix) is a matrix with entries from K[4],
the polynomial ring over the complex number field K. Any polynomial matrix of
degre / can be represented as

(2.1) Di(A) = AgA' + A, X7+ ...+ 4 (4, #=0),
where the entries of the matrices 4; are from K.
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Definition 1. The polynomial matrix (2.1) is regular, if
(i) all A; are n-square matrices,
(i) det D,(2) = |Dy(2)| £ 0.

This definition of the regular polynomial matrix does not exclude the case of
|44/ =0. Therefore it is more suitable instead of (2.1) the homogeneous form

(2.2) Dy(A u) = AgA'+ A, A" 'u+ ... + A’ (A; are n-squares).

The characteristic polynomial of the regular polynomial matrix (2.2) can be
represented as

(2.3) AGs ) = Dy )| = ”‘"’J? (A= Ay )

c#0; Aokl Jugu=nl
k=1

In virtue of (2.3) a regular polynomial matrix (2.2) has always exactly n/ eigenvalues
if they are counted according to their multiplicities. The usual (finite) eigenvalues ,
of multiplicity o, are given by (2.3), substituting u=1 (k=1, ..., 5), and we will denote
by 4, the “infinite eigenvalue™ of multiplicity «, given by (2.3), if substituting u=0.
In the following a regular polynomial matrix D,(4, u) will mean always a
polynomial matrix represented by (2.2) and (2.3).
For arbitrary polynomial f(2, 1) homogeneous in 4 and p we will use the short

notation

’19 = g, = k= ],...,S,
(2.4) T = {f( ,u)l;_ ! 1

1@, au)ll=l.,u=0 k=0,

ACYD)
oA

ACYD)
o

I‘.=ﬂk.j.l=|.

S () =

A=1,u=0

where /, (k=0, 1, ..., 5) are the roots of 4(Z, u) in (2.3). (The roots of a polynomial
f(2, p) will always mean the — finite and infinite — roots of the polynomial equation

S5 w=0).

Definition 2. A regular polynomial matrix D,(4, ) is simple, if
oDl =n—a, E=0,1,...,8
where ¢ (X) denotes the rank of the matrix X.

This definition of the simple polynomial matrix is more general than that of
Lancaster (cf. [7] pp. 42.), since it does not exclude the case |4,/ =0.
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Let A; (4, ) denote the ged of all jth order subdeterminants of D,(4, p) (j=
=1, ..., n). The polynomials 4;(/, u) are called the determinantal divisors of D;(4, )
and we set 4,(4, u)=1 for notational convenience. The invariant factors of D,(1, n)
are defined by

A;(4, p)

A; 102, 1)

We will need only the reduced characteristic polynomial é(4, u), which is defined
by

(2.5) o(4, p) =

R . ki
(4, p) = JoRutas it A0 K)o ?A{/.,,u).

A (2, )
A,-1(4, 1)
and for which dé(4, p) = ci, (4, p).

Let us define the homogeneous Lagrangean-polynomials belonging to an
arbitrary homogeneous polynomial

= cpbo [T (A— iy p)P
k=1

fOs i) = ap [[G—hp)s Ju# heok =i
=1

as follows:
: S(4, 1)
. L ] = . » el PRTEE
26) st R e T e
: ity
Lyl )y e 2B k=0.
oo 1) = Faau

Considering the notation (2.4), it is easy to see that the polynomials (2.6) fulfil
the conditions

@2.7) L) =6y ki=0,1,..,s.

The homogeneous polynomial g(4, u) of degree at most s, which satisfies the con-
ditions
Al=6 k=018

can be constructed with help of the just defined Lagrangean polynomials as:

(2.8) g, p) = 2 e Ly (4, p).
The reduced adjoint of D,(4, u) is defined by
, . adjDi(4, p)
29 F(i, p) = —————.
(2.9) (4, ) 2L

If 1=r=n, then Q, , denote the totality of strictly increasing sequences of r
integers chosen from 1, ..., n. Let X=(x;;) an n-square matrix. If o=(, ..., )
and t=(j,, ..., j,) are sequences in Q, ,, then X[w|t] will denote the r-square sub-
matrix of X lying in rows @ and columns t. The notation X (w|t) designate the (n—r)-
square submatrix of X, whose rows and columns resp. are precisely those comple-
mentary to w and t resp.
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We formulate with this notation a well-known determinantal indentity (cf. e.g.
[10] pp. 66.) as follows:

(2.10) l(adj X)[w}7]] = (= 1)°** X~ | X (]0)],
where

(_ 1)w+t S (___ I)va-l-.‘ljv’ i,éw, }.-G T.
3. Statements

Theorem 1. If the reduced characteristic polynomial (i, p) of the regular poly-
nomial matrix D,(2, p) has only simple roots, that is if in (2.5) the equality

(3.1) ffe i g il R o
holds, then the matrices
(3.2) P, I ONE oT % P

A
satisfy the following conditions:
(i) e(P) = e[Di(A) P = o[PDi(A)] = o, k=0,1,...,5
.. [DI(Z)PY = Di (k) Py

“) ’, @ '

,[P& D, {!-l“' e P, D (%)
-y (A*)Pks- = DGk }:rices (3.2) in basis factor, that is
Py D[ ()] = P, D (%) g *

(3.3) Po=UVS, eU)=eW)=0¢P)=u k=01,..,s

where U, and ¥, are matrices of type nx«, and asterisk on a matrix indicates the
conjugate transpose. Then in virtue of

(3.4) Dy (2, W) F(4, p) = 0(4, W E
F(A, DA, ) = 0(A, W E

} k=01, ...5

we get immediately
(3.5) DU, =0; M'D(D)=0 k=01,...,8°
On account of (3.3) and (3.5) there follows from theorem 1:

Corollary 1. According to the assumption of theorem 1 the columns of the
matrix U, give o, linearly independent right eigenvectors and the rows of F.* give
o, linearly independent left eigenvectors belonging to the eigenvalue 7,, which are
biorthogonal with respect to D;(4,) (k=0, 1, ..., 5). Thus D,(4, p) is a simple poly-
nomial matrix.

By the assumption of theorem 1 the entries of the matrix F(/, ) defined by
(2.9) are polynomials of degree at most s. Therefore (2.6)—(2.8) can be applied for
f(2, ©)=3d(2, p) to the polynomial matrix F(Z, ) and hence we receive

o4, p)
O (A)(A—A,p)

A—Jgpt = .

(3.6) F, 1) = 3 F(h)
k=0
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If A#4 (k=0,1,...,5), then D,(4, u) and F(, u) are invertable and from (3.4)

Thus due to (3.6) we obtain from theorem 1 also

Corollary 2. According to the assumption of theorem 1 the inverse of D,(4, u)
can be represented as

5 Pk %
-1 i i - i
['D!(iﬁ ﬂ)] _kglo (A—).kp) A = Ak k 0, I, ens g 3y

or — substituting the from (3.3) of P, — as

E
@) (0,0 = U( B, L e

where (X, , X,,. ..., X, ) denotes a partitioned matrix having nonzero blocks in the
main diagonal only, and the block standing in the kth position of the main diagonal
is the oy-square matrix X, (k=0, 1, ..., s). The transformation matrices U and V*
are composed of the matrices (3.3) as

U=[U,U,...U) V*=[WV,..V]"

It is easy to see that in the case [4,|=0 («,=0)(3.7) yields formula (4.4.11) of
Lancaster’s book (cf. [7] pp. 66.).

From our considerations discussed up to now it can be seen that the assumption
of the polynomial 4(4, u) having only simple roots is a sufficient condition for a
regular polynomial matrix D,(4, u) to be simple. This condition is necessary. There
holds namely

Theorem 2. [f the regular polynomial matrix D,(4, p) is not simple, then the
polynomial 6(A, ) has at least one multiple root, that is B,=1 holds in (2.5) for
some index k.

Theorem 2 means in other words: for a non-simple regular polynomial matrix
alrady the n th invariant factor yields at least one non-linear elementary divisor.

The main result of the present paper is an immediate consequence of theorems
land 2, namely

Theorem 3. A regular polynomial matrix D,(4, p) is simple if and only if the
polynomial 8(4, p) has only simple roots.
This criterion can be formulated in a different way as well:

Theorem 3. A regular polynomial matrix is simple if and only if its nth invariant
factor yields only linear elementary divisors.

From the latter formulation it is obvious that our criterion is based only on
elementary divisors yielded by the nth invariant factor. Comparing this with the
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wellknown criterion of a regular polynomial matrices being simple if and only if all
its elementary divisors are linear*), we obtain

Theorem 4. [f the nth invariant factor of a regular polynomial matrix D(4, )
yields only linear elementary divisors, then all elementary divisors of D,(/, n) are
linear.

4. Proofs

We fiirst show that

Lemma. Let D,(/, p) be a regular polynomial matrix, A(., p) its characteristic poly-
nomial and 6(2, p) the reduced characteristic polynomial. Each distinct root of A(J, p)
is a root of d(A, p) as well, that is in (2.5) there holds the inequality

4.1) l‘éﬂkéa,‘. X H N} PP A
PROOF. Applying the identity (2.10) in the case X'=D,(4, u) and r=n we obtain
4.2) ladj Dy (4, p)| = A(4, )"~

The multiplicity of the factor (A—/Zu) in 4,_,(4, u) is according to (2.5) equal to
o =P (k=0,1, ..., 5). Thus we may see that the left side of (4.2) is dicisible by at
least the n(oy, — f)th power of (2 —/u). But the multiplicity of the factor (2 —/u)
on the right side of (4.2) is exactly (n—1)a,. Therefore the inequality

(4.3) n(a—p) = (n— Doy

holds and as o,=0 (k=1,...,5) %,=0 and p,=0 k=0, 1, ..., s are integers, from
(4.3) we have immediately

I_-'“_“:ﬁk‘:_:ﬁk, k=l,...,5
1 =B,

PrOOF of theorem 1. Differentiating (3.4) and evaluating at 2=/, we obtain
by (2.4)

[1A

o, i ag=10

D (A) F() + Di(A) F'(2) = 0" (W E
F(4) Dy (2) + F' (4) Dy(4y) = 6" (8,) E.
According to the assumption of the theorem these yield simply
(D7 () F())* = 6" (2) Dy (24) F (%)
[F(2) Di () = 0" (4) F(2) Dy (A4).
After dividing both sides by é'(2,)*#0, we obtain assertion (ii) of the theorem.
*) This criterion is formulated only in the case |4, =0 (cf. e.g. [7] pp. 46.). but it is obviously

valid also for our definition of the simple polynomial matrix. We have only to extend the criterion
to the elementary divisors belonging to the infinite eigenvalue 4,.



On regular polynomial matrices 1. ... 135

In order to prove assertion (i) we apply again (2.10) to the matrix D,(Z, p)
and divide both sides by 4,_,(Z, p)", then

o(4, !
dy1(4 1)

As (4, n) has only simple roots, we have on the right side of (4.4)

=0 if r=>g
A= 2 2‘-‘0 if rzdk.

(4.4) \F(2, o] = (— 1)+ Dy (2, ) (@]7).

O (4 )y ?
Au— 1 (;"! ,u)

But o[D;(4)]=n—a, hence for suitable D,(4;)(w|t) the right side of (4.4) differs
from zero. Thus

e(P)=0olFA)) =0 k=0,1,..,s

and by (ii) also (i) holds.

PrROOF of theorem 2. According to the assumption the matrix D;(4, p) is
not simple. Then we have for at least one eigenvalue /,

o[D(4)] = n—oay
and on account of (3.4)

(4.5) o[F(4y)] = o.

Let us consider now (4.4) for r=o, and evaluate at 2=/,. The left side of (4.5)
is due to (4.6) certainly equal to zero. Thus on the right side of (4.4)

O (4, )

- =0
4,14 1) li=1s,

must hold. Hence (o, — 1)f = o — P, i.e.

B = 1,

which proves the theorem.
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