A note on ligthly compact spaces
By M. K. SINGAL (Meerut) and ASHA MATHUR (Delhi)

Lightly compact spaces were introduced in [3] by BAGLEY, CONNEL and
MCcKNIGHT. These spaces or equivalent forms of these spaces have been investigated
in [3], [6], [7], [9], [11], [12], [17], [18], [19], [20]. Lightly compact spaces happen to
be important tools in the study of minimal first countable and minimal-E, spaces,
[cf, respectively [19], [15]]. A space is said to be lightly compact if every locally
finite family of open sets is finite or equivalently, every countable open cover admits
of a finite subfamily, the closures of whose members cover the space or equivalently,
every countable open filter base has an adherent point. In the present paper, we
have improved on of the results of Bagley, Connel and McKnight viz: A completely
regular space is pseudo-compact if and only if it is lightly compact by replacing
complete regularity by a weaker property. Several other results regarding these
spaces have been obtained.

Definitions. A space X is pseudo-compact [4] if every real valued continuous
mapping defined on X is bounded. A set is regularly closed if it is the closure of
some open set or equivalently closure of its own interior. A space X is almost
completely regular [14] if for every regularly closed set A and a point x not belonging
to A, there exists a continuous mapping f from X into [0, 1] such that f(x)=0 and

f(4)={1}.

Theorem 1. Let X be an almost completely regular space. Then the following are
equivalent:

(a) X is pseudo-compact.

(b) If V,2V,2... is any decreasing sequence of non-empty open sets, then
N{cl V,:ne N}=0.

(¢c) X is lightly compact.

PrOOF. (a)=>(b). Let {V,} be a decreasing sequence of non-empty open sets.
Suppose, if possible, that M {cl ¥,: n¢ N}=0. Then, {intcl V,: n€ N} is a locally
finite family of open sets, because if x£X and every neighbourhood of x intersects
infinitely many sets of the family {int cl V,: n€ N}, then since {V,: n< N} is a decreas-
ing sequence, every neighbourhood of x will intersect every intcl ¥, and hence
x will belong to clintclV,,, that is, clV, for all n, which will be a contradiction.
Since each V,, is non-empty, there exists a point x,€X such that x,€intcl V,. Since
X is almost completely regular, for each n there exists a real valued continuous
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mapping f, on X such that £,=0, f,(x,)=n, and f,(X~intcl ¥,)={0}. Define
a mapping g: X— R such that g(x)= 3 f,(x) for all x¢X. Then, g is a well-defined
n=1

real valued continuous mapping on X which is not bounded. This contradicts the
pseudo-compactness of the space. Hence (a)=(b).

(b)=(c). Let Z={D,:n€N} be a countable open cover of X. Suppose, if
possible, that there does not exist a finite subfamily of &, the closures of whose
members cover the space. Let V,=X~U{cl D;:i=1,2,...,n}. Then {V,:n€N}
is a decreasing sequence of non-empty open sets and hence by (b), N {cl ¥,: n€ N}=0,
that is, U {X~cl V,: n€N}=X, that is, U{D;: i€ N}X, which is a contradiction.
Hence (b)=(c¢).

(¢c)=(a). Let f be a real valued continuous mapping defined on X. Let V,=
={x:|f(x)|=n}. Then, {V,:n€N} is a countable open cover of X and hence has
a finite subfamily {V,:i=1,2,...,m} such that X=U{cl V,:i=1,2,...,m}.
Let p=max (n,, ny, ..., n,). Then [f(x)|=p for all x£X. Hence f is bounded and
thus X is pseudo-compact.

Corollary 1 [4). In a completely regular space X, conditions (a), (b) and (c)
of the above theorem are equivalent.

Definitions. A mapping f: X—Y is almost continuous [13] if for each xcX
and each open set ¥ containing f(x), there exists an open set # containing x such
that f(#)Zintcl V' or equivalently, if the inverse image of every regularly open
set is open. A set is regularly open if it is equal to the interior of some closed set
or equivalently to the interior of its own closure or equivalently, if its complement
is regularly closed. A mapping f is almost closed [13] if the image of every regularly
closed set is closed. A space X is an E;-space [1] if every point of X is expressible
as a countable intersection of closed neighbourhoods.

Theorem 2. An almost continuous mapping from a lightly compact space into
an E,-space is almost closed.

ProOF. Let f be an almost continuous mapping from a lightly compact space
X into an E,-space Y. Let A be a regularly closed set. Then, A is lightly compact [15].
Since almost continuous mappings preserve light-compactness [15] and lightly
compact subsets of E;-spaces are closed, [15], f(A) is closed. Thus, f'is almost closed
and hence the result.

Definition [10). A mapping f: X—Y is said to be a P-mapping if for each ycY
and each open set % containing f~(y), y€int [f(cl %)).

Theorem 3. Let X be a lightly compact space. Then, the following are true.

(a) Every almost continuous mapping from X into an E,-space is a Pymapping.

(b) If f is an almost continuous mapping from X into an E,-space Y, then
cl [~ fAU)S f(0U) for every open subset U of X, where 0% denotes the bound-
ary of .

(c) Under the same assumption as in (b), cl[f(A))=f(cl (%)) for every open
subset U of X.

(d) Under the same assumption as in (b), if a regularly open subset U of X
contains f~*(y), then ycint f(%).
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PROOF.

Proof of (a). Let f be an almost continuous mapping from X onto an E,-space Y.
Let v¢Y and % be an open set containing f~(y). Suppose, if possible, that
ydint flcl (%)), that is, y€ Y~int f[cl %], that is, y€cl [Y~f(cl %)]. Since Y is an
E,-space, there exists a countable family {G;: i€ N} of open sets containing y such
that {y}=N{clG;:i€N). Let V,=N{intclG;:i=1,2,..,n). Then V,N
M(Y~f(cl %))=0 for all n and therefore f~X(V,)f~Y Y~ f(cl %))#0 for all n,
that is, f~Y(V,)(X~cl %)=0. Let B={f"(V,)(X~cl#%):neEN}. Then & is
a countable open filter base in the lihtly compact space X and hence has an adherent
point, say x. Then x€cl (X~cl %). Also xécl(f~*(V,)) for all n. Since f is almost
continuous, cl[f~YV,)SfYcl V,). Therefore, xf~1(cl V,), that is, f(x)€cl ¥V,
which implies f(x)€cl G; for all i and hence y=f(x), that is, x€f~*(y). Since % is
an open set containing f~'(y) which contains x and x€cl (X ~cl %), 4 (" \(X~cl %)#0
which is a contradiction. Hence y€int (f(cl %)) and thus f'is a P-mapping.

Proof of (b). Let ye[cl fA#))~ f(%), that is, yecl f(%) and yé&f(%). Since
Y is an E;-space, choose a countable family {G;: i€ N} of open sets containing
y such that {y}=N{clG;:i€N}. Let V,=MN{intcl G;:i=1,2,...,,n}. Since
yeel f(«), V,N\f(%)=0 for all n. Hence 0z=f'(V,)( %, which is open as f is
almost continuous. Therefore, #={f~(V,)(1%:ncN} is a countable open filter
base in the lightly compact space X and hence has an adherent point, say x. Then
x€cl . Since fis almost continuous, ¢l (f~X(V,))Sf(cl V,). Also, xecl (f~1(V,)).
Therefore, x<f~1(cl V,), that is, f(x)€cl V,, that is, f(x)€cl G; for all i and hence
Sf(x)=y and f(x)&f(%), that is, x§#. Thus x€cl % ~U, that is, f(x)ef [c]l U ~U]=
=f(04). Hence, cl f(U)~f(U)=[f(0U).

Proof of (¢). Let % be an open subset of X. Then ¢l Z is a regularly closed
subset of the lightly compact space X and hence is lightly compact. Since light-
compactness is preserved under almost continuous mappings and lightly compact
subsets of E,-spaces are closed, f(cl %) is a closed set, therefore cl f(%)< f(cl %).

Proof of (d). Follows immediately from a result of Singal and Singal [13].

Corollary 2. The following are equivalent in a completely regular 7; space X:

(1) X is lightly compact.

(1") X is pseudo-compact.

(2) Every continuous mapping from X onto an E;-space is a P,-mapping.

(2”) Every continuous mapping from X onto a first countable Hausdorff space
is a P,-mapping.

(3) If fis a continuous mapping from X onto an E,-space, then cl (f(?())«v
~f(U) S f(0%) for any open subset % of X.

(3’) If fis a continuous mapping of X onto a first countable Hausdorff space,
then cl f(%)~f(#)<f(0%) for any open subset % of X.

(4) Under the same assumption as in (3), clf(#)=f(cl %) for any open
subset # of X.

(4’) Under the same assumptions as in (3"), cl f(#)=f(cl %) for any open
subset # of X.

(5) Under the same assumption as in (3), if a regularly open subset % of X
contains f~(y), then y<int (f(#)).
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(5') Under the same assumption as in (3"), if a regularly open subset # of
X contains f~Y(y), then y<int f(%).

PRrROOF. Since every first countable Hausdorff space is an E,-space, (2)=(2'),
3)=(3"), (4)=(4") and (5)=(5"). Also, from corollary 1, (1)=(1’). From the previous
theorem, (1) implies (2), (3), (4) and (5). In [8], IsSiwaTA has shown that (1), (2°),
(3"), (4’) and (5") are equivalent. Hence the result.

Theorem 4. Let f be a continuous mapping from a lightly compact space X onto
an E,-space Y. Then f is quasi-compact if and only if f(0U)=0(f(#)) for any inverse
open subset U of X. (A mapping is said to be quasi-compact if it is onto and f(%)
is open whenever % is an inverse open set.)

PrROOF. Let f be quasi-compact. Let % be an inverse open subset of X. Then
S(%) is an open set, therefore d[f(%)]=[cl f(%)]~f(%). By theorem 3 (b) [cl (%)~
~f())Sf(@U). Therefore, d(f(%))Sf(0%). Since % is an inverse open set, f(d%)
(M f(#)=0. Since fis continuous and quasi-compact, f(cl #)=cl f(#) and therefore
[l u)~fu)scl f(u)~f(U), that is, f(cl U)~f(U)Saf(U). Now f(aU)<f(cl U)
and f(OU)Nf(U)=0, therefore f(AU)Sf(cl U)~f(U)Sf(U). Hence o(f(U))=
=f(U).

Conversely, let U be an open inverse set. Now f(9U)=df(U). Also cl U=
=UUaU, UNAU=0 and f(U)Nf(@U)=0. Thus f(cl U) is a union of two disjoint
sets f(U) and f(AU). On the other hand cl f(U)=a(f(U))Uintf(U), d(f(U))N
Nint f(U)=0. By theorem 3 (c), f(cl U)=cl f(U) as f is continuous. This implies,
FU)=f(cl U)~f(0%U)=cl f(U)~f(oU)=cl f(U)~af(U)=int f(U). Thus f(U) is
open.

Corollary 3 [8]. Let f be a continuous mapping from a completely regular
pseudo-compact space X onto a first countable Hausdorff space or an E;-space Y.
Then f is quasi-compact if and only if f(9U)=af(U) for every inverse open subset
U of X.

Proor. Obvious.

Definition. A mapping f: X—Y is said to be almost quasi-compact [13] if it
is onto and if 4 is open whenever f~'(4) is regularly open or equivalently, if the
image of every regularly open inverse set is open.

Theorem 5. Let [ be a continuous mapping from a lightly compact space X onto
an E;-space Y. Then f is almost quasi-compact if and only if f(0U)=adf(U) for any
regularly open inverse subset U of X.

ProOF. The proof is omitted as it is essentially the same as that of theorem 4.

Theorem 6. Let X be a lightly compact space. Let A be a closed set such that the
boundary o A is lightly compact, then A is lightly compact.

PROOF. Let 2={D;: i¢N} be a countable relatively open cover of A. Then,
for each i€ N, there exists an open set C; such that D;=C;4. Now {C;:ieN}U
U{X~A4} is a countable open cover of the lightly compact space X and hence
there exists a finite subfamily {C;: j=1,2, ..., m} of {C;: i€ N} such that XS U
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{cl C,:j=1,2, ..., m}Ucl (X~A). Therefore, int A=X~cl (X~A)ESU{cl C;:
j=1, ﬁ m} This implies, int 4=U{cl C; ﬂmtA j=12,...,m}c U{cl (C, A
mt A): -], 2, ..., m}S U{cl (C;,NA): j—] 5 m}-—LJ{cl (C NA)NA: j“l

m}(asAlsclosed)—U[(cl D;:)OA j=1, 2 m} U{cl;, D,J =1, 2, ..., m}.
Also {CiMN@A: icN} is a countable relatively open cover of the hghtly compact
subspace 04 and hence there exists a finite subfamily {C; Md4:j=1,2,..., p} of
{C:N0A: i€ N} such that 94 = U {cl;, , (C;,N04): j=1,2, ..., p}S U {cl (C;JOA)F'IA:
j=1,2,...,p} (as A4S A, A being closed)=U {cl;, D;J f=1,2, ..., b} Now A=
=0AU 'lntAC[b{cI, D j=1,2, .., pHU{U{cl, D;: j=1,2,. m}} Thus A4 is
lightly compact and “hence the l'esu]t

Definition. A space (X, ) is countably C-compact [17] if given a closed set 4
and a countable .#-open cover ¥ of A, there exists a finite subfamily of €, say
{C...:i=1,2, ..., n} such that AS U {cl C: i=1], 2, ..., n}).

Corollary 4. Every lightly compact space in which the boundary dA4 of every
closed set A4 is lightly compact is countably C-compact.

PrOOF. Let (X, .#) be a lightly compact space with the given property. Let
A be a closed set. Then 94 is lightly compact and hence by Theorem 6, A4 is lightly
compact. Let % be a countable open cover of A. Then {C(A: C€¥} is a countable
relatively open cover of 4 and hence there exists a finite subfamily {C;,A4:
i=1,2,..,n} of {CNA:Cc%} such that A=U{cl, (CiNA):i=1,2,..,n<S
€ U{cl,Ci: i=1, 2, ..., n}. Hence X is countably C-compact.

Definition. A space X is said to satisfy the axiom pT,A4 [5] if for each point
p in X and a closed set 4 not containing p, there exists a real valued continuous
mapping from X such that f(p)df(A4).

Theorem 7. Every lightly compact space satisfying the axiom pT,A is almost
completely regular.

PrROOF. Let X be a lightly compact space with the property p7,4. Let xcX
and A4 be a regularly closed set not containing the point x. Then, since X has the
property p7,A, there exists a real valued continuous mapping / on X such that
J(x)Ef(A). Since X is lightly compact, 4 is lightly compact, being a regularly closed
subset. Therefore, f(4) is a lightly compact subset of the reals R with the usual
topology and hence closed. Since R is completely regular, there exists a continuous
mapping g: R—[0, 1] such that g(f(x))=0 and g(f(4))={1}. Now h=gof is a
continuous mapping from X into [0, 1] such that A(x)=0 and h(4)={1}. Hence
X is almost completely regular.

Corollary 5 [2]. Every lightly compact semi-regular space having the property
pTA is completely regular.

PrOOF. Obvious, since every semi-regular almost completely regular space is
completely regular [cf. [16]].
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