Ideal theory in polynomial semirings

By LOUIS DALE and PAUL J. ALLEN (Alabama)

In this paper, the class of monic ideals will be defined in R[x], where R is
a semiring with an identity (all definitions are the same as in ALLEN [1], ALLEN
and BRACKIN [2] and BRACKIN [3]). Some methods of constructing monic ideals
will be discussed and a characterization of monic ideals in R[x] will be presented
The relationships that exist between monic ideals and k-ideals*) in Z*[x] (Z~ denotes
the semiring of non-negative integers) will be explored, and particular attention
will be devoted to the properties of non-monic k-ideals in Z+[x].

Definition 1. Let R be a semiring with an identity. An ideal M in R[x] will be
called monic if f(x)= 2'a;x'¢ M implies that a;x'¢ M for i< {0, 1, ..., n}.

When {/,} is an ascending chain of ideals in the semiring R with identity, the
set {Ja;x'€ R[x]|a;<1;} will be denoted by 7°.

Theorem 2. I* is a monic ideal in R[x].

ProoF. Let f(x)=a,x"+...4+a,€l*, gx)=b,x"+...+b,cI", and h(x)=
= X"+ ...+ ¢, € R[x], where n=m. It is clear that f(x) +g(x) =a,x" + ... + (@ +b,)x" +
+...+(a,+by)eT*, since a;+b,cI; for each i. Consider the product A(x)f(x)=
=p, X'+ ...+p,, where p,=(3'c;a;)x? for i+j=gq. Since [ SLE LS ... and i+j=gq,
one has i=gq and c;€/, for each i. Similarly, a;€/, for each j. Consequently, ¢;a;</,
and it follows that >'c;a;€I, for each ¢g€{0, 1, ..., n+k}. Therefore, h(x)f(x)cI”
and a similar argument shows f(x)A(x)€I*. Since f(x)<I7, it follows that a;</;
and a;x'€I*. Therefore I* is a monic ideal in R[x].

In view of the fact that ideals in a general semiring are quite numerous, Theorem 2
shows that the class of monic ideals is rather large. In order to show a connection
between monic ideals and k-ideals in the semiring R[x], the following theorem is
presented.

Theorem 3. If {I;} is an ascending chain of ideals in the semiring R with an
identity, then I* is a k-ideal in R[x] if and only if each I, is a k-ideal in R.

*) An ideal I in a semiring R will be called a k-ideal if the following condition is satisfied:
Ifacland a+be€l, then bE L ([2], 154.)
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PrROOF. Suppose 7™ is formed from the ideals {/;} and each 7, is a k-ideal. Let
J(x)=ax"+...+a,€I" and g(x)=b,x"+...+b,c R[x], where f(x)+g(x)el*. It is
clear that a;€1; and a;+ b;€ I, for each i. However each /; is a k-ideal and it follows
that b;c1,. Consequently, b;x'¢I* and it is clear that I* is a k-ideal. Conversely,
suppose that I* is a k-ideal, a;€I,, b€ R and q;+b<1,. Since a;x'€I* and (a;+b)x'=
=a;x'+bx'cI”, it is clear that bx'cI*. Consequently, b€J; and I; is a k-ideal.

Corollary 4. 1f A is a k-ideal in a semiring R, then A[x] is a k-ideal in R[x].

The monic ideals displayed thus far have been constructed from ideals in a semi-
ring R. A method of constructing monic ideals using ideals in R[x] will now be
considered. When A is an ideal in a semiring R[x], denote the set {a€R| there exist
f(x)€ A4 such that a is the coefficient of the ith term of f(x)} by A4,.

Theorem 5. If A is an ideal in a semiring R[x), then {A,} is an ascending chain of
ideals in R.

ProoF. If acA; and be A4;, then there exist polynomials f(x)€A and g(x)€A
such that @ and b are the coefficients of the ith terms of f(x) and g(x), respectively.
Since A is an ideal in R[x), it is clear that f(x)+g(x)€A4 and a+b is the coefficient
of the ith term of f(x)+g(x). Consequently, a+bcA4;. If c€R, then ¢f(x)€A and
ca is the coefficient of the ith term of ¢f(x). The same argument shows ac is the
ith coefficient of f(x)c£ A4, and it follows that A4; is an ideal in R for each i. Since
xf(x)€ A, it follows that a is the coefficient of the (i+ 1)th term of xf(x) and 4;,C A4;,,.
Consequently, {4,} is an ascending chain of ideals in R.

Definition 6. If A is an ideal in R[x], the ascending chain of ideals {4,} will
be called coefficient ideals.

When A is an ideal in R[x], one can construct the ideal A* = {3 a;x'€ R[x]|a;€ A;}
from the ascending chain of coefficient ideals and obtain the following:

Theorem 7. If' A is an ideal in R[x], then A* is a monic ideal and AcC A™.

Proor. In view of Theorem 5 and Theorem 2, it is clear that A* is a monic
ideal in R[x]. If f(x)= 3'a;x'¢ A, then a;€ A, for each i and it follows that ax'cA”
Consequently, f(x)= >'a;x'€¢ A* and it has been shown that AC A",

Monic ideals in a semiring R[x] are now characterized by the following:

Theorem 8. If A is an ideal in R[x], where R is a semiring with an identity, then
the following statements are equivalent.

1. A is monic.

2. A=A

3. Given f(x)=a,x"+...+a,cA and c€A;, the polynomial f'(x)=a,x"+...
vt ext4 . FacA.

PROOF. It is easy to see that 4=A" implies A4 is monic by Theorem 7. Suppose
A is monic and f(x)=a,x"+...+a,€A". Since a;<A;, there exists polynomials
gi(x)£A such that g; is the coefficient of the ith term of g;(x). The fact that 4 is
monic yields a;x'€ 4 for each i€ {0, 1, 2, ..., n}. Consequently, f(x)=a,x"+...+a,€A
and A" A. In view of Theorem 7, AC A* and it follows that A=A4%,
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Let 4 be monic, f(X)=a,x"+...+a;x'...+a,€A, and c€A;. Since cx'c 4 and
a;x'c A for each i€{0, 1, ..., n}, it follows that f'(x)=a,x"+...+cx!+...+a,€A.
Conversely, suppose f(x)=a,x"+...+a;x'+...+a,6A and c€A; implies that
f(X)=a,x"+...+¢;x'+...+a,€ A. In view of Theorem 5, A4, is an ideal in R and
consequently, 0<.4; for each i€ {0, 1, ...}. Substituting a;=0 for j#/, the polynomial
flx)=ax"+...+a;x'+...+a, may be reduced to just @;x'€ A, and the result follows.

It is clear that a monic ideal has a basis constituting of only monomials. The
following theorem dictates when that basis is finite.

Theorem 9. If M is monic in R[x], then M has a finite basis consisting of only
monomials if an only if R is Noetherian.

ProOOF. Suppose R is Noetherian and M is a monic ideal in R[x]. According
to Theorem 5, {M,} is an ascending chain of ideals in R. Since R is Noetherian,
each M; has a finite basis, say {;;|j=0, 1, 2, ..., m;}. Let N be a positive integer such
that M;=My when i= N, and let B={a;;x'|i€ {0, 1, 2, ..., N}and 0=j=m;}. Suppose
f(x)=b.x*+...+b,c M. Since beM,, it follows that b= 3'¢;;a; where ¢;;€R.
Consequently, f(x)= (3 ci;a;,)x'= 3 (Jeyya;x) = 3 (S ¢i;(a;;xY) and Bis a finite
basis for M. Conversely, suppose every monic ideal in R[x] has a finite basis consist-
ing of only monomials and {/,} is an ascending chain of ideals in R. The ideal I*
formed from this chain is a monic ideal in R[x] and has a finite basis consisting of
only monomials, say D= {d;;x'[i=0,1,2,...,n and 0=j=m;}. Since d;;€I; and
{1,} is an ascending chain, there exist N such that d;;€/y for each i and j. Let c€17,,
where m=N. Since cx™€ 7" and D is a basis for I*, there exist polynomials P;;(x) € R[x]
such that ex™=3/(3 P;;(x)d;;)x". Since ex™ is a monomial, the expression for cx™
must reduce to ex™ = ( 3'p,,d,,;)x™ where p,, € Rforeach j. Consequently, c= 3p,,d,,;€
€1y and 1, Iy. Therefore, /,=1Iy and R is Noetherian.

The following theorem gives a relation between monic ideals and k-ideals in
a semiring RJ[x].

Theorem 10. If A is a k-ideal in R[x], then A monic if and only if A has a basis
consisting of only monomials.

Proor. If the k-ideal 4 is monic, the remark preceeding Theorem 9 implies
A has a basis consisting of only monomials. Conversely, if 4 has a basis consisting
of only monomials say, B={a,xmlm=0,1,2,...,n}, and f(x)€A, then f(x)=
=fi(xX)a, x4+ ... +f,(x)a,x» where fi(x)€R[x] for each i. When one considers the
coefficient of x, it is clear that f(x)=(b,a+b,as+...+b, a,)x'+fi(x)a;x"1+...+
+fa(x)a,x» where b, is such that b, x'~'r is the (i—i)th term of f,(x) and f;(x)
i1s f,(x) with the (i—i,)th term b, x'~» removed. In view of the fact that A is a k-ideal
and f'(x)a,x"+...+f (x)a,x"cA, it follows that (b,a,+a,a,+...+b, a,)x'cA
and A is monic.

The relationship between k-ideals and monic ideals will now be explored in the
semiring Z*[x]. It is an easy matter to show the monic ideal 7,[x], where T,=
={x£Z*|x=n}J {0} and n>1, is not a k-ideal in Z*[x]. An example of a k-ideal
that is not monic in Z*[x] will now be given.

Example 11. Consider the semirings Z*[x] and Z*[i], where i= V=1, and the
mapping n of Z*[x] into Z+[i] given by n(>a,x")= Ja,i". If f(x)=ax"€Z*[x]
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and g(x)=3b,x"cZ~*[x], then n(f(x)+g(x))=n(3(a,+b,)x")=3(a,+b,)i"=
= D(a,i"+b,i" =2 a,i"+ 3 b,i"=n(f(x))+n(g(x)). From f(x)g(x)=(3a,x")-
- (b, x")=3(Ja,b,)x%, where s+ t=gq, it follows that n(f(x)g(x))=3(Sa,b)i*=
=(2 a,i") (3 b,i")=n(f(x))n(g(x)). Consequently, n is a semiring homomorphism
and kern is a k-ideal in Z*[x]. If a€Z~, then n(a)=(a)i®=a and it is clear that
n(Z+)=Z+*. Thus, theonly constant in kern is 0. Since n(x*+1)=i2+1=0, it is
clear that x>+ 1 €ker n. However, 1£kern since n(1)=1=0 and it follows that ker y
is not a monic ideal.

The following computational lemmas will be essential for exploring non-monic
k-ideals in Z*[x].

Lemma 12. Let A be a k-ideal in Z*[x]. If f(x)=a,x"+ ...4+a,5 A and v is a non-
negative integer, then

1. (@, X"+ ... 4@ X 4 X L +a)P +(a;x)* €A and
2. (@ X"+ ... +8 1 X @ X+ +a) (@ X) € (f(X)),
where { f(x)) denotes the ideal generated by f(x).

Proor. If h(x)=a,x"+...+a. 1 x* +a,_x'"'+...+a, and g(x)=a;x* then
f(x)=h(x)+g(x). Since 4 is an ideal in Z*[x], it clear that [(/2(x))*+(g(x))*] f(x)< 4
and [h(x)g(x)] f(x)£A. Thus,

[(r())* + ((x)*] f(x) =
= (h())* f(x) + (g (x))* f (x)
= (h(x))*[h(x) + g(x)] + (g (x)*[A(x) + g(x)]
= (h(x)*+(g(x))*+(h(x))*g(x)+(g(x))*h(x)
= (h(x))*+(g(x))*+[h(x)g ()] [h(x) +g(x)]
= (h(x))*+ (g(x)P+[h(x)g(x)] f(x).

Consequently, (h(x))* +(g(x)P=(a,x"+...4+ @1 X T +a;_y X'+ ... +a,)P +(ax)yc 4
since A is a k-ideal. In a similar manner it can be shown that (g, x"+...+a; . X' 7' +
@ X+ a)) +(a;x) €A for ve{0,1,2,...}. Using integral coefficients,
it is easy to see that

(h(x))*+(g(x))?
= [h(x)+g ()] [(A(x))*—h(x)g(x)+(g(x),)*]
= f()[(h(x))*—h(x)g(x)+(g(x))*]4 (f(x)),

since [(/#(x))*—h(x)g(x)+(g(x))*]4 Z*[x]. Similarly, it can be shown that (h(x))* +
+(g(x))*"¢{f(x)) for v£{0, 1,2, ...} and the proof is complete.

To find a clue about the structure of non-monic k-ideals in Z~[x], Example 11
wil be explored further with the aid of the following:

Lemma 13. If f(x)€Z*[x] and f(i)=0, then f(x)=(x*+1)g(x)+...+
+(x¥"+2 L 1)g.(x) where g;(x)€ Z*[x] for each i.
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Proor. Without loss of generality, assume the degree of f(x) is even and
S =A(x)+f2(x) where fi(x)=ayx¥+ay_ox¥ *+.. . +a;x*+a, and fo(x)=
=dg 1 X¥ 1t ay_3x¥ 3+ . +ay;x3+a,x'. Since f(i)=0, it is clear that f,(i)=
=£,(i)=0. If f;(x) has p terms and a,,_, 0, then either (1) ay,=ays _q, (2) Go<as, _»
or (3) Gg>ay _s. If Gy =as,_s, then @o, Xx¥ + a5 o X¥ 2=ay x¥~2(x*+1). If ay<ay -,
then there exists ay_,€Z7* such that @, +az_;=a,_, and consequently, a, x*+
+ Ay g X¥ =ag X¥2(x2+ 1) +ay _ox¥ 2% If aGy>ay_,, a similar argument shows
Qo X% + gy _ o X¥ 2= X¥ + Ay _ o Xx¥ ~2(x2+ 1). Ineither case, f; (x)=(x*"1*2+1)g,, (x) +
+ R,(x) where g,,(x)€Z*[x] and R,(x) has at most p—1 terms. If a,_,=0, it is
clear that the same result can be obtained using ay_,. If R,(x)=0, the proof is
complete. When R,(x)#0, there are three possibilities for each of the above three
cases. An example of one of nine new cases follows: if a,,>a, _, and a;,<a,, _,,
then there exists a3 _,€Z* such that a;,+as_g=ay._s and consequently a, x¥+
Qg o X¥ 24y ¢ X¥O=(X2+ 1)y o X¥ 24+ (X0 + 1) a3 X¥ %+ a' " x% %, It can be
shown that similar expressions exist in the other eight cases, and consequently,
Si(xX)=(x"* 24 1) gy (x) + (X224 1) g0 (x) + Ry (x) where gy;(x), Ry(x)€Z*[x] and
Ry(x) has at most p—2 terms. Since p is finite and f;(i) =0, it is clear that this procedure
can be continued only a finite number of steps to obtain fi(x)=(x*"1*24+1)g,,(x)+ ...
et (X241 1) g, (x) where gy;(x)eZ*[x]). Let n=max{n,, n, ..., n,}. After re-
indexing and considering the possibility that some g,;(x) may equal O, one has
L[i)=(x2+ 1D g () +(x*+ D g (x)+... +(x*"*+241)g,,(x). In a similar manner it can
be shown that fo(x)=(x2+1)gs (xX)+(x0+1)ges(x)+...+(x"*2+1)g,,(x). Con-
sequently, f(x)=(x*+1)g;(x)+(x*+1)gg(x)+...+(x"*2+1)g,(x) where g;(x)=
=gu(x)+gu(x)€Z* for each i.

Returning to Example 11, let Ay=(x2+1), 4, =(x*+1)+ 4, ..., 4, ="+ 1) +
+A,_q, ... and let A=UA4;. It is easy to see that {4,;} is a proper ascending chain
of ideals in Z+*[x]. Assume A, is a k-ideal in Z*[x]. Lemma 12 implies (x*"+?)3+1€4,,
since x*"*24+1€4,. However, it is easy to show that (x***+2)3+144,, a contra-
diction. Therefore, 4 is the union of a proper ascending chain of non k-ideals.
If f(x)€ A, then there exists p£Z* such that f(x)€A4, and it follows that f(x)=
=(x*+1) fo(x) + (x5 +1) f1(x) + ...+ (x**2 4 1) f(x). Since

nf(x) = n(n+ Dn(f(x) +1(x*+ Dnfi(x) + ... +n(x***2+ 1)nf,(x)
= 2+ 1) L)+ @+ D A +...+ (72 +1) £,(0)
= 0+£,(i))+0+ fi(i)+...4+0- £,(i) = O,

it follows that f(x)ckern and consequently, 4Ckern. On the other hand, if
f(x)€ker n, then q(f(x))=f(i)=0 by Lemma 13

f(x) = (2+Dg () +(xF+1)go(x)+ ... +(x¥" 24+ 1)g,(x).

Therefore, ker < A and it follows that ker n=A. This shows that the example of
a non-monic k-ideal considered in Example 11 is the union of a proper ascending
chain of non k-ideals.

Theorem 14. If A is an ideal in Z*[x] with a finite basis B, where B does not
contain any monomials, then A is not a k-ideal.
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PROOF. Assume that A is a k-ideal and B={g,(x), ..., g(x)} is a finite basis
for A where B does not contain any monomials. If f(x)=a,x"+a,_,X""P+...+ay€
£Z7[x] where @;=0 for n—1=i=n—p+1, define a function § mapping Z+*[x]
onto Z* by S(f(x))=n—(n—p)=p. Suppose S(g;(x))=c; and c=max {c,, ¢y, ..., C,}-
When f(x)€A4 and S(f(x))=p, Lemma 12 implies f,(x)=(a,x")* +(a,_,x" 7+ ...+
+ag)* €A for 1€{0,1,2,...}. Since p is fixed and S(f,(x))=3"p, it is clear that
{3*p} is an increasing sequence of positive integers. Consequently, there exists
a 7 such that 3*p=c. It is clear that

(1) Ji(x) = (@, X")" +(a,-p X" " P+... +ag)*
= Iy (x)g1(x)+ o (x) g2 (X) + ... + 1, (X) g, (X),

since f,(x)€A. It is clear that S(f,(x))=3"p. Since (a,x")*" appears on the left hand
side of equation (1), at least one of the products, say A4;(x)g;(x), must produce a term
of degree 3*n. It follows that g;(x)=b,, x™+b,,_ . X" Ci+...+b,, since S(g;(x))=c¢;.
Moreover, /;;(x) must have a term of the form px*"-™ and px*"~"g,(x)=pb,, x*"+
+Pby— o, X 4. +pbyx* "™ is a part of the product /;(x)g;(x). Consequently,
the right hand side of equation (1) contains a term of degree 3*m—c¢;. Since
c=max{c, 3, ..., ¢,} and 3p=c¢, it follows that (2) 3*n=3"n—c;=3'n—c>3n—
~3*p=3"(n—p). The second highest degree term appearing on the left hand side
of (1) is of degree 3*(n—p), since S(f,(x))=3"p. However, a term of degree 3'n—c¢;
cannot appear on the left hand side of (1) because of (2), a contradiction.

Corollary 15. If A is a k-ideal in Z*[x] and A does not contain any monomials,
then every basis for A is infinite.

The results arising from Example 11 will be generalized in the following:

Theorem 16. Let A be a k-ideal in Z*[x). If A does not contain any monomials,
then A= _A; where {A;} is a proper ascending chain of ideals and A, is not a k-ideal
for each icZ+.

Proor. It follows from Corollary 15 that 4 has an infinite basis, say B=
= {gU('\')a &1 (x)., r g gn(x): } Let A0=<gﬂ('\.)>9 Al= <gl (J’)>+Ao, k! An=<gn("')>+
+A,_q, .... Corollary 15 implies {4,} contains an infinite number of distinct ideals,
and Theorem 14 guarantees that 4; is not a k-ideal for each 7 and the result follows.

It has been shown that a k-ideal in Z*[x] is monic if and only if it has a basis
consisting of only monomials. It has also been shown that a k-ideal that does not
contain any monomials can not have a finite basis. In the first case the basis consisted
of only monomials, while in the second case the basis was void of monomials.
It has been shown that an ideal with a finite basis void of monomials is not a k-ideal.

It may appear at first glance that an ideal having a *“mixed”, irredundant,
finite basis is not a k-ideal. However the following two examples will show that an
ideal in Z*[x] having a “mixed”, irredundant, finite basis, may or may not be
a k-ideal.

Example 17. Let A=(f(x)), where f(x)=2x'+4x% let B=(8x% 4x% 2x%)
be the ideal generated by {8x?% 4x®, 2x°} and suppose C=A4+ B. It can be shown
that B is a monic k-ideal in Z*[x]. In ordcr to show that C is a non-monic k-ideal,
the following four properties of C will be needed.
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Property 1. Let h(x)=a,x"+...+a,€ Z*[x]. If a,=1, then h(x)f(x)¢B. If a,=1,
then A (x) f(x)=f(x)+h’(x) where i’ (x)€B.

PRrOOF. Since xf(x)=2x*+4x3¢B and pf(x)=2px*+4px*cB when p=>1, it
follows that a;x'f(x)€ B and h(x)f(x)€B if ay#1. If a,=1, then
h(x) f(x) = (a,x"+...+a,x+1) f(x)
= (@, X" +...+a,%) f(X)+f(x)
= h'(x)+ f(x) where i’ (x)€B.

Property 2. 1If g(x)€C, then g(x)€B or g(x)=f(x)+g"(x) where g’(x)<B.

Proor. If g(x)€C, then g(x)=h(x)f(x)+k(x) where k(x)€B. Letting h(x)=
=a,x"+...+ ay, it follows from Property 1 that & (x) f(x)€ B or h(x) f(x)=Ff(x)+h"(x)
where /’(x)€ B. Consequently, g(x)=h(x) f(x)+k(x)€B or g(x)=h(x)f(x)+k(x)=
=f(x)+h (x)+k(x)=f(x)+g"(x) where g'(x)=h"(x)+k(x)€B.

Property 3. If g(x)€B, where g(x)=0, then g(x)+f(x)<B.

PrOOF. Assume g(x)+f(x)€B. Since B is a k-ideal in Z+*[x], it follows that
f(x)€ B, a contradiction.

Property 4. If g(x)+f(x)€B, then g(x)=f(x)+g’(x) where g’(x)£B.

PrOOF. Let g(x)=a,x"+...+agx"+azx*+a,x* and suppose g(x)+f(x)EB.
Since g(x)+ f(x)=a, X" +...+ (a;+ 2) x*+ a; x* +(a,+4) x2it follows that a,+ 2€ B, =(4)
and a,+4¢B,=(8), where B, and B, are coefficient ideals of B. Consequently,
a;=4k+2and a,=8m+4 for some k€Z+ and meZ+*, Therefore,

g(x) = a,x"+...+(@dk+2)x +az; ¥ +(8m+4)x2 =
= @, x"+ ... +4kx* + a, X3+ 8mx2 4+ 2x* +4x2 = g’ (x) +f(x).

Since B is monic, it can be shown that g’(x)€ B.

Suppose g(x)€C and /h(x)cZ~*[x] such that Ah(x)+g(x)cC. It follows from
Property 2 that g(x)€ B or g(x)=/f(x)+g"(x) where g’(x)€ B, and that i(x)=g(x)cB
or h(x)+g(x)=f(x)+k(x) where k(x)<B.

Case 1. If g(x)€B and g(x)+/h(x)€B, then h(x)€B, since B is a k-ideal.

Case 2. If g(x)€Band g(x)+h(x)=f(x)+k(x), then it follows from Property 3,
that /1(x)< B. Consequently, /(x)=f(x)+h"(x) where #'(x)cB and it follows that
h(x)eC.

Case 3. If g(x)=f(x)+g"(x) and g(x)+A(x)€B, then g(x)+h(x)=f(x)+g"(x)+
+h(x) and since B is a k-ideal, it is clear that f(x)+/(x)<B. Consequently, by
Property 4, h(x)=f(x)+h"(x) where 4" (x)€ B and it follows that /#(x)€C.

Case 4. If g(x)=f(x)+g'(x) and g(x)+h(x)=f(x)+k(x), then f(x)+g'(x)+
+h(x)=f(x)+k(x) and consequently g’(x)+Ah(x)+k(x)€B. Since B is a k-ideal,
it follows that h(x)e B C.
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In either case #(x)<C and C is a k-ideal. It is easy to see that C is not a monic
ideal. Therefore C is a non-monic k-ideal with a finite basis.

Example 21. Let A=(2x*+4x*), B=(8x*), and C=A4+ B. Since 2(2x*+4x¥)=
=4x*+8x*<C and 8x2<C, but 4x*4 C, it follows that C is not a k-ideal.
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