A new algebra of distributions; initial value problems
involving Schwartz distributions II.

By GREGERS KRABBE (West Lafayette, Ind.)

§ 3. The operational calculus

Let €= be the linear space of all the complex-valued functions which are infinitely
differentiable on R. Further, let W be the linear space of all the functions w() in
%= such that w*'(0)=0 for each integer k=0. For example, if g( ) is the function
defined by ¢(0)=0 and

(3.1) g(x) = exp [__YI]] (for x=0),
then I
(3.2) g( ) belongs to W.

An operator is a linear mapping of Winto W. If A is an operator and if w( )éW,
we denote by .4Aw( ) the function that the operator 4 assigns to w( ).

3.3. The space =/. Let o/ be the space (denoted ./, in [7]) of all the operators
A such that the equation

(3.4) AWy Awg) () = (Aw)Awy()

holds whenever wy( ) and wy( ) belong to W. The operation /\ was defined in 2.33.
The linear space ./ is a subalgebra of the algebra of operators, multiplication
being defined in the usual way: the product 4,4, of two operators is determined

by the equation
Ay Aaw() = A (Aw)() (for w() in W).

In fact o/ is a commutative algebra [6, 1.38] and &/ contains the differentiation
operator D defined by

(3.5) Dw() = w() (for w( ) in W):

see [6, 1.30]). Let / be the identity-operator defined by .Jw( )=w( ) for every w()
in W: the operator 7/ is the multiplicative unit of the algebra /.
If f( )¢ # we denote by f the mapping defined by

(3.6) Jw() = fAW() (for w() in W);
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it can be proved that f'is an operator, called the operator of the function f( ); in fact,
fe€sf (see 1.34 in [6]). The identity-operator [ is the operator 1 of the unit constant
function 1() defined by 1(¢)=1 for tcR (see [6, 1.29]); thus,

(3.7) 14 = A4 = Al (for A in 7).

Moreover, the transformation f( )—f is a linear injection of # into o/ (see
1.34 in [6]).

3.8. Reorientation. We shall define a linear injection R—R! of B into 7 such that

(3.9) =rs (when f()€F),
(3.10) [F® S| = FID™'§! (for Fand S in B),
(3.11) (11°® S)t = DSt (for S in B),
and

(3.12) o = Dl,.

We begin with some preliminary definitions and lemmas,
3,13. Lemma. If w( )¢ W then both w_() and w.( ) belong to €=.
PrOOF. Let k be any integer =1. Since

(k=1) —wik=1)
W (0) = lim X —O-"2 "0

t—0

the equation
. wk=1(p)
@ Gt e

is an immediate consequence of the fact that w("(0)=0 for each integer n=0. Set
fiO)=w_() and fy()=w.() (see 2.34—2.35). Suppose that 1=m=2: we must
prove that /;%(7) exists for any ¢ in R. Since £;¥'(¢) exists for r=0, it will suffice to
prove that £ (0)=0. Since £ (0)=0, we proceed by induction on k. To that effect,
assume that £*-1(0)=0, which implies that

k- ()0
=T

(3) £ (0) = !139 0:

the second equation is obtained by noting that £%~V(t)/t either equals 0 or it equals
wk=1(t)/t (and using (2)). This completes the induction proof of the equation
S¥(0)=0 for each integer k.

3.14. Definition. Let €% (respectively, €5 ) be the linear space of all the
Sfunctions in €= which vanish on [0, <) (respectively, on (— ==, 0]).

3.15. Lemma. If w( )W then w_( €= and w.( )€ : moreover, W=%€2~+€%.
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PrOOF. The two properties w_( )%= and w,()<% 7 are immediate from 3.13 and
2.34—2.35. Since both ¥~ and ¥¢< are subsets of W, we only need to prove that
W is a subset of €= +%%. To that effect, take w( ) in W and note that w( )=w_( )+
+w,() (by 2.34—2.35): the conclusion w( )£¥>=+%< is now immediate from the
fact that w_( )€€~ and w,( )€ 67.

3.16. Lemma. There is a bilinear mapping

(3.17) (x(), T) = 2O T( )%
of the cartesian product €% X B, into €7 such that
(3.18) [T = [a]°*T.

PrOOF. Suppose that «( )c¥¢%. If x€R, let «,() be the function defined by
%, (t)=a(x—t) (for teR). If T¢B . we denote by o0 7T() the function defined by

(4) a0 T(x) = T(x,) (for xeR).

Since the supports of [%]° and 7 are both contained in [0, =), these distributions
satisfy condition (3) in [4, p. 383]: we may therefore apply Proposition 1 in [4, p. 402]
with s=ec=7: what is there called E* and E*~' becomes ¥* (see [4, p. 440]); further,
D’s becomes D’; noting that a% 7 is what we denote by [x]°# 7, Proposition 1
states that [x]° # T(x) equals the righthand side of (4): consequently, [« T]°=[«]"* T.
Having thus verified 3.18, we can use the second assertion in Proposition 1 [loc cit.]
to state that

(5 a0 T() belongs to €.

Since both O([2]°) and O(T) contain the interval (—==,0), it follows from
2.8 that

O([«]°*T) D (—==,0),
whence the relation O (x [ T) > (— ==, 0) now follows from 3.18: combining with (5),
we conclude that «[ 7°( ) belongs to €.

In consequence, we have established that the mapping 3.17 is into €73; it is
readily inferred from 3.18 that it is a bilinear mapping.

3.19. Theorem. There is a bilinear mapping

(3.20) (R,w()) — RAaw()EW

of the cartesian product BX W into W such that

(3.21) [RAW] = R®[w]° (for w() in W),
and

(3.22) RAg() =0 implies R =0,

where q() is the function defined by 3.1.

2D
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PrOOF. Suppose that R<®B. If w()eW it follows from 3.13 that w. ()<%<;
we may therefore set x=w_ in 3.16 to infer that

(4))] w; OR, () belongs to €% (since R, €8B.),
and
(2) [WeORL] = Ry % [w,]%

the last equation is from 3.18 and 2.9.

Since wl(x)=w_(—x)=0 when —x=0, we see that w( ) vanishes on (— ==, 0):
this function w>( ) therefore belongs to ¥<. On the other hand, R_€8B_, so that
O(R_)>(0, =), whence

O (R). D (—==,0) (by 2.6).
Thus, w2 ()e%45 and RZ<B.: from 3.16 it therefore follows that
(3) w_JRZ() belongsto €%
and
4) [wZ ORI = R = [w]°:
the last equation is from 3.18 and 2.9. From (3) it follows easily that
(5) (w_R.)" belongsto €=,
We now define the function R~ w( ) by the equation
(6) Raw()=—w_ORI) ()+w, DOR.().

From (1), (5), (6), and 3.15 it follows that R/ w( ) belongs to W: it is now
easily verified that the mapping 3.21 is bilinear. It remains to prove 3.21—3.22.
In view of 2.3, Equation (6) implies that

[Raw]® = —[w_ ORI +[w,OR,]°
so that (4) and (2) give
(7N [RAW]® = —(RZ #[w_]%)" + R, »[w.]"
From (7), 2.3, and 2.12 we see that
[Raw]® =—R_*[w_]+R, =[w,]

Conclusion 3.21 now comes from 2.18 and 1.28. Finally, suppose that R2 ¢()=0;
therefore,

(8) 0=(R29):+()=¢g:+:0R:()
and
9) 0=(R29)_-()=@-.ORI)():

the right-hand equations are immediate from (6), (5), and (1)—(2). From (8)—(9)
and 3.18 we see that

(10) [g:)'*R, =0=[g_]"+R_;
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but [¢.]" and [¢]" belong to the Schwartz space D’ , which has the property that
A% T=0 implies T=0 whenever 40 (see [8, pp. 172—173]); since [¢.]°+~0 and
[¢21°=0, the conclusion R, =0=R> now come from (10): since RZ=0 implies
R_=0 (by 2.4), we have R_=0=R,, whence our conclusion R=0.

3.23. Definition. If R<B we denote by R® the mapping that assigns to each
w( ) in W the function R/ w().

3.24. Remark. If w( )¢ W then R 2w W (by 3.20); therefore, R4 is the operator
defined by

(3.25) R2w()=Raw() (for w() in W).
From 3.21 we see that
(3.26) [[R2W]° = R®[w]° (for w() in W).

3.27. Lemma. If R<B then R4cdd.

PROOF. In view of 3.24, it only remains to verify that 3.4 holds in case 4=R2,
The equations

(1) [R2(w; Awp)]® = RD[wiAws]® = R([w1]°@[w,]?)
are from 3.26 and 2.32. From (1) and 2.28 it follows that
(2) [.R2(w; Awp)]° = (RR[W])D[w,]® = [.R2 w,]"@[w,]°:

the last equation is from 3.26. From (2) and 2.32 we see that
[.R2(wy A wy)]® = [(.R2wy) A wy)®;
in view of 1.11. the conclusion

RE(wy/A\wg)() = ((Rewy) A\ wy()
1s now at hand.

3.28. Lemma. If F and S belong to B, then
(3.29) (F®S)2 = Fo 85,
Proor. For any w( ) in W it follows from 3.26 that
L(F2S)2w] = (FRS)@WP = F(S2[W])
consequently, two more applications of 3.26 give
(3) [(F® S)2w]° = FQRL.S2w]® = [.FA(.S2w)]°.
From (3) and 1.11 we therefore have
(F@8)2w() = .FA(.S4w)() = (FAS%)w():

the last equation is from the definition of multiplication of operators. Since w()
is an arbitrary element of W, the proof is completed.

3.30. Definition. If R¢B, we set R*=R4D.



196 G. Krabbe

3.31. Remark. Since D and R4 belong to the algebra 27 (see 3.3 and 3.27),
we see that R'€.<Z. Let us verify that

(3.32) [LRW]" = R®[w]° (for w()eWj:
indeed, the equations
[[R'W]° = [.R2(.DW)]* = [LR2W']* = RQ[W]°

are from 3.30 and 3.26.

3.33. Theorem. If F and S belong to B, then
(3.34) [F®RS) = FID™1S.,

Proor. The equations

[FRSI* = |F®S]4D = (FAS4)D = (F~D)D~' (54 D)

are from 3.30, 3.29, and the associativity of the algebra ./; another application
of 3.30 now gives 3.34.

3.35. Theorem. If f( )cF then
(3.36) 1" = r
ProoF. If w( )€ W the equations
[L/1%]° = [/P@WT = /AW = LAw"

are from 3.32, 2.32, and 3.6. From 1.11 it therefore follows that .[ f]'w( )=.fw();
since w( ) is arbitrary, Conclusion 3.36 is at hand.

3.37. Remarks. If f( )€# we can combine 3.36 with 3.34 to obtain

(3.38) (/1°®S) = fD7'S* (if S£B).
Setting f()=1() in 3.38, we obtain

(3.39) (1°® S)* = 1D-1§! = D-1§1;

the second equation is from 3.7. Setting S=4 in 3.39, we obtain ([1]°®4)' =D"15;
consequently, the equations

4) o' = D([1'®9d)* = D(d[1]")' = D[]}
are from 2.27 and 2.29. From (4), 1.28, and 3.36 it follows that
(3.40) ot = Dl,.

3.41. Theorem. The transformation R—~R' is a linear injection of B into oof.
In particular,

(3.42) TP = S? implies T = 8§.
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ProoF. The linearity follows directly from Definitions 3.30 and 3.25 (the
bilinearity property is stated in 3.19); the fact that R'€./ was verified in 3.31. To
prove 3.42, set R=T—S: the hypothesis R'=0 implies R4 D=0 (by 3.30); right-
multiplying by D! both sides of this equation, we obtain R2 =0, whence .R2¢( )=0
(since g( )€ W: see 3.2), whence R2¢()=0 (by 3.25), whence the conclusion R=0
now comes from 3.22.

3.43. Reorientation. We have now proved all the properties announced in
3.9—3.12. We now prepare for §4. If k=0 we denote by Y,,,() the function
defined by

k
(3.44) Yiiilt) = % (for 1€R).
It is not hard to prove that
D :
(3.45) Y.ﬁ+l = W (See 4.5) mn [7]).

3.46. Lemma. If G¢B and n=1 then 0"([Y,]’®G)=0G.
ProoF. Since Y,()=1(), we can use 2.31 to obtain

(1) A([Y1]°®G) = G.
Next, observe that the equations
[11°2([Y,)°®G) = ([1I°®[Y,)RG = [I\Y, ]G
come from 2.28 and 2.32; since 1A Y,()=1Y,+1() (see 2.33 and 3.44), we have

(2) [1°Q[[YJ'®G] = [Y,+1]°®G.
The equations
(3) PH([Y,+1'@6) = " ((1)°R[[Y,I’'® 5]) = #"[[Y,]’®G]

are from (2) and 2.31 (with S=[Y,]°®G). The property 9“([Y,]°® G)=G holds for
k=1 (by (1)); it holds for k=n+1 whenever it holds for k=n (by (3)): therefore,
it holds for every integer k=1.

§ 4. Initial values of distributions

The following notation and terminology was introduced in [6]. 4.1.
Suppose that a<0 and A</ (see 3.3). We say that A agrees with B on the
interval (a,0) if B¢/ and

Aw(r) = Bw(t) (fora = t = 0 and any w() in W).

The relation 4 B means that there exists some number a<0 such that A
agrees with B on the interval (a, 0).
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4.2. The space #,,. As in [7], we denote by Z,, the family of all the elements
B of s/ such that the relation fc B holds for some f() in #. Recall that f is the
operator of the function f() (see 3.6).

4.3. Remark. In consequence of 4.1—4.2, we can say that B£ 4, if (and only if)
B¢ of and there exists a function f( ) in # and a number a<0 such that

Bw(t) = .fw(t) (fora =t < 0and w()eW).

4.4. Derivable operators. An operator B is said to be derivable if B<s/ and
if the relation fc B holds for some f( ) in # such that [f(0_) <-<=. If B is derivable,
there exists a unique complex number (B, 0_) such that the equation (B, 0_)=/(0_)
holds for some function f( ) in & such that fc B (see [6, 5.0]). We set

4.5) 9,B = BD—(B,0_)D.
We define 9}'B recursively by the equations d{B= B and 9; *'B=0,(0} B).
4.6. Remark. If f( )€# and if |f(0_)| <<= then (f,0_)=/(0_): see 2.17 in [7].

4.7. Reorientation. One of our aims is to prove that the transformation R—~R"
is an injection of B into #,. Our main result will be obtained by relating distri-
butional derivation R—dR to the operation B—d,B (on operators): as we shall
see, if R is an arbitrary distribution such that dR< 3B, then R<®B, the operator R! is
derivable, and (AR)'=a,R'; moreover, it is natural to consider (R, 0_) as the
initial value (denoted R(0_) in the Introduction) of the distribution R.

4.8. Lemma. If X<Z,, then X/|D is derivable, and <%, 0_> =0.
ProoOF. Set G=1 in [7, 3.5].
4.9. Theorem. If FCB then F'c€4,.

Proor. From 1.20 and 1.18 it follows the existence of a function f( ) in & and
a distribution L in (%) such that

(h Fl=[fI"+L['+F!.

We intend to prove that f— F!. Take any w( ) in W. From (1) and 3.36 it fol-
lows that

2) Fiw() = w()+(Lw()+.Fiw()).
On the other hand, 3.32 gives
(3) [[L'w+.Fiw]’ = LR[W]°+ F,. Q[w]°.

Since Le(Z) it follows from 2.24 that L&[w']" belongs to (£). so that 1.16
therefore insures the existence of a number a<0 such that

(4) O (L3[w]") D (a, =).
Next, observe that F, @[w’]° belongs to B, (by 2.23), so that
) O (F, W] > (—==,0) (by 1.13).
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Combining (3), (4), and (5), we can use 1.6 to obtain
O (L.Lyw+.Fiw]®) D (a, )N (=2, 0) = (a, 0).

Thus, .L'w+.F!w]° equals 0 in (a, 0), whence .L'w( )+ F1w( )=0 on the interval
(a,0) (by 1.11); since the functions are continuous we therefore have

L'w(t)+.Fiw(@) =0 (fora <=1t <0);
consequently, (2) gives

(6) © JFPw(t) = . fw () (fora =1t < 0).

Since w( ) is an arbitrary element of W, Equation (6) states that the operator
Jf agrees with F! on the interval (a, 0): therefore, f— F'. The conclusion F'<£4Z, is
now immediate from Definition 4.2.

4.10. Theorem. If R is a distribution such that OR belongs to B, then R also
belongs to B, the operator R! is derivable, and 9, R*=(0R)".

PRrOOF. In view of our hypothesis dREB, we can set S=dR in 2.31 to obtain
A([11°®0R) = IR:

thus, both [1]°®9R and R have the same derivative: therefore, they differ by a
constant function [4, p. 328]; thus. there exists a number ¢ such that

(1 R = [fI'+[1]’®@3R,

where f.() is the constant function f.( )=c. Since dR belongs to B (by hypothesis),
it follows from (1) and 2.20 that R<9B (recall 1.27). From (1) and 3.39 it results that

(2) R =[f]"+ (3R) (r”i')l

=fot

the second equation is from 3.36. Since f; is the operator of the constant function
f.()=c, it follows from 4.6 that

3) (fer 0_) = c.

Note that (dR)' belongs to 2, (by 4.9 and our hypothesis JR€B); we may
therefore set X=(dR)! in 4.8 to obtain

/ 1
@ (50-)=0
From (2), (3), and (4) we see that

1
(R,0.) = (f., 0.0+ <‘3R’ 0. > S0 e
Therefore, 4.5 gives

O,R' = DR'—cD = D[f}+ (s

—f.D = (OR)":

the middle equation is from (2). Thus, the conclusion d, R'=(AdR)" is at hand.
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4.11. Lemma. Let F be a distribution. The implication
(5) "FcB  implies 0} F' = (0"F)!
holds for every integer v=0.

Proor. Clearly, (5) holds for v=0. To proceed by induction, assume that (5)
holds for v=k—1:

(6) H-1FcB  implies I-1F! = (9~1F).

Let us prove that (5) holds for v=k. If )*F<®B then A(@*~*F)eB, so that
4.10 gives

(7) 0*~'F belongsto B

and

(8) (" F) = [9(9* 1 F)
From (7) and (6) we see that

9) 0,(0F~1FY) = 9,(d*1F):

combining (9) with (8), we obtain 9} F1=[d(*~*F)]'. Thus, (5) holds for v=k when
it holds for v=k—1.

4.12. Lemma. Let F be a distribution. If m is an integer =1 such that 9™ F<B, then

(4.13) 0'FeB and OJF' = ('F) for0=v=m.
Proor. First, suppose that 0=v=m—1. Let us prove that
(10) *"*1FeB  implies 9'FeB.

To that effect, observe that the hypothesis (9***F¢ B) gives d(90"F)€B, whence
the conclusion 9*'F<®B follows immediately
4.10. Consequently, we have proved that

(11) 0=v=m—1 and 0'F¢B implies 9**1F¢B.

Next, let M be the set of all the non-negative integers v=m such that 0"F¢B:
since " F<®B (by hypothesis), we have m¢ M, whence
(12) véM impliess 0 =v=m—1

In view of 4.11, our conclusion 4.13 can be obtained by proving that
(13) 0=v=m implies 0"FcB.

We shall prove (13) by contradiction: if (13) fails, then M is a non-void subset
of the positive integers: it therefore follows (from (12)) the existence of an integer
(14) v = max M (see [3, p. 64]).

Since ve M, it follows from (12) that 0=v=m—1. Since véM, we have 0"F¢(B:
from (11) it now follows that 9" *'F¢®B. Consequently, 0=v+1=m and 9" *'F¢B:
therefore, v+ 1 belongs to M, which contradicts (14). This contradiction establishes
(13): from (13) and 4.11 now follows 4.13.
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§ 5. The main result

Throughout this section, u is a polynomial g, (k=0, 1, 2, ...) of degree m=1
(that is, u is a sequence of complex numbers such that y, =0 and y,=0 for k>m).
As usual,

(5.1) (D) = pg+mD+...+p, D"
If u is a distribution we set
(5.2 p@u = pou+pou+ ...+ p,0™u.

If / is a polynomial whose degree is smaller than m, we denote by g*() the
unique continuous function #,,( ) such that DAi(D)/u(D)=h,, (see [7, 5.4]):

A(D) 5wk
u(@) &

5.4 Remark. In the particular case where 4 is the polynomial such that A(D)=1,
we set g, =g}, so that

(5.3)

(5.5) I(DF) g
If S£9B then
Sl

(5.6) —oy = Lisr®sT.

To prove 5.6 it suffices to note the equations

[[gﬂlﬂ@'g]l = g”D—ISl — ;_(_IL_)D-ISI P “_‘(S;)_)_

come from 3.38 and 5.5.

5.7. Lemma. If S¢B the equation
(5.8) F=[g]'®S
determines a solution of the initial-value problem
(5.9) (OFFL0_)=0 (forO0=k =m-1)
and
(5.10) w@F = S;
moreover,
(5.11) FeB and o0'FeB forall v = m.

ProoF. From 5.8 and 5.6 we see that

Sl

(1) P e
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so that 5.9 is obtained by setting B=S" in [7, (5.7)] (the property B£Z#, comes
from 4.9). It only remains to prove 5.10—5.11. From (1) and [7, (5.8)] (again with
B=S§") we also obtain
(2) u(o,) F* = S

Next, the equations

D™ st [ 1 ] St
Fl=—— = |—+g, D7 | —
D) D>* " (" ® D,
are from (1) and [7, (5.5)]; therefore,
D 1
L e L) AL -1¢Q1
3) F' = 2D [#ms +g,D s]
now set
|
4) - u—S+[g..,]“8 S.

From (4) and 3.38 we obtain G'=p,'S'+g, D~'S*: substituting into (3), we can
use 3.45 to write

(5) F! = Y ,D~'G! = ([Y, ]°®0G)':

the last equation is from 3.38. Since g,()c# we have [g,]°¢B (by 1.27), so that
[2,.]°® S belongs also to B (by 2.20); since S¢B it now follows directly from (4) that
(6) G belongs to B.

In view of (6), we see that [Y,]°®G belongs to B (by 2.20); since F<B (by 5.8 and
2.20), we can therefore apply 3.42 to (5):
(7 F=[Y,]'®G (from (5)).

From (7) and 3.46 it now follows that d"F=G: since G£9B it results from
4.12 that

(8) 0'FEB and (@F)=0d/F' (or0 = v =m).
From (8) and 5.2 we see that
©) (H@)F) = p(@) F* = S*:

the second equation is from (2). From (8) it also follows that u(d)F belongs to B,
we may therefore use 3.42 to infer from (9) that u(d)F=S.

This establishes 5.10. Conclusion 5.11 is immediate from (8), and 5.9 was
verified at the beginning of this proof.

5.12. First main theorem. Suppose that S<B. If u is a distribution such that
w(@u=S, then ucB,

(5.13) Huc®B, and (u)' = dHu' (for 0 = k = m);

moreover,

k=1
(5.14) (@u)t = D*ut— 3 Oyur, 0D~ (for | =k = m).

vm]
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PrOOF. Let F be as in 5.8. Since u(d)F=S and u(d)u=S it follows from [4, p.
328] the existence of a polynomial p() of degree =m—1 such that w=F+[p]":

consequently, u¢®B and
™u = 0" F+0™[p]° = O"F:

the last equation is from the fact that 9™[p]®=p™ =0 (since the degree of p() is
ém—-l). Thus, 0™u=0"F : but 9"FcB (by 5.11), so that 9"u<B: Conclusion 5.13
is now immediate from 4.12. Conclusion 5.14 comes from 5.13 and [7, 4.1].

5.15. Second main theorem. Let ¢, (v=0,1,...,m—1) be given numbers. If
SEB there exists a unique distribution u such that

(5.16) u@u =8
and
(5.17) Ofut,0_)=c, (for0=v <m).

That solution u belongs to B, satisfies 5.13, and is determined by the equation
(5.18) u=[g]'®S+[gfl",
where g% () is the function determined by

1 n—1
5.19 i s oee. ¢, D",
ke I el

Proor. First, we verify the existence of a solution of the initial-values problem
5.16—5.17. Let y() be the solution of the initial-value problem

(1) Zm',uky“’(r) =0 (for teR)

k=0

subject to the initial conditions
(2) y®(0) = ¢, (for 0 = k < m).

It is well-known that such a function y() exists; in fact, y( ) is infinitely dif-
ferentiable; consequently, (2) and [7, 2.21] give

(3) (fy,0_) =¢, (for0 =k < m).
Since y( ) is infinitely differentiable, (1) implies that
(4) u@ D1 = 0.
Let F be the distribution defined by 5.8; we denote by « the distribution
(5) u = F+[y"
The equations
(6) H@u = pF+u@[y)P =S+0=S§
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are from (5), 5.10, and (4). On the other hand, (5) and 3.36 give u'=F'+4y:
consequently,

(?) {_0?“19 0—) = G)f Fl, 0_>+<a:‘y, 0-) = 0+C* = -

the last two equations are from 5.9 and (3). From (6)—(7) it follows that (5) defines
a distribution u satisfying 5.16—5.17.

Finally, we verify the uniqueness. If « is a distribution satisfying 5.16—5.17,
then (since S<3B) we can use 5.14 to obtain

m k-1
(@)u) = ,u(G)u‘—i;l' ™ ;‘; (0 ut, 0_)D*-v;

therefore, it results from 5.16—5.17 that
m k-1
St = u(D)r—- J uy J o, D*":
k=1 y=0
solving for !, we can use 5.19 to write

Sl
u(D)
the second equation is from 5.6 and 3.36. Thus, if « is a distribution satisfying
5.16—35.17, it follows from (8) and 3.42 that u is given by 5.18. From 5.12 it results

that u€%B and u satisfies 5.13. Since we have already verified the existence of a distri-
bution u satisfying 5.16—5.17, our proof is complete.

®) = —p-+gk = ('@ S+

§ 6. Particular cases

If =0 we denote by 7;( ) the function defined by

0 fort<b»
L= 1 fort=b"
If a<0 we set
¢ —1 fort=a
()= 0 fort=a

As usual, &, is the distribution defined by d,(¢)=o(x) (for each ¢() in D).
We set

(6.1) E= 3 bug:

this series converges in the topology of D'.
6.2. Lemma. E belongs to B and

(6.3) EB'=D ¥ Tu

k=—co
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ProOF. Note that E=A4+ B, where

=1 oe
A= 2 0y, and B = Zékk:t:
k=0

k= =00

It is easily verified that 4€(%)and BB, so that E€®B. Next, observe that 6, =d[T,]°
for any x in R; therefore, 6.1 gives

M) E= 3 lTwl =0UT,
where G
@ fO= 3 Tus() (see[8,p.37).

Since E€9B, the equations E'=9,[ f]"' =9, f follow from (1), 4.10, and 3.36; but
o.f=Df (by [6, 5.8]): therefore, E'=Df. Conclusion 6.3 now comes from [6, 4.12
(with g=1)].

6.4. First example. To find a distribution u such that
3) 0*u+u = E.

Since E€B it follows from 5.12 that uéB and (%) =ad}u'; consequently,
(3) gives
4 Rt =E'=D 3 Ty

k=—co

the second equation is from 6.3. The equation (4) is precisely the one that has been
solved in [6, 6.7]: the explicit solution is given in the introduction of the present paper.

6.5. Second example. In case S=0 and c¢,,_,=1/u,, with ¢,=0 for 0=k=m—2’
it follows from 5.18—35.19 that the solution of the problem 5.16—5.17 is given by
u=[g,]°. where g, () is the function defined by 5.5: it is the Green's function of the
problem.

6.6. Third example. In case S=4 and ¢,=0 for 0=k=m—1, it follows from
5.18 that the solution of the problem 5.16—5.17 is given by

u=[gJ'®6 = [g.J3:
the second equation is from 2.29; equivalently,

0 forr=20

= lg,,(r) forr = 0:

see 1.28 and 1.26.

6.7. Fourth example. In case BCB, then B=%8, (see 1.21); it follows from
2.22 that the equation 5.18 becomes

u = [gJ% * B+[gl"
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Added in proof. The results in this paper have been generalized by H. SHULTZ,
An algebra of distriburions on an open interval. Transactions of the American Math.
Soc. 169 (1972), 163--181.
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