Direct decompositions of lattices, rings,
and semigroups of continuous functions

By ROBERT L. BLAIR (Athens, Ohio)

1. Introduction

If X is a topological space, then C(X) will denote, variously, the lattice, ring,
or (multiplicative) semigroup of all real-valued continuous functions on X.

If X is the topological sum of a family (X,),¢ of subsets of X (or, more generally,
if (X,),c; is a pairwise disjoint family of open-and-closed subsets of X such that
| X, is strictly C-embedded in X), then it is easily verified that C(X) is lattice,
aclt
ring, and semigroup isomorphic to the (unrestricted) direct product [] C(X)).

acl
(A subset S of X is C-embedded (resp. strictly C-embedded) in X in case every
f€C(S) has an extension (resp. unique extension) in C(X).) In this note we prove
the following converse: If C(X) is decomposable as a product [] A, (of either
13
lattices, rings, or semigroups), then there is a pairwise disjoint family (X,),c; of
open-and-closed subsets of X such that (a) each A, is isomorphic to C(X,) and
(b) | J X, is strictly C-embedded in X; and if the cardinal of 7 is nonmeasurable,
I

then X= | X, (so X is the topological sum of (X,),c,) (see 3.1 below). This result,
2gl

for the special case in which C(X) is the product of rwo lattices, was proved by
the author and C. W. BurriLL in [2], Theorem B, and elegantly reproved by
S. D. SHORE in [7]. (In turn, Theorem B of [2] is a generalization of an earlier theorem
of KAPLANSKY [5], Theorem 2.) Our result, for rings, includes a theorem of S. WARNER
[8], p. 78. (Warner’s proof relies on a general theorem about characters of direct
products of algebras over an infinite field, due independently to Warner [8), Theorem B
and to BIALYNICKI—BIRULA and ZeLazko [1]. Our proof, obtained independently
before the publication of [8], is self-contained within the theory of rings of continuous
functions: for the latter, see [3].) The result for semigroups is an easy consequence
of that for rings.

If X is completely regular, then (b) above can be replaced by the more familiar
condition (b"): || X, is dense and C-embedded in X. If complete regularity is omitted,

acl

however, and if there is a measurable cardinal, then (b) cannot be replaced by (b")
(see 4.2). (We are indebted to A. W. HAGER for suggesting that explicit consideration
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be given to the case in which the cardinal |/| is measurable, and for proposing the
precise formulation of (b").)

In § 5 we show that our result leads to an equivalent formulation of Ulam’s
axiom (i.e., the assertion, known to be consistent with the usual axioms of set theory,
that every cardinal is nonmeasurable).

Except where specified, no separation properties will be required of X.

2. Preliminaries

We first summarize the definitions and results that will be needed from [3].
An ideal M of the ring C(X) is real in case the quotient ring C(X)/M is isomorphic
to the field R of real numbers. If p€ X, then clearly

M, = {feC(X): f(p) = 0}

is a real ideal of C(X). A completely regular Hausdorff space X is realcompact
in case each real ideal of C(X) is of the form M, for some (necessarily unique)
peX. (For equivalent formulations of realcompactness, see [3].)

A cardinal m is measurable in case there exists a countably additive {0, 1}-valued
measure u defined on the set of all subsets of a set S of cardinality m such that
u(S)=1 and u({x})=0 for every x€S. (If there is a measurable cardinal, then it
is known that the smallest such is strongly inaccessible.) For extensive discussions
concerning measurable and nonmeasurable cardinals, see [3; Chap. 12] and [6].

2.1. Proposition.

(a) [3; 8.10]. A closed subspace of a realcompact space is itself realcompact.

(b) [3; 12G]. If X is the topological sum of a family (X,),c,; of realcompact
subspaces, and if |/| is nonmeasurable, then X is realcompact.

(c¢) [3; 12.2]. Every realcompact discrete space is of nonmeasurable power.

2.2. Proposition [3; 8.7). If X is completely regular Hausdorfl, then there
exists a realcompact space vX (the “Hewitt realcompactification” of X) such that
X is ednse and (strictly) C-embedded in vX.

If YCX, then the restriction homomorphism ¢: C(X)—~C(Y) is defined by

e(N=/1Y(feCX)).

2.3. Proposition. Let X be a realcompact space, let (X,),.; be a pairwise
disjoint family of closed subsets of X, and let Y= J X,. If each X, is openin Y,if |/|

acl
is nonmeasurable, and if the restriction homomorphism ¢: C(X)—~C(Y) is bijective,
then X=Y.

ProoF. By 2.1 (a) and (b), Y is realcompact. If p€X, then (since ¢ is an iso-
morphism onto C(Y)) o(M,) is a real ideal of C(Y). But then o(M,)={fcC(Y):
Jf(q)=0} for some g< Y, and obviously p=q. Thus X=Y.
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3. Decompositions of C(X) as a lattice, ring. and semigroup

We can now state the main result:

3.1. Theorem. Let X be a topological space, let (A,),.; be a family of lattices
(resp. rings, resp. semigroups), and assume there is an isomorphism ¢ from the direct

product A= [[ A, onto the lattice (resp. ring, resp. multiplicative semigroup) C(X).
acl
Then there is a pairwise disjoint family (X,),¢; of open-and-closed subsets of X such

that (a) each A, is isomorphic to C(X,) (by an isomorphism described explicitly below)
and (b) UX is strictly C-embedded in X. Moreover, if |I| is nonmeasurable, then

X=|) X ( so X is the topological sum of (X,),c1).
aElf

Proor. We first give the proof for lattices: For each a€/, let A7 = ][] A; and
=

let @, be the canonical isomorphism from 4, X 4; onto A. For each x¢ X, set
P, = {feC(X): f(x) = 0};

and for each z~ I, denote by X, the set of all x¢ X with the property that (¢ c¢,) (P, )
is of the form P,X A} for some prime ideal P, of the lattice A,. If 2= f, then (as
one easily vernﬁes) X, and X, are disjoint.

If we appeal now to [2] (especially Theorem B, and its proof, and Remarks (1)

and (2) of [2]), the isomorphism
Qo@,: A, XA; - C(X)

yields the following three facts:

(i) X, is open-and-closed in X.

(i) If i, is an (arbitrary) injection of A4, into A4 such that pr,oi, is the identity
map of A, (where pr, denotes the projection of the product 4 of index ), and if
0,: C(X)—-C(X,) is the restriction homomorphism, then

0,090i,: A, —~ C(X:)
1s an isomorphism.
(iii) For every feC(X) and every o</,

(%) (0:090i)(pra(@~2(f)) = 2.(f).
Now let Y= |J X, and let ¢o: C(X)—~C(Y) be the restriction homomorphism

acl
from C(X) into C(Y). Then for each f¢C(X) and each a€l, o(f)|X,=0,(f): and
from this, (ii), and (*) it follows easily that ¢ is a bijection from C(X) onto C(Y).
Thus Y is strictly C-embedded in X.
To complete the proof in the lattice case, assume now that |/| is nonmeasurable.
By a result due to STONE and to CecH (see e.g. [3; 3.9]), there exists a completely
regular Hausdorff space X” and a continuous surjection t: X—X" such that the
map defined by g—~g ot is a ring (and hence also lattice and semigroup) isomorphism
from C(X’) onto C(X). Moreover (see 2.2), the map given by g—g|X’ is an iso-
morphism from C(vX’) onto C(X’). Combining these facts, one readily verifies

3D
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that (for the purpose of proving the final assertion of the theorem) we may assume
that X is realcompact. But then X=1Y by 2.3, so the proof in this case is complete.

We turn next to the ring case. (While this case could doubtless be reduced to
the former, it seems simpler, and more instructive, to give a direct argument.) Let
it A,—~A be the canonical injection (i.e., pr,oi, is the identity map of 4, and
prs oi,=0 for all =), and note that each A4, obviously has a unit element 1,.
Then, for each #€1,

h, = (@oiy)(1,)

is an idempotent in the ring C(X) so A, is the characteristic function of an open-and-
closed subset X, of X. Moreover, if a7 f, then X, X,=0.

Once again, let g,: C(X)—C(X,) be the restriction homomorphism. We show
that (*) above holds in the present case:

Case 1. f=0 on X—X,. For each f=a, we have f- h;=0, and hence

pra(@ ™1 (f)) = pra(@ () - pry(is(1p)
= pra(@~1(f) - ip(1p)
= prp(@~2(f)- 97 (hy))
= (prgo@™)(fhg) = 0.
1t follows that (i, = pr,) (¢ ~*(f))=¢X(f), from which (*) is clear.

Case 2. [ arbitrary in C(X). Apply Case 1 (to the functions %, and f-h,)
to obtain

(0,0000)(pro(@71(f))) = (2,00028,)(pr.(@~2(f))) - 2. (h,)
= (0,090i,)(pr. (9~ (f+h,)))
= 0,(f+h,) = 0,(f),

and we have proved (7).

Now it is a routine matter to verify that the map
0,000i,: A, - C(X,)

is injective. Moreover, by (*) and the fact that X, is (trivially) C-embedded in X,
this map is surjective, and hence an isomorphism. Thus (i), (ii), and (iii) hold again,
so the proof can be completed exactly as before.

Finally, the semigroup case is easily reduced to the ring case: It will suffice
to show that addition can be defined on each multiplicative semigroup A, in such
a way that 4, becomes a ring and ¢ becomes a ring isomorphism.

Note first that each A4, necessarily has a zero-element and a unit element 1,.
Define i,: A,—~A as in the ring case, and define addition on (the underlying set of)
A, as follows: For a,, b,cA,,

a,+b, = (pr,o@ ") (@ (i,(a,) + @ (i,(b,))).
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Addition in A is then defined coordinatewise. It will now suffice to show that, for
every a, bcA, o(a+b)=¢(a)+ @(b); and this is equivalent to the following: for
every a, b€ A and every «€1,

pra(a)+pr,(6) = (pr,o9 ™) (¢ (a) + ¢ (b)).
To verify the latter, we calculate as follows:
pr,(a)+pr,(b) = (pr.o@~")((9oi,) (pra(a)) + (9 oi,) (pra()))

= (pro9 ) (p(a+iy(1))+@(b+iy(1,)
= (pr,00 ) (@(@)- (¢oi)(1,)+ 0 () - (poi,)(1,)
= (pr.o0 Y (@ (@) + ¢ (b)) - (92i,)(1,))
= pr.(p~(9(@) + 9 (b)) - ir(1,))
= (pr.o90 ) (@ (@) +9 ().

The proof is now complete.

4. The role of complete regularity

The next proposition shows that if X is completely regular, then (b) of 3.1
can be replaced by (b"): U X, is dense and C-embedded in X.
x€l

4.1. Proposition. If X is completely regular and YC X, then these are equi-
valent:

(1) Y is strictly C-embedded in X.

(2) Y is dense and C-embedded in X.

PROOF. Assume (1), let x€X, and let V be a neighborhood of x. Choose
feC(X) with f(x)=1 and f=0 on X—V. If VN Y=0, then f and the constant func-
tion 0 are distinct extensions of the same function on Y. Hence ¥V meets Y, so (2) holds.
The converse is clear.

The implication (2)=(1) of 4.1 holds, of course, without complete regularity,
but in its absence (1)=(2) may fail: Let X be a regular 7y-space (with more than
one point) such that every f€ C(X) is constant (see [4]); pick any x€ X and let Y= {x}.

If the cardinal of 7 in 3.1 is nonmeasurable, then (by the final assertion of 3.1),
(b) and (b") trivially coincide. We now show that if there is a measurable cardinal,
then, in general, (b’) cannot replace (b) in 3.1. (The space we construct for this
purpose is merely 7T,. It seems likely that a more refined technique would provide
a similar example with stronger separation.)

4.2. Example. If m is a measurable cardinal, then there is a Ty-space X,
a discrete subspace Y of X with |Y|=m, and a lattice, ring, and semigroup iso-
morphism ¢ from A=ﬂC({y}) onto C(X) with this property: If (X,),cy is any

Y
family of subsets of Xysuch that, for every y€Y, g,0pci,: C({y})~C(X,) is an

3.
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isomorphism (where i,: C({y})—~A4 is the canonical injection and ¢,: C(X)-C(X,)
is the restriction homomorphism), then (J X, is not dense in X, but is strictly

yEY
C-embedded in X.

PrOOF. Let Y be any discrete space with |Y|=m. Since Y is not realcompact
(2.1 (¢)), there is a point pcvY— Y. Choose an arbitrary g¢vY and let

X = 0YU{q}.

Topologize the set X as follows: For each x<vY, denote by ¥°(x) the filter of neigh-
borhoods of x in vY. Then, for each x€X, a base for the filter of neighborhoods
of x in X is declared to be #(x), where

Y(x) if xé{p,q),
B(x) ={{VU{g): Vev (v} if x=p,
{{q}} if x=gq.

With this topology, X is evidently a T;-space such that vY is a subspace of X. More-
over, it is clear that

(H f(p) = f(g) forevery feC(X).
For each gcC(vY), define 0(g)< RX as follows: If x€ X, then

g(x) H x»2ag,
8(8)(x) = {g(p) if x=ag.

It is readily verified that if g€ C(vY), then 8(g)€ C(X) and that the map 0: C(vY)—~
—~C(X) given by g—0(g) is, in fact, a lattice, ring, and semigroup monomorphism.
Denote by v: C(Y)—~C(vY) the map that associates with each 7€C(Y) its unique
continuous extension v(h) over vY (see 2.2). If f€C(X), then clearly floY=v(f|Y):
and from this and (1) it follows that

2) f=0(v(f|Y)) forevery feC(X).

Thus 0 is an isomorphism from C(vY) onto C(X).
Next, since Y is discrete, there is an isomorphism y: A ~C(Y) such that, for
every ac A and every y¢Y,

(3) ¥ (@)(y) = pry(@)(»).

Then ¢=0cvoy is an isomorphism from 4 onto C(X).

Suppose now that (X,),cy is a family of subsets of X such that, for each
yeY, g,09o0i,: C({y})~C(X,) is an isomorphism (where i, and g, are as described
in the statement of 4.2). For each y€Y, let 1, be the unit element C({y}) and let
%y be the characteristic function on X of {y}. Then, since Y is dense in vY and
pEvY—Y, one can verify that (3) and (1) imply that

o(iy(1,)) = z, for every yY.
Now if there is a point x< X, such that x>y, then we have
1 = (g,0@0iy)(1,)(x) = ¢,(,)(x) = y,(x) =0,
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a contradiction. Since X, is obviously nonempty, it follows that X, = {y}, and thus
U X, is precisely the set Y.

yEY .

To complete the proof, note first that if 7€ C(Y), then, by (2),

0(u(h) = (O ()| Y)),

and therefore h=0(v(h))|Y. Thus every h€C(Y) has a continuous extension over X,
and by (2) this extension is unique. Finally, since ¢ is not in the closure of Y, Y is
not dense in X.

5. Equivalent formulations of Ulam’s axiom

We show, in conclusion, that 2.3 and (the final assertion of) 3.1 each lead to
an equivalent formulation of Ulam’s axiom (see § 1). (As a consequence, each of
these results can fail if the cardinal of the index set / is measurable.)

5.1. Theorem. These are equivalent:
(1) Ulam’s axiom.
(2) If X is any realcompact space, if (X,)eer is any pairwise disjoint family of
closed subsets of X such that each X, is openin Y= X,, and if the restriction homo-
z€]

morphism o: C(X)—~C(Y) is bijective, then X=Y.

(3) If X is any (realcompact) space, if (A,),c; is any family of lattices (resp.
rings, resp. semigroups), and if the lattice (resp. ring, resp. semigroup) C(X) is

isomorphic to the direct product [[ A,, then X is the topological sum of a family
acl
(X,).cz of subsets of X with the property that each A, is isomorphic to the correspond-

ing C(X),).

Proor. The implications (1)=(2) and (2)=(3) follow from the proofs of
2.3 and 3.1, respectively. To complete the proof, assume (3), let m be any cardinal,
and let Y be a discrete space with |Y|=m. By 2.2, C(vY) is lattice, ring, and semi-
group isomorphic to C(Y). Moreover, C(Y) is isomorphic to H C({y}). By hypo-

thesis, therefore, vY is the topological sum of a family (X)), ¥ of subsets of vY such
that each C(X. ) is isomorphic to C({ y}) But each C({y}) is isomorphic to R, so
X,isa smgleton Since Y is dense in vY, it follows that Y=uvY. Thus Yis realcompacl
50 m is nonmeasurable by 2.1 (c).
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