The absolute annihilator of an abelian group modulo a subgroup

By SHALOM FEIGELSTOCK (Ramat-Gan)

A group G in this paper will always be meant to be an abelian group with

addition to the group operation. H will denote a subgroup of G.

The absolute annihilator, A(G), of a group G has been defined [2, problem 94] as follows: $A(G) = \{g \in G | Rg = gR = 0 \text{ for every ring } R \text{ on } G\}$. We consider here the following generalization of A(G):

(i) Definition: The absolute annihilator of G modulo H, $(G:H) = \{g \in G | Rg \subseteq H, \text{ and } gG \subseteq H \text{ for every ring } R \text{ on } G\}$.

The absolute annihilator of G is clearly (G:0).

In (ii) we will define the notion of the right and the left annihilator of G in the obvious manner. It will be shown that both these subgroups of G coincide with (G:H).

A study of (G:H) will be made for the case where H is an ideal in every ring on G in (iii). It will be shown that in this circumstance, the nilstufe [1, 5] of G and H are related.

(G:H) will be employed to generalize the notion of a nil group (iv).

(ii) Definition: The right absolute annihilator of G modulo H, $(G:H)_r = \{g \in G | Rg \subseteq H \text{ for all rings } R \text{ on } H\}$. In a similar manner we define $(G:H)_l$ the left absolute annihilator of G modulo H.

Theorem 1. $(G:H) = (G:H)_r = (G:H)_l$.

PROOF. Since $(G:H)=(G:H)_r\cap (G:H)_l$ it suffices to show that $(G:H)_r=(G:H)_l$. Let $g\in (G:H)_r$ and let R be a ring on G, R=(G,X), X a multiplication on G. For $a,b\in G$, define $a\overline{X}b=bXa$. \overline{X} is a multiplication on G. Put $\overline{X}=(G,\overline{X})$. Since $g\in (G:H)_r$, $gXa=a\overline{X}g\in H$ for every $a\in G$. Therefore, $g\in (G:H)_l$ and hence $(G:H)_r\subseteq (G:H)_l$. Similarly, $(G:H)_l\subseteq (G:H)_r$.

(iii). Notation: Let $R_i = (G, X_i)$, X_i a multiplication on G_i , $1 \le i \le n$. Put $R_1(R_2(R_3(...R_n))...) = \{g_1X_1(g_2X_2(g_3...X_{n-1}g_n))...\}|g_i \in G$, $1 \le i \le n\}$, and $\underbrace{[G, ..., G]}_{n\text{-times}} = \underbrace{(G: (G: (...(G:0))...)}_{n\text{-times}}$

We make the following obvious:

Observation 1: $R_1(R_2(R_3(...R_n))...)=0$ for all n rings R_i , $1 \le i \le n$, on G iff [G, ..., G]=G.

The nilstufe v(G) of G is defined, [1, 5], to be n if there exists an associative ring R on G with $R^n \neq 0$, but $R^{n+1} = 0$ for every associative ring R on G. An obvious consequence of observation 1 is

Observation 2: If
$$[G, ..., G] = 0$$
, then $v(G) \le n$.

Clearly, H is an ideal in every ring on G iff $(G:H)\supseteq H$. In this case we obtain an ascending chain of subgroups of $G, H\subseteq (G:H)\subseteq (G:(G:H))\subseteq (G:(G:H))\subseteq ...$

If this chain terminates at G after a finite number of steps, then we have the following:

Theorem 2. If
$$(G: H) \supseteq H$$
 and if $(G: (G: (...(G: H))...) = G$, then $v(G) < (n+1)(v(H)+1)$.

PROOF. Clearly (G: (G: (...(G:H))...)=G implies that $R^{n+1}\subseteq H$ for every ring R on G. Since H is an ideal in every ring on H, the restriction of every multiplication on G to H is a multiplication on H. Therefore $R^{(n+1)(v(H)+1)}\subseteq H^{v(H)+1}=0$.

Example: Let $G = H \oplus K$, H a nil torsion group, K a torsion free group. It is easy to show that (G: (G: (...(G: H))...) = G.

Clearly, $(G:H) \supseteq H$. Therefore, by theorem 2, v(G) < 2(v(K)+1). This result was obtained in [1, theorem 1].

We wish to show that the example just considered is the most general example of a mixed group that can be considered if we require that $v(G) < \infty$.

Theorem 3. Let G be a mixed group. If $v(G) < \infty$ then G splits, and the torsion part of G is nil and coincides with the maximal divisible subgroup of G.

PROOF. Let $G=D\oplus K$, D the maximal divisible subgroup of G. If D is not a torsion group then $v(D)=\infty$ and hence $v(G)=\infty$. Therefore D is a torsion group and hence nil [2, 4]. If K is not torsion free then K has a finite cyclic direct summand [3, theorem 9], in which case $v(K)=\infty$, and hence $v(G)=\infty$. Therefore K is torsion free, and D is the torsion part of G.

Theorem 4. Let $G=D\oplus K$, D the maximal divisible subgroup of G, and D nil. If $(G:K)\supseteq K$, then v(G)=v(K).

PROOF. The following are easily shown to be true for every multiplication on G:

- a) $D^2 = 0$
- b) $DK \subseteq D$
- c) $KD \subseteq D$
- d) $K^{v(K)+1} \subseteq D$.

However since $(G:K) \supseteq K$ we have that. $DK \subseteq K$ and $KD \subseteq K$. This together with b) and c) yields:

- b') DK=0, and
- c') KD=0.

 $(G:K) \supseteq K$ further implies that $K^n \subseteq K$ for every positive integer n, which together with d) yields

$$K^{v(K)+1}=0$$

Let $g_i \in G$, $1 \le i \le v(K) + 1$. $\prod_{i=1}^{v(K)+1} g_i$ is a finite sum of monomials

$$\prod_{i=1}^{v(K)+1} y_i, y \in D \text{ or } y_i \in K, 1 \le i \le v(K)+1.$$

b'), c'), and d') insure that

$$\prod_{i=1}^{\nu(K)+1} y_i = 0.$$

(iv) Definition: G is said to be a nil group modulo H if (G:H)=G.

A nil group in the ordinary sense is a nil group modulo 0.

Example: Let $G = H \oplus K$, H a nil torsion free group, K a torsion group. It is easy to show that G is nil modulo K.

Theorem 5. Let G be nil modulo H. If H is divisible then G/H is nil.

PROOF. Let $\Theta: G \to G/H$ be the canonical homomorphism. The sequence $0 \to H \to G \xrightarrow{\Theta} G/H \to 0$ is exact, hence the sequence

$$\operatorname{Hom}\left(G\otimes G,G\right)\stackrel{\theta^{*}}{\to}\operatorname{Hom}\left(G\otimes G,G/H\right)\to\operatorname{Ext}\left(G\otimes G,H\right)=0$$

is exact. The last equality holds true since H is divisible. $\Theta^*(\mu) = \Theta \mu$ for all $\mu \in \text{Hom } (G \otimes G, G)$. We can identify an arbitrary multiplication on G/H with an element $\bar{\mu} \in \text{Hom } (G/H \otimes G/H, G/H)$ [2, theorem 118.1]. Let $g_1, g_2 \in G$, and let \bar{g}_1, \bar{g}_2 be their respective cosets in G/H.

$$\bar{\mu}(\bar{g}_1 \otimes \bar{g}_2) = \bar{\mu} \cdot (\Theta \otimes \Theta)(g_1 \otimes g_2).$$

 $\bar{\mu} \cdot (\Theta \otimes \Theta) \in \text{Hom } (G \otimes G, G/K)$, and Θ^* is an epimorphism. Therefore there exists a $\mu \in \text{Hom } (G \otimes G, G)$ such that $\bar{\mu} \cdot (\Theta \otimes \Theta) = \Theta^*(\mu) = \Theta \cdot \mu$. Therefore, $\bar{\mu}(\bar{g}_1 \otimes \bar{g}_2) = \Theta \mu(g_1 \otimes g_2)$. G is nil modulo H, which implies that $\mu(g_1 \otimes g_2) \in H$, and hence $\bar{\mu}(\bar{g}_1 \otimes \bar{g}_2) = \Theta(\mu(g_1 \otimes g_2)) = 0$, or G/H is nil.

Theorem 6. If $(G:H) \supseteq H$ and if G/H is a nil group, then G is nil modulo H.

PROOF. Since $(G:H) \supseteq H$, H is an ideal in every ring on G, and hence every multiplication X_G on G induces a multiplication $X_{G/H}$ on G/H in a natural way. Let $g_1, g_2 \in G$, and let \bar{g}_1, \bar{g}_2 be their respective cosets in G/H. $\bar{g}_1 X_{G/H} \bar{g}_2 = \bar{g}_1 X_G g_2$. However G/H is a nil group, so that $\bar{g}_1 X_{G/H} \bar{g}_2 = 0$, which implies that $g_1 X_G g_2 \in H$, ro that G is nil modulo H.

(v) The results obtained here suggest the following problems:

Problem 1: Characterize (G:H) for H a special type of subgroup of G. For example, if G is a torsion group, and if G_p is the p-primary component of G, p a prime, then

$$(G: G_p) = G_p \otimes \sum_{\substack{q \text{ aprime} \\ q \neq p}} G_q^1$$
, where G_q^1 denotes the first Ulm subgroup of G_q .

Problem 2: Let K be a reduced torsion free group. Let $NS(K) = \{v(G)/G = D \oplus K, D \text{ a nil torsion group}\}$. By the example following theorem 2 we have that if $n \in NS(K)$ then $v(K) \leq n < 2(v(K) + 1)$. Is the converse true?

Problem 3: Find conditions for G to be nil modulo H, H a special type of subgroup of G.

Problem 4: If G is nil modulo H, must G/H be a nil group?

References

- [1] S. FEIGELSTOCK, On the Nilstufe of the Direct Sum of Two Groups, Acta Math. Hung., 22 (1972), 449—452.
- [2] L. Fuchs, Infinite Abelian Groups, New York and London, vol. 1 (1970), vol. 2 (1973).

[3] I. KAPLANSKY, Infinite Abelian Groups, Ann Arbor, (1954).

- [4] T. SZELE, Zur Theorie der Zeroringe, Math. Ann., 121 (1949), 242-246.
- [5] T. Szele, Gruppentheoretische Beziehungen bei gewissen Ringkonstruktionen, Math. Zeit., 54 (1951), 168—180.

(Received May 13, 1974.)

BAR ILAN UNIVERSITY RAMAT GAN, ISRAEL