T-ideals based on multilinear identities

By DIANA BARAGAR and JAMES L. FISHER (Edmonton, Alberta)

This note shows that the 7-ideal based on f(x,, ..., x,) is also based on multi-
linear elements when the characteristic of the field is zero or greater than

Let K be a field. The free associative K-algebra with indeterminates {x;}i,
and without constant term will be denoted by K[X]. The set of monomials of K[X]
forms a basis for K[X] as a vector space over K and hence gives a canonical repre-
sentation of the polynomials in K[X]. Define the x; degree of a monomial to be
the number of times x; occurs in that monomial, and define the x; degree (respectively,
order) of fin K[X] to be max {x; degree of m: m is a monomial of f} (respectively,
min). The degree of a monomial m is 3 (x; degree of m). The degree (respectively

i

order) of a polynomial f is max {degree of m:m is a monomial of f} (respectively
min). A polynomial f is linear in x; if x; occurs exactly once in each monomial,
and fis multilinear if it is linear in each of its variables.

A T-ideal of K[X] is any ideal which is mapped into itself by the endomorphisms
of K[X]. If S is a subset of K[X] then 7(S) is the smallest 7-ideal containing S.
The elements of T(S) are exactly

“"S'a;S;(j}l, voos Jincy) By Where S;€ S,

f;€K[X] and o;, B;€K[X]UK. If I is a T-ideal and /=T(S) then I is said to be
based on S. An important tool (e.g. [2]) in the study of rings satisfying a polynomial
identity £, is the fact that if the characteristic of K is zero, then 7(f)=T(M) where
M is a subset of the multilinear elements of 7(f). The first theorem shows that the
characteristic of K need only be greater than max {x; degree of f}.

Theorem 1. Let feK[X]. If the characteristic of K is zero or greater than
max {x; degree of f} then T(f)=T(M) where M is a finite set of multilinear elements

in T(f).
The proof will follow from a lemma.

Lemma 2. Let f(x,, ..., x,)€K[X], and write f=f,=h,+g, where each monomial
of hy has x, degree d with d the x, degree of f, and g, has x, degree less than d. Then
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there exists hd'-l(.xls Yis o5 Va=1 Xg5 -+ 5 xu) Confaiﬂed in T(f}, h'”ear in X1 V1s oo 0s V=1
such that hy—q(Xys Xgy cves X3y Xay 0oy X)) =A Re(Xy, Xay o005 Xy)-

Proor. The proof constructs A,_; by the well known [1] linearization process.
Suppose f;=h;+ g; has been defined with f; € T{ f), each monomial of iy=h;(x;, y;, ...,
<o Vis Xy, ..., X,) has x, degree d—i and is linear in y,, ..., y;, the x; degree of g; is

less than d—i and A;(Xy, Xyy coes Xy Xpy eeey Xp)= ho(xy5 Xgy 000y X,). De-

1)‘
ﬁnc.fi+l(x13 Yisooos Viers Xoyoony xn)=ﬁ(x1+yi+1’ yl! . ’yh Xa, "-txn)"'ﬂ(xl’ Yis eees

oo it Xito voae Xy =TsU Visas Pas s25 Vs Xatp vo15 Tad Thus Lin1€T(S) and fioy=h+
+g;+, wWhere h;., is linear in yy, ..., ¥i4+1, €ach monomial of /;,, has x, degree
d—(i+1) and g;., has x, degree less than d—(i+1). Furthermore the monomials
of h;., are obtained from monomials of 4; by substituting exactly one y;., in one
of the positions occupied by an x; in the monomials of %;. Since there are d—i
positions in which to substitute y;4,, in each monomial, A 4(x;, ¥y, ...
coes Vis X135 Xgy ooey Xp) =(d—=1) (X1, Y15 .5 Yis Xas o0y X,). Thus

By 1(X3y X35 coey X135 Xgy oees Xp) = (d=0)Ry (31, Xg5 o005 X35 Xy 000y Xp) =

a1 a!

= (d=i)=——r d—i)! hﬁ(xl': Xgy «eey xu) mhﬂ(xls seey xu)'

Hence finally f;_,=h4_1+84-1 With f;_€T(f) and g,_, of degree 0 in x;. Thus
by substituting O for x, we have g;_,€ T f) and h,_, € T(f) with h,_ l(.7:1, Pis vies Yiicis
x2s---sxu)linearinx1: Yis --'syd—landhd-l(-xhxls---;xbxﬁs--- n)_ o(xn---,x-)-

PROOF OF THEOREM 1. As in the lemma f=h,+ g, with A, of degree and order
din x; and g, of degree less than d. Thus h,_,€ T{f) and since d! is invertible in K,
ho€ T(h,y—4), which in turn means gy€ 7( /). By induction 7(g,)=T(M;) where M, is
a finite set of multilinear elements in 7{g,) S T{f), and T{(h,_,)=T(M,) where
M, is a finite set of multilinear elements in 7(h,_,) S T{f). Thus T(f)=T{hy_,, gy) =
=T(M,UM,) and the theorem is proven.

To indicate that this is best possible we prove:

Theorem 3. 7{x")=T(M ) where M is the set of multilinear identities in T(x")
if and only if the characteristic of K is zero or greater than n.

Lemma 4. Let V, be the set of multilinear identities of T(x") in the variables

X ssiz Waioe L
Vn={c Z Xg(1)++ Xa(n)- CGK}

PROOF. It is easy to see that linearization process of lemma 2 yields Z Xofyyes
Xgm€Vy If meV, then m=3 o f"B;. Let fi=anx,+... +a,,X,+7; where the
i

order of y; is greater than one, a;;€ K. Thus

m= Z' cilanx,+... +ay,x,)" +r
L
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where ¢;, a;;€ K and the order of r is greater than n. Since m has degree n, r=0.

The multilinear monomials of (@, x,+...+a;,x,)" are thus all possible x,)... X,()

o< S, with coefficient a;,a;,...a;,. Hence the multilinear part of 3 ¢;(a;x;+-.-
i

ctapx)is 3 ciay...a;) EZS' Xg(1)-++ X4 (my Which equals m. Thus
i GEs,,

VV,l = {C' Z x,(l)...xa(,): CEK}.
7€S,

PROOF OF THEOREM 3. By theorem 2, if the characteristic of K is zero or greater
than n then T{x")=T(M ). Suppose now that the characteristic of Kis k with O<k=n.
Any element g in T(M) equals Z Je -+ foey+& where f; have degree one and

g has order n+1. Thus to have monomlals of degree n and x degree n, fi=c;x+f{,
so that g=¢; ... ¢, 2 X"+g =nl¢, ... ¢,x"+g" where g’ has no monomial of degree
5

ageEd,
n which is also of x degree . Thus for x" to be in T(M) requires g’=0 and nle¢,...c,=1.
Since 0 <k =n, this last condition is never satisfied.
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