T-ideals based on multilinear identities

By DIANA BARAGAR and JAMES L. FISHER (Edmonton, Alberta)

This note shows that the *T*-ideal based on $f(x_1, ..., x_n)$ is also based on multilinear elements when the characteristic of the field is zero or greater than $\max_{i=1,...,n} \{x_i \text{ degree of } f\}$. Furthermore this is essentially best possible.

Let K be a field. The free associative K-algebra with indeterminates $\{x_i\}_{i=1}^{\infty}$ and without constant term will be denoted by K[X]. The set of monomials of K[X] forms a basis for K[X] as a vector space over K and hence gives a canonical representation of the polynomials in K[X]. Define the x_i degree of a monomial to be the number of times x_i occurs in that monomial, and define the x_i degree (respectively, order) of f in K[X] to be max $\{x_i \text{ degree of } m : m \text{ is a monomial of } f\}$ (respectively, min). The degree of a monomial m is $\sum_{i} (x_i \text{ degree of } m)$. The degree (respectively

order) of a polynomial f is max {degree of m: m is a monomial of f} (respectively min). A polynomial f is linear in x_i if x_i occurs exactly once in each monomial, and f is multilinear if it is linear in each of its variables.

A T-ideal of K[X] is any ideal which is mapped into itself by the endomorphisms of K[X]. If S is a subset of K[X] then $T\langle S \rangle$ is the smallest T-ideal containing S. The elements of $T\langle S \rangle$ are exactly

$$\sum_{i} \alpha_{i} S_{i}(f_{i1}, ..., f_{in(i)}) \beta_{i} \text{ where } S_{i} \in S,$$

 $f_{ij} \in K[X]$ and α_i , $\beta_i \in K[X] \cup K$. If I is a T-ideal and $I = T\langle S \rangle$ then I is said to be based on S. An important tool (e.g. [2]) in the study of rings satisfying a polynomial identity f, is the fact that if the characteristic of K is zero, then $T\langle f \rangle = T\langle M \rangle$ where M is a subset of the multilinear elements of $T\langle f \rangle$. The first theorem shows that the characteristic of K need only be greater than $\max\{x_i \text{ degree of } f\}$.

Theorem 1. Let $f \in K[X]$. If the characteristic of K is zero or greater than $\max_{i} \{x_i \text{ degree of } f\}$ then $T\langle f \rangle = T\langle M \rangle$ where M is a finite set of multilinear elements in $T\langle f \rangle$.

The proof will follow from a lemma.

Lemma 2. Let $f(x_1, ..., x_n) \in K[X]$, and write $f = f_0 = h_0 + g_0$ where each monomial of h_0 has x_1 degree d with d the x_1 degree of f, and g_0 has x_1 degree less than d. Then

there exists $h_{d-1}(x_1, y_1, ..., y_{d-1}, x_2, ..., x_n)$ contained in $T\langle f \rangle$, linear in $x_1, y_1, ..., y_{d-1}$ such that $h_{d-1}(x_1, x_1, ..., x_1, x_2, ..., x_n) = d!h_0(x_1, x_2, ..., x_n)$.

PROOF. The proof constructs h_{d-1} by the well known [1] linearization process. Suppose $f_i = h_i + g_i$ has been defined with $f_i \in T\langle f \rangle$, each monomial of $h_i = h_i(x_1, y_1, ..., ..., y_i, x_2, ..., x_n)$ has x_1 degree d-i and is linear in $y_1, ..., y_i$, the x_i degree of g_i is less than d-i and $h_i(x_1, x_1, ..., x_1, x_2, ..., x_n) = \frac{d!}{(d-i)!} h_0(x_1, x_2, ..., x_n)$. Define $f_{i+1}(x_1, y_1, ..., y_{i+1}, x_2, ..., x_n) = f_i(x_1 + y_{i+1}, y_1, ..., y_i, x_2, ..., x_n) - f_i(x_1, y_1, ..., ..., y_i, x_2, ..., x_n) - f_i(y_{i+1}, y_1, ..., y_i, x_2, ..., x_n)$. Thus $f_{i+1} \in T\langle f \rangle$ and $f_{i+1} = h_{i+1} + g_{i+1}$ where h_{i+1} is linear in $y_1, ..., y_{i+1}$, each monomial of h_{i+1} has x_1 degree d-(i+1) and g_{i+1} has x_1 degree less than d-(i+1). Furthermore the monomials of h_{i+1} are obtained from monomials of h_i by substituting exactly one y_{i+1} in one of the positions occupied by an x_1 in the monomials of h_i . Since there are d-i positions in which to substitute y_{i+1} , in each monomial, $h_{i+1}(x_1, y_1, ..., ..., y_i, x_1, x_2, ..., x_n) = (d-i)h_i(x_1, y_1, ..., y_i, x_2, ..., x_n)$. Thus

$$h_{i+1}(x_1, x_1, ..., x_1, x_2, ..., x_n) = (d-i)h_i(x_1, x_1, ..., x_1, x_2, ..., x_n) =$$

$$= (d-i)\frac{|d!}{(d-i)!}h_0(x_1, x_2, ..., x_n) = \frac{d!}{(d-(i+1))!}h_0(x_1, ..., x_n).$$

Hence finally $f_{d-1} = h_{d-1} + g_{d-1}$ with $f_{d-1} \in T \langle f \rangle$ and g_{d-1} of degree 0 in x_1 . Thus by substituting 0 for x_1 we have $g_{d-1} \in T \langle f \rangle$ and $h_{d-1} \in T \langle f \rangle$ with $h_{d-1}(x_1, y_1, ..., y_{d-1}, x_2, ..., x_n)$ linear in $x_1, y_1, ..., y_{d-1}$ and $h_{d-1}(x_1, x_1, ..., x_1, x_2, ..., x_n) = d! h_0(x_1, ..., x_n)$.

PROOF OF THEOREM 1. As in the lemma $f = h_0 + g_0$ with h_0 of degree and order d in x_1 and g_0 of degree less than d. Thus $h_{d-1} \in T\langle f \rangle$ and since d! is invertible in K, $h_0 \in T\langle h_{d-1} \rangle$, which in turn means $g_0 \in T\langle f \rangle$. By induction $T\langle g_0 \rangle = T\langle M_1 \rangle$ where M_1 is a finite set of multilinear elements in $T\langle g_0 \rangle \subseteq T\langle f \rangle$, and $T\langle h_{d-1} \rangle = T\langle M_2 \rangle$ where M_2 is a finite set of multilinear elements in $T\langle h_{d-1} \rangle \subseteq T\langle f \rangle$. Thus $T\langle f \rangle = T\langle h_{d-1}, g_0 \rangle = T\langle M_1 \cup M_2 \rangle$ and the theorem is proven.

To indicate that this is best possible we prove:

Theorem 3. $T\langle x^n \rangle = T\langle M \rangle$ where M is the set of multilinear identities in $T\langle x^n \rangle$ if and only if the characteristic of K is zero or greater than n.

Lemma 4. Let V_n be the set of multilinear identities of $T\langle x^n \rangle$ in the variables x_1, \ldots, x_n . Then $V_n = \{c \cdot \sum_{\sigma \in S} x_{\sigma(1)} \ldots x_{\sigma(n)} \colon c \in K\}.$

PROOF. It is easy to see that linearization process of lemma 2 yields $\sum_{\sigma \in S_n} x_{\sigma(1)} \dots x_{\sigma(n)} \in V_n$. If $m \in V_n$ then $m = \sum_i \alpha_i f_i^n \beta_i$. Let $f_i = a_{i1} x_1 + \dots + a_{in} x_n + \gamma_i$ where the order of γ_i is greater than one, $a_{ij} \in K$. Thus

$$m = \sum_{i} c_i (a_{i1}x_1 + ... + a_{in}x_n)^n + r$$

where c_i , $a_{ij} \in K$ and the order of r is greater than n. Since m has degree n, r=0. The multilinear monomials of $(a_{i1}x_1 + \ldots + a_{in}x_n)^n$ are thus all possible $x_{\sigma(1)} \ldots x_{\sigma(n)}$ $\sigma \in S_n$ with coefficient $a_{i1}a_{i2} \ldots a_{in}$. Hence the multilinear part of $\sum_i c_i(a_{i1}x_1 + \ldots + a_{in}x_n)^n$

$$\dots + a_{in}x_n)^n$$
 is $\sum_i c_i(a_{i1}\dots a_{in})\sum_{\sigma\in S_n}x_{\sigma(1)}\dots x_{\sigma(n)}$ which equals m . Thus

$$V_n = \left\{ c \cdot \sum_{\sigma \in S_n} x_{\sigma(1)} \dots x_{\sigma(n)} \colon c \in K \right\}.$$

PROOF OF THEOREM 3. By theorem 2, if the characteristic of K is zero or greater than n then $T\langle x^n\rangle = T\langle M\rangle$. Suppose now that the characteristic of K is k with $0 < k \le n$. Any element q in $T\langle M\rangle$ equals $\sum_{\sigma \in S_n} f_{\sigma(1)} \dots f_{\sigma(n)} + g$ where f_i have degree one and g has order n+1. Thus to have monomials of degree n and x degree n, $f_i = c_i x + f_i'$, so that $q = c_1 \dots c_n \sum_{\sigma \in S_n} x^n + g' = n! c_1 \dots c_n x^n + g'$ where g' has no monomial of degree n which is also of x degree n. Thus for x^n to be in $T\langle M\rangle$ requires g' = 0 and $n! c_1 \dots c_n = 1$. Since $0 < k \le n$, this last condition is never satisfied.

References

[1] N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloquium Publ. 37, 1964.

4*

[2] D. Krakowski and A. Regev, The polynomial identities of a Grassman algebra. Trans. Amer. Math. Soc. 182, (1973).

(Received May 15, 1974.)