The multipliers of L, ([0, 1]) with order convolution

By RONALD LARSEN (Oslo)

1. Introduction. Let M ([0, 1]) denote the Banach space with the total variation
norm of all bounded regular complex-valued Borel measures on the closed unit
interval [0, 1]. If the interval [0, 1] is considered as a topological semigroup under
the multiplication defined by xocy=max (x, y), 0=x, y=1, then a product can be
introduced into M ([0, 1] in the following manner: if u, vé M([0, 1]), then pové
€EM([0,1]) is defined by the equations

1 1 1
Jf@dwev) @)= [ [ [ flxopdu)]dv(y) (feC(o, 1))

Of course, C([0, 1]) denotes the Banach space of continuous complex-valued func-
tions on [0, 1] with the usual supremum norm ||+|l.. This product operation in
M([0, 1]) is usually called order convolution, and with order convolution as mul-
tiplication the space M([0, 1]) is a semisimple commutative Banach algebra with
identity. The Banach subspace L,([0, 1]) of M ([0, 1]) consisting of the equivalence
classes of Lebesgue integrable functions on [0, 1] is a subalgebra of M ([0, 1]) with
respect to order convolution, and hence it is itself a commutative Banach algebra.
Our purpose in this paper is to study the multipliers of L,([0, 1]) with order con-
volution.

We recall that a mapping 7: Ly([0, 1])—~L,([0, 1]) is a multiplier of L,([0, 1])
if T(fog)=(Tf)cg=fo(Tg) for every f and g in L,([0, 1]). Every multiplier is
a bounded linear transformation since L,([0, 1]) with order convolution is semi-
simple. In contrast to the situation for the multipliers of the group algebra L,(G)
of a locally compact Abelian topological group G, every measure in M ([0, 1])
does not define a multiplier of L([0, 1]) by means of order convolution. This is the
case because L,([0, 1]) is not an ideal in M ([0, 1]) with respect to order convolution.
However, in the next section we shall see that the multipliers of L,([0, 1]) with order
convolution correspond precisely to measures u of the form u=owod+h where « is
a complex number, é is the measure with unit mass concentrated at x=0, and 4 is
m L,([0, 1]). In succeeding sections we shall obtain precise descriptions of the positive
and isometric multipliers of L,([0, 1]). Before discussing these results it will be useful
to mention some additional facts about M([0, 1]) and L,([0, 1]) with order con-
volution and about multipliers, and to set some notation.
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The order convolution of two elements f and g in L,([0, 1]) has a relatively
simple form, namely, it is determined almost every-where by the formula

fogx) =) [ gndy+g() [ f(y)dy.
0 0

Using this formula it is not difficult to see that the maximal ideal space of L,([0, 1])
with order convolution is homeomorphic to the half-open interval (0, 1], and that
the Gel'fand transform £ of fin Ly([0, 1]) is defined by

f) = [fndy ©<x=1),
0

that is, f is the indefinite integral of f on [0, 1]. The algebra L,([0, 1]) is without
identity, but it does possess approximate identities. One such approximate identity
is the sequence {u,} defined by u,(x)=n,0=x=1/n, u,(x)=0, I/n<x=1,n=1,2,3, ....
The identity in M ([0, 1]) is the measure é with unit mass concentrated at x=0.

If T is a multiplier of L,([0, 1]) with order convolution, then there exists a
unique bounded continuous function ¢ defined on the maximal ideal space of
Ly([0, 1]), that is, a unique ¢ in C((0, 1]) such that (Tf)" =¢f, fEL,([0, 1]). Further-
more, ||¢|l.=||T||. Conversely, if ¢<C((0, 1]) is such that for each fcL,([0, 1])
there exists some g€L,([0, 1]) for which g=¢f, then the equation (Tf)" =o¢f,
f€Ly([0, 1]), determines a multiplier of L([0, 1]). This correspondence allows us
to think of a multiplier either as the mapping T or as the function ¢, and we shall
make frequent use of this observation.

The results concerning M ([0, 1]) and L,([0, 17) with order convolution that we
have mentioned in the preceding paragraphs and that we shall use in the succeeding
sections can be found in [I, 2], whereas a general discussion of multipliers is avail-
able in [3, Chapters 0 and 1].

The Banach space of continuous complex-valued functions that vanish at
infinity on the locally compact Hausdorff topological space (0, 1] will be denoted
by C,((0, 1]). This space can obviously be identified with the subspace of C([0, 1])
consisting of the functions that vanish at x=0. The subalgebra of C([0, 1]) consisting
of the absolutely continuous functions will be denoted by AC([0, 1]), the Banach
space of essentially bounded measurable functions on (0, 1] by L..((0, 1]), and the
complex numbers by C. The symbol # will be used to indicate the end of a proof.
Basic results about absolutely continuous functions that we shall use in the following
sections can be found in [5, pp. 104—107].

2. The main multiplier theorem. Keeping in mind the relationship between a
multiplier 7" and the corresponding function ¢, it is easily seen that if @€ AC([0, 1]),
then ¢ determines a multiplier of L,([0, 1]) with order convolution. Indeed, since
the product of two absolutely continuous functions is absolutely continuous, it is
apparent that ofc AC([0, 1]) and (@) f(0)=0 for each f¢ L,([0, 1]), whence we deduce
that there exists some g<L,([0, 1]) such that g=gqf. Clearly g is almost everywhere
equal to the derivative of ¢f, that is, g=(¢f)". Thus every function @£ AC([0, 1])
defines a multiplier 7 of L,([0, 1]) and Tf=(ef)’, f€L,([0, 1]). The next theorem
shows that every multiplier of L,([0, 1]) can be so realized.
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Theorem 1. If T: L\([0, 1])—=L,([0, 1]), then the following are equivalent:
(i) The mapping T is a multiplier of Ly([0, 1]) with order convolution.
(ii) There exists a unique pucM([0, 1]) of the form upu=wud+h, 2¢C and
he Ly([0, 1)), such that Tf=uof, f¢L([0, 1]).
(ili) There exists a unique @€ AC([0, 1]) such that (Tf)" =of, feL\([0, 1]).
(iv) There exists a unique @ € AC([0, 1]) such that Tf=(of)’, f¢ L,([0, 1]).
Moreover, if T is a multiplier of L,([0, 1]) with order convolution, then

1
IT| = ul = O]+ [ |’ ()dy.
0

Proor. Evidently parts (iii) and (iv) are equivalent and the remarks preceding
the statement of the theorem show that part (iii) implies part (i). Suppose there
exists a unique u in M([0, 1]) of the form u=ad+h, 2cC and heL ([0, 1]), such
that Tf=puof, f€ L,([0, 1]). Then given 0<x=1, we have for each f<L,([0, 1])

(TF)" (x) = A(x) f(x) = [x+h(x)] f ().

Naturally fi(x)= fdp(_v). Define ¢ on [0, 1] by @(x)=a+h(x), 0=x=1, ¢(0)=2x.

G
Then obviously @< AC([0, 1]) and (Tf)" =of, f€L([0, 1]). Thus part (i) implies
part (iii).

To complete the proof of the equivalence of parts (i) through (iv) we need
to show that T being a multiplier implies the existence of a unique p of the form
u=ud+h such that Tf=pof, feL,([0, 1]). Assume that ¢<C((0, 1]) is such that
(Tf)" =of, feLy([0, 1))

Let {u,} be the approximate identity for L,([0, 1]) defined in the introduction
and observe that | Tw,|,=|T|, n=1, 2, 3, .... The symbol |||, of course denotes
the L,-norm. Thus {7w,} is a norm bounded sequence in M ([0, 1]), whence appealing
to the Banach—Alaoglu theorem and the separability of C([0, 1]) [4, pp. 254 and 261]
we deduce that there exists a subsequence {7w, } of {Tw,} and a u in M([0, 1])
such that

lim [ () Tu,, )y = [ g()du(r) (£C(([0, 1).
0 0

Since T is a multiplier and {u,} is an approximate identity for L,([0, 1]) we
observe that

lim | Tf=T(u, of )|y = lim | Tf = (Tu,) of [l = O

51D
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Consequently for each g in Cy((0, 1]) and each f€ L ([0, 1]) we have

[ &) Ty =lim [ g(») (Tw,) of(y)dy
L] 0
1
= lim{ ! O[T, (1) () +1(3) (Tw, )" ()] dy}
1 1
= lim { a[ 2(») f(3) Ty, (y)dy+ a[ 21 Q) ()i, () dy}

1 1
= [ eM/Md()+ [ 2()e() ) dy.
0 0

The limiting operation on the second integral on the right hand side of the equations
is established by an application of the Lebesgue dominated convergence theorem
after observing that the sequence {#,} converges to one pointwise on (0, 1] and
I, =1 for each n.

On the other hand, uof€ M([0, 1]) and straightforward calculations utilizing
the definition of order convolution reveal

1 P
0 0o 0
= [ e fWMdu)+ [ e S»aG)ay.

However, since (gf)" € C,((0, 1]), we see, on interchanging the order of integration
twice, thar

ofl g a(y)dy = nf[fg(y)f(y)dy] du(x) =
= f [ f g(}-’)ﬂy)dv—of ¢S dy]du(x) = (&) (1) uf dp(x)— ffgf)“(x)dn(x) -
s 1i£n{(gn“(1) ofl Tu, (x)dx— of (&f)" (%) Tu,, (x)dx} =
 tin ()" 1) f T (s [ T 0] ) 10} =
= lim j 8(x) f(x)(Tup)" (x)dx = lim Df g(x) f(x) @ (x)d,, (x)dx =

1
= [e@ /) o(x)ax.
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Hence,

o | 1 1
[2(dweoN() = [N /Wdu(»)+ [(3) f()a(y)dy =

1 1 1
= [ /DA + [eNfMedy = [2(»)Tf(y)dy.
(1] 0 0

Since this holds for each g in Cy((0, 1]), we conclude that Tf in L,([0, 1]) and
uofin M([0, 1]) define the same measure on (0, 1] for each fin L,([0, 1]). In parti-
cular gof on (0, 1] belongs to L,((0, 1]). This fact combined with the expression
for pof just obtained entails that for each fin L,([0, 1]) the measure fd,u on (0, 1]
is absolutely continuous with respect to Lebesgue measure on (0, 1].

Thus for each k there exists some /& €L,((0, 1]) such that d, du=Hh,. Since
the sequence {u, } converges to one pointwise on (0, 1] and |4, [l..=1, another
application of the Lebesgue dominated convergence theorem reveals that for each
g€L.((0, 1]) the sequence of numbers

1 1
[ eWinMdu(y) = [ 2(»)h(y)dy

is a Cauchy sequence, that is, {i} is a Cauchy sequence in the weak topology on
Ly((0, 1]). However, L,((0, 1]) is weakly sequentially complete [4, p. 247] and so
we see that there exists some 4 in L,((0, 1]) such that

1 1
lim [e¢()m(»dy = [g(Nh()dy (g€ L((0,1D).
0 0

In particular, if g€ Cy((0, 1]), then

1 1
Sehdy =tim [e(y)h(y)dy
0 0

1 1
=lim [ 2N (Ndu() = [2()du(y),

whence p and /4 are seen to define the same measure on (0, 1]. Therefore there exists
some 2z in C such that u=ad+/h and & can obviously be considered as an element
of Ly([0, 1]). Moreover, since é is the identity of M ([0, 1]) with order convolution,
it is apparent that pof is in L,([0, 1]) for each f in L,([0,1]) and so Tf=puof,
JeLy([0, 1)).

To see that u is unique suppose that vé M ([0, 1]) is another measure such that
Tf=vof, f6Ly([0, 1]). Then it follows easily that

fav(y) = 9(x) = px) =

[

== a+fh(y)dy O<=x=1),
0

5



244 R. Larsen

and from this we deduce at once that v({0})=x=u({0}). The uniqueness of u is
then an immediate consequence of Theorem 4.2 in [1].

Thus part (i) implies part (ii), and the equivalence of the four parts of the
theorem are established.

Obviously, if T is a multiplier of L([0, 1]) and Tf=pucf, fcL([0, 1]), then
|T||=||ull. Moreover, the argument used in proving the implication from part (i)
to part (ii) shows that u is the weak-star limit of a sequence in M ([0, 1]) bounded
in norm by ||T|, and so |u||=|T| as norm closed bounded balls in M ([0, 1]) are
weak-star closed. Consequently, since it is now evident that u=¢(0)d+¢’, we
conclude that

171 = el = le @)+ [ o’ ()|dy.

We remark that the inequality ||¢|.=||7|=/ul may be strict. For example,
if p(x)=x—1, 0=x=]1, then ||¢|..=1 and |ul|=2.
Two corollaries of Theorem 1 are immediate.

Corollary 1. If T is a multiplier of L([0, 1]) with order convolution and
@€AC([0, 1]) is such that (Tf)" =of, f€ L,([0, 1]), then the following are equialent:

(i) There exists a unique hé L,([0, 1)) such that Tf=hof, f€L([0, 1]).

(i) ¢(0)=0.

It is easily seen that if 7 is a multiplier of L,([0, 1]) and 7" is a compact trans-
formation, then there exists some /4 in L,([0, 1]) for which Tf=hof, f<L,([0, 1]),
and so @(0)=0. We do not know whether the converse assertion is valid.

Corollary 2. If ue M([0, 1)), then the following are equivalent:

(i) There exists some a€C and h€ L([0, 1]) such that p=od+h.

(i) poLy([0, 1)) = Ly([0, 1]).

This corollary is of interest since, as noted in the introduction, L,([0, 1]) is
not an ideal in M ([0, 1]) with respect to order convolution.

It is also worth while noting explicitly that Theorem 1 provides an answer to
an essentially classical question. Namely, for what continuous functions ¢ on [0, 1]
is it the case that for every fin L,([0, 1]) the product

o) [fdy O=x=1)
o

is an indefinite integral of an element of L,([0, 1])? Theorem 1 shows that ¢ is such
a function if and only if ¢ is absolutely continuous,

3. Positive multipliers. A multiplier 7" of L,([0, 1]) is said to be positive provided
Tf(x)=0 almost everywhere on [0, 1] whenever f<L,([0, 1]) and f(x)=0 almost
everywhere. The next theorem gives a complete description of the positive multipliers.

Theorem 2. If T is a multiplier of Ly([0, 1]) with order convolution, then the follow-
ing are equivalent:

(i) The multiplier T is positive. g

(ii) If @€ AC([0, 1)) is such that (Tf)" =¢f, fe Li([0, 1]), then @(x)=0 for every
x in [0, 1] and @’(x)=0 for almost every x in [0, 1].

(iii) If u=ad+h, acC and heL,([0, 1)), is such that Tf=pcf, fcL(0,1]),
then =0 and h(x)=0 for almost every x in [0, 1].
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ProoF. We note that for each n,
(Tu,)” (x) = @(x)id,(x) = np(x)x for 0 =x=1/n
=¢(x) for IIn<=x=1,

from which it follows at once that if T is positive, then ¢(x) =0, 0<x=1. Since
@ is continuous on [0, 1] this also entails that ¢(0)=0. Moreover, for almost every
x in [0, 1], if n is chosen so that 0<=1/n<x, then

Tu,(x) = (@i,) (x)
= @' (%), (x) + ¢ (x) u,(x)
= @’ (x),

and so T positive implies ¢'(x)=0 almost everywhere on [0, 1]. Hence part (i)
implies part (ii).

Clearly part (ii) implies part (iii) since x=¢(0) and 21=¢’, and part (iii) is seen
to imply part (i) on observing for each f€L([0, 1]) that

Tf = pof = af+hof = af +hf+fh. +

If T is a multiplier of L,([0, 1]) and (Tf)" = @f, f€ L\([0, 1]), then as we observed
in the preceding section, it may be the case that ||¢|.<|T|. However, if T is
positive, then this cannot happen.

Corollary 3. If T is a positive multiplier of L,([0, 1]) with order convolution
and @€ AC([0, 1)) is such that (Tf)™ =of, fEL,([0, 1)), then ||@|.=|T].

ProoF. From Theorem 2 we see that ¢(x)=0 on [0, 1] and ¢'(x)=0 almost
everywhere on [0, 1], whence |l¢|.=¢(1). Moreover, by Theorem 1,

1
Tl = o)+ [lo’ ()| dy =
0

1
=00+ [ ¢’ (»)dy
0

=]

The converse of Corollary 3 may fail. Indeed, if ¢(x)=—x, 0=x=1,and T is
the multiplier of L,([0, 1]) determined by ¢, then 7 is not positive and || 7| =||¢||.=1.

4. Isometric multipliers. It is well known that a multiplier of the group algebra
L,(G) of a locally compact Abelian topological group G is an isometry if and only
if it is a constant multiple of a translation and the constant has absolute value one
[6, p. 254]. In contrast, if for each x, 0=x=1, we define the translation operator
7, on L([0, 1]) by 7,.f(»)=f(xcy), then t,, O0<x=1, is not even a multiplier of
L,([0, 1]) with order convolution. Indeed, if 0<x=1 and fand g are both identically
one on [0, 1], then simple computations using the definition of order convolution
reveal that 7.(fog)(y)=2x, 0=y=x, whereas (1.f)og(y)=2y, 0=y=x. However,
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it is obvious that every multiple of 7, by a constant & of absolute value one, that is,
Tf=af, feL,([0, 1]), is an isometric multiplier of L,([0, 1]). Theorem 3 shows that
these are the only isometric multipliers. Our proof of the theorem requires a number
of preliminary lemmas.

Lemma 1. Let T be an isometric multiplier of L,([0, 1]) with order convolution

and let p€ M ([0, 1]) be such that Tf=pof, f€ L,([0, 1]). If f€ L,([0, 1]), then |uof(x)| =
=|u| o|f|(x) for almost every x in [0, 1].

ProoF. From Theorem 1 we know that p=ad+#h for some x<C and some
h€ Ly([0, 1]). If f€ L,([0, 1]), then for almost every x in [0, 1] we have

lof(x)] = |(xd+h) of(x)|
= |af(x)+h(x) f)+f A )| = |o] | S|+ 1G] | f(0)] +| /()] [h(x)] =
= o [F1G)+[AI]S1” )+ A1) A" (x) = |uf o] £1(x).

Consequently, since 7 is an isometry,

1f = 1T = [ InofColdx

1
= [ |ulolf1)dx = |l £l = £l

as M([0, 1]) is a Banach algebra with order convolution and ||u/=|T| =1. Thus

[luef@)dx = [ ulo] fl(x)dx,

whence |uof(x)|=|u| o|f|(x) for almost every x in [0, 1]. ==

Lemma 2. Let T be an isometric multiplier of L,([0, 1]) with order convolution,
let ue M([0, 11) be such that Tf=pof, f€L([0, 1)), and let @€ AC([0, 1]) be such
that Tf=p-f, f€ Ly ([0, 1]), and let ¢ € AC([0, 1]) be such that (Tf)~ =aof, f€ L,([0, 1)).
If the multiplier S of L\([0, 1]) is defined by Sf=|u|of, f€ L\([0, 11), and Y€ AC([0, 1])
is such that (Sf)" =vf, fEL([0, 1]), then

2Re [p(x) 0’ (W] x+lp )2 = 2lp" (Y (x)x+[Y ()]
Jor almost every x in [0, 1].

PrOOF. From Theorem 1 we know that u=¢(0)d+¢’, and so |u|=¢(0)|d+|¢’|
does indeed define a multiplier S of L,([0, 1]) and ¥/(x)=|¢’(x)| almost everywhere,
Moreover, by Theorem 2, S is a positive multiplier and so Y(x)=0 on [0, 1], and,
by Lemma 1 and Theorem 1, for each f€L,([0, 1]) we have [(of ) (x)|=W|f]") (%)
almost everywhere.

If f(x)=1, 0=x=1, then for almost every x in [0, 1] we have on the one hand

@l Y I = |’ () x+ (X = |’ (X)Ex*+2Re [0 (x) 0" (D)]x+p (X,
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whereas on the other hand

(W17 P = [lo"@lx+y ()F = | (x)Px*+2le" (x)|¥ (x) x+[¥ ()]
The conclusion of the lemma follows on equating the two identities.

Lemma 3. Let T be an isometric multiplier of L,([0, 1]) with order convolution,
let ue M([0, 1]) be such that Tf=pof, feL,([0, 1)), and let p<AC ([0, 1)) be such
that (Tf)" =of, f€L([0, 1]). If the multiplier S of Ly([0, 1)) is defined by Sf=|u|of,
SEL([O0, 1]), and Y€ AC([0, 1]) is such that (Sf)" =vf, fEL(O, 1)), then for almost
every x in [0, 1] the following statements are valid:

(i) ¥y (x) = o).
(@) [(efy @] = (ol | 117) ().
(iii) |o|"(x) = |@"(x)].
(i) ¢(0)9’(x) = 0.
PRrROOF. Repeating the argument used in the proof of Lemma 2 with the functions
f)=(x+1)e*, f(x)=xe*, we see that

{2Re[o(x) @’ @] x+l@ X)F(x+D}x+1) = 200" )Y () x+[¥ P (x+D}(x+1)
for almost every x in [0, 1], whence, from Lemma 2, we conclude that
lp()Px(x+1) = Yx)Px(x+1)

almost every where on [0, 1]. Since {(x)=0 on [0, 1], it follows at once that y(x)=
=|p|x)| almost everywhere, and part (i) is proved.

Parts (ii) and (iii) are apparent on recalling that |(of) (x)|=|f]")"(x) and
¥’ (x)=|e’(x)| for almost every x in [0, 1].

Finally, substituting (x)=|¢@(x)| in the identity of Lemma 2, we deduce

Re[o (x) @’ (x)] = |@(x)¢’ (x)|

almost everywhere, from which it follows that ¢(x)@’(x) is real and nonnegative
for almost every x in [0, 1]. =

We can now prove the characterization of the isometric multipliers of L,([0, 1])
alluded to at the beginning of the section.

Theorem 3. If T is a multiplier of Ly([0, 1]) with order convolution, if u€M([0, 1])
is such that Tf=p of, f€ L,([0, 1)), and ¢ € AC([0, 1]) is such that (Tf)~ =of, fe Ly([0, 1]),
then the following are equivalent:

(i) The multiplier T is an isometry.
(ii) There exists some %€C, |x|=1, such that p=ud.
(iii) There exists some x=C, |x|=1, such that p(x)=2,0=x=1.

ProoF. Obviously part (ii) and (iii) are equivalent and imply part (i). Suppose
T is an isometry. We shall show first that ¢’(x)=0 almost everywhere on [0, 1]
and so ¢ is a constant since it is absolutely continuous.
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If f(x)=ie™ and f(x)=¢*—1, then by Lemma 3 (iv) we have ¢(x)¢’(x)=0
for almost every x in [0, 1], and so

(of Y ()P =
= |o’(xX)(€* = 1)+ @ (x)ie™]* = 2|o’ (x)[2(1 —cos x)+20 (x) @’ (x) sin x +|p (X)|2 =

2
= 4|¢’ (x)|? [sin %] +20(x) @’ (x) sin x+ @ (x)]2.

Moreover, using Lemma 3 (iii) and (iv),

[l £17Y P = [lo’ ¥ x+ e = @ (x)x*+2¢(x) " (x)x+ @ (%)%
Consequently, by Lemma 3 (ii)

4o’ (x)]* [[sin %]. - [%]I] + 2m @' (xX)[sinx—x]=0

for almost every x in [0, 1].
2

However, an elementary calculus argument reveals that [sin: -;)2-(%] <0,
and sin x—x=0, 0=x=1, from which it follows at once that |¢'(x)]?=e(x)¢'(x)=0
almost everywhere on [0, 1]. Thus there exists some o€ C such that ¢(x)=u, 0=x=1.
Furthermore, we then see that y=ad and so |x|=|u|=|T|=1.

Therefore part (i) implies part (iii) and the theorem is proved. i

We note in passing that although very few multipliers of L,([0, 1]) are isometries,
it is the case that for any multiplier T of L,([0, 1]) there exists a constant f such that

[ Ty = B [ f(»dy (feLi((0,1]).
1] 0

If (Tf)" =qf, fELy([0, 1]), then f=¢(1). The observation is evident on recalling
that Tf=(¢f)".

In closing, we remark that if 7 is any finite or infinite subinterval of the real
line, then L,(J) with order convolution can be meaningfully discussed, as seen from
[1,2], and one can obtain the analogous multiplier results in the more general
setting. We leave the formulation of these results to the interested reader.
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