The density of a sequence defined in terms of additive functions
By JANOS GALAMBOS *) (Philadelphia, Pa.)

Introduction

Let f(n) be a real valued strongly additive arithmical function, that is, f(nm)
=f(n)+f(m) for coprime n and m and f(p“)=/(p) for all primes p and for all integers
a=1. Furthermore, let 2=p,<p,<... be the sequence of all prime numbers and
define

(1 g(n) = {

0 otherwise.

1 if pkl"
Introducing the notations

) PRI L0 S S R, a1

p=N P p=N P

in the present note we investigate the contribution of the largest term in the rep-
resentation

(3) (f(") —Ay)/By = By! Z f(po) (Sk (n)—1 J"Pk)-

P=N

We shall obtain a result which seems to be unexpected at the first glance.
Roughly speaking, the result is that, for a large class of additive functions, while
each term in (3) is “negligible”, the largest term is of the same magnitude as the
left hand side itself. -

In order to make our statements precise, let us first give some definitions.

Let Nvy(n:...) denote the number of positive integers n=N for which the
property stated in the dotted space holds.

*) This research was done while the author was on Research and Study Leave from Temple
University, Philadelphia and, as a Fellow of the Humboldt Foundation, he was at the
Institut fiir reine Mathematik der Johann Wolfgang Goethe-Universitdt, Frank-
furt/Main.
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Definition 1. Let A(n) be an arbitrary arithmetical function and let Cy and
Dy>0 be two sequences of real numbers. We say that (h(n) — Cy)/Dy has an asymptotic
distribution F(x) if, as N— + oo,

Fy(x) = vy(n: h(n)—Cy=xDy)—~F(x)
for all continuity points of F(x).

Definition 2. A strongly additive arithmetical function f(n) is said to belong
to the class H (of Kubilius) if By—+ < with N (see (2)) and if there is a positive
integer valued function r(N), tending to 4 e with N, such that {log r(N)}/log N-+0
as N—++-< and B,,)/By—1.

For f(n) from the class H, it is well known (see [1], p. 47) that, from the point
of view of the existence of an asymptotic distribution of (f(n)— Ay)/By, it is sufficient
to investigate the truncated sum obtained by replacing N by r(N) as the upper
limit for p, on the right hand side of (3). A major step in the proof of the existence
of the asymptotic distribution of this truncated sum is then to show that each term
is “uniformly asymptotically negligible”, that is, that for each n=>0,

4) uglzgf‘m) v (7: | f(po)l lex(n)—1/py| = nBy) -0
as N— + co. Our investigation is related to this fact. We shall show that for functions
from the class H, while each term in (3) is uniformly small, the largest term is of the
same order as (f(n)—Ay)/By for most limiting distributions F(x).

In the next section we give the exact statement of the result, together with its
proof.

The result

In the theorem below we give our result where the concepts and notations
of the introduction are used. In particular, r(N) stands for a function occuring in
Definition 2. An asymptotic distribution always means a distribution function
F(x), that is a non-decreasing function with lim F(x)=0 as x— — e and lim F(x)=1
as x—+<=, F(x) is called degenerated at ¢ if F(x)=0 for all x=c¢ and F(x)=1 for
x> ¢. The normal distribution is defined by

1 x

F(x)=(Qn) ® f ey,

Theorem. Let f(n) be a strongly additive, real valued function from the class H.
Assume that (f(n)—Ay)/By has an asymptotic distribution F(x) with variance 1.

Then, putting
my(n; r(N)) = | _max | f(po)|(&(m)=1/p),

my(n; r(N))/By has an asymptotic distribution M(x). M(x) is degenerated at x=0
if F(x) is normal and M(X) is non-degenerated otherwise.

The reader is invited to compare the conclusion of the theorem with (4). As
we can see, only the asymptotic normality is the exception to the rule that m(n; r(N))
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is “of the same order of magnitude™ as f(n)— Ay. For the actual asymptotic distri-
bution M(x) we shall obtain an exact formula in the course of the proof (see (5),
(10) and (14)).

It is well known ([l], p. 58) that our condition concerning the existence of
F(x) above is equivalent to the existence of a non-decreasing function K(u) of unit
variation such that, at all of its continuity points, as N— + <=,

(5) Ky(u) = 3522*@*1((“)
where ' * signifies summation over primes p=N for which f(p)<uBy. Furthermore,

F(x) is normal if, and only if, K(u«) is degenerated at u=0.
Proor of the Theorem. Let x=0. By definition,

(6)  {my(n; r(N)) = xBy} = {| f(p)| (&(m)—1/pi) < xBy, 2 = p, = r(N)}

where {...} denotes sets of n satisfying the condition specified inside the brackets.
If f(p)=0, then this £k on the right hand side of (6) imposes no condition on n,
hence we have to consider only those k for which f(p,) #0. Evidently, the inequality
on the right hand side of (6) with f(p,)#0 is equivalent to

(7) e (n) = 1/pe+xBy/| f(p)| = ax(f, N, x), say,

and thus, by definition (1), (7) imposes no condition on » if a,(f, N, x)>1 or (7)
becomes {g,(n)=0} if a,(f, N, x)=1. Denoting by T(f, N, x) the set of those primes
pi for which f(p,)#0 and a,(f. N, x)=1, we get from (6),

{ms(n; r(N)) < xBy} = {&s(n) = 0, 2 = p, = r(N), pET(f, N, X)}.
Lemma 1.4 on p. 5 of [1] thus implies
(8) vy(n: mg(n:r(N)) < xBy) = (14+0(1) Iy ,(1—-1/py)),

where a subscript (7, r) always signifies that the operation (here multiplication) is
over elements of F(f, N, x) for which p,=r(N). Putting

©) Lt = F Un,
we shall show that, as N— + ==, lim Ly(x)= L(x) exists and is finite for x>0 and that
(10) M(x) = exp(—L(x)), x=>0.

We shall then complete the proof by analyzing L(x).

In order to carry out this program we first observe that if s(N, x) denotes the
smallest element of T(f, N, x), then for x>0, s(N, x)— + < with N. Indeed, by
definition,

an f(p)I(1=1/p) = xBy for p€T(f,N,x)



266 J. Galambos

and thus by By — + ==, s(N, x) - 4 e as N— + ==, This observation has two immediate
consequences. First of all, by

log(l1-2) =—2z40622, ||=1,0=z= %,

log (1-1/p) =—{1+0(1/s(N, x))}pi* = —(1+o(1))pi*
uniformly for p,€T(f, N, x) and thus by (8) and (9)
(12) v(n: me(n;r (N)) < xBy) = (1+0(1)) exp (—Ly(x)), x > 0.

On the other hand, s(N, x)— + == with N implies that, instead of the criterion (11),
the summation in (9) can be extended to those p, =r(N), for which | f(p,) =x(1+0(1)).

Since for these p,,
1/pe = (1+0(1))x2B5*f*(p)/ s

Definition 2 implies that for f(n) from the class H, we can further extend the
summation in (9) to p,=N for x>0. We thus have for x>0,

(13) Ly(x) = (1+0(1)) Z**1/p;

where in 3'** summation is over primes p,=N, for which [f(p,)|=x(1+0o(1))By.
But since for any x=0, in view of (5),

o -
Z*1p =(1+o) [ y2dky()+ [ y~*dKy(»)}

by the Helly—Bray theorem ([2], p. 182) and by (5) and (13), as N =+ ==,
+ o0 —x
(14) lim Ly(x) = L(x) = f y~-2dK(y)+ f y2dK(y), x =0

x — oo

exists and is finite. (12) and (14) thus also imply (10).

It is immediate from (8) that M (0)=0 and since the left hand side of (8) is
non decreasing in x and is non-negative, we have that M (x)=0 for x<0 (this fact
also follows from the definition of m(n; r(N)) by observing that it is non-negative
for each n). From (14) we can see that L(x) is non-increasing for x>0 and, as
x—+eo, lim L(x)=0. Formula (10) therefore implies that M(x) is a distribution
function.

Since by (14), L(x)=0 for all x>0 if, and only if, K(y) is degenerated at y=0,
the criterion quoted in connection with (5) implies that M (x) is degenerated if, and
only if, the limit law F(x) is normal. This completes the proof.
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