On a subsequence of primes

By I. KÁTAI (Budapest)

To the memory of Prof. A. Kertész

1. Let P denote the sequence of primes. A subsequence $\{q_n\}$ of P satisfying $3 \le q_1 < q_2 < \dots$ and

$$(1.1) q_n \not\equiv 1 \pmod{q_i} \quad 1 \leq i < n, n \geq 2$$

will be called here a G-sequence. For a sequence $B = \{b_n\}$ we denote by A(B, x) the number of elements of B not exceeding x.

In [1] S. W. GOLOMB studied the density of G-sequences and he proved that there does not exist a constant A>0 such that

$$(1.2) A(G, x) > Ax/\log x$$

for all sufficiently large x.

A special example is the sequence G_1 defined inductively by $q_1=3$ and q_n for $n \ge 2$ is the smallest prime greater than q_{n-1} for which $q_n \ne 1 \mod q_i$, $1 \le i \le n$. Erdős [2] proved for the sequence G_1

(1.3)
$$A(G_1, x) = (1 + o(1))x(\log x \cdot \log \log x)^{-1}.$$

H. G. Meijer [3] sharped the inequality (1.2). He proved that there does not exist a constant A>1 such that

(1.4)
$$\frac{A(G, x) \cdot \log x \cdot \log \log x}{x} > A$$

for all sufficiently large x.

Furthermore he proved that there exists a G-sequence such that

(1.5)
$$\overline{\lim}_{x \to \infty} \frac{A(G, x) \log x}{x} > c,$$

c being a positive constant.

Our aim is to prove the following

Theorem. For every G-sequence we have

$$\overline{\lim}_{x} \frac{A(G, x)}{x/\log x} < 1.$$

268 I. Kátai

Furthermore, if ε is an arbitrary positive number, then there exists a G-sequence such that

(1.7)
$$\overline{\lim}_{x} \frac{A(G, x)}{x/\log x} > 1 - \varepsilon.$$

2. PROOF. The proof of (1.6) is very simple. Let $q_1 < q_2 < ... < q_N$ be the first elements of G. Then A(G, x) is not greater than the number of those primes p not exceeding x for which

$$p \not\equiv 1 \pmod{q_i} \quad (i = 1, ..., N).$$

Using the eratosthenian sieve and the prime number theorem for arithmetical progressions we get

$$A(G, x) \le (1 + o(1)) \frac{x}{\log x} \prod_{i=1}^{N} \frac{q_i - 2}{q_i - 1}.$$

For $x \to \infty$, we get (1.6).

Now we prove (1.7).

Let θ be a small positive number, $\theta < \frac{4}{\varepsilon}$. We shall construct a sequence of positive numbers $\{x_k\}$ tending to infinity,

$$x_1 < x_2 < ..., \quad \theta x_k > x_{k-1}$$

and a G-sequence entirely contained in the union of the intervals $(\theta x_k, x_k)$ such that (1.7) holds for this G-sequence.

For $Y > 3/\theta$ let

(2.1)
$$L(y,\theta) = \prod_{\theta y$$

It is well known that

$$(2,2) (1 \ge) L(y,\theta) \ge 1 - c \frac{\log \theta}{\log y},$$

c being a positive constant.

Let $\varepsilon_1 \geq \varepsilon_2 \geq ...$ be a sequence of positive numbers such that

We shall choose the sequence x_k such that

(2.4)
$$L(x_k, \theta) \ge 1 - \varepsilon_k \quad (k = 1, 2, ...).$$

Suppose that we have already chosen $x_1, ..., x_{k-1}$ $(k \ge 1)$ and the primes $q_1 < ... < q_N$ of the sequence G contained in

$$\bigcup_{j=1}^{k-1} (\theta x_j, x_j).$$

Let T_k be the set of primes p satisfying

(2.5)
$$p \not\equiv 1 \pmod{q_i} \quad (i = 1, ..., N).$$

The number of the primes p in the interval $\theta x satisfying (2.5) is asymptotically$

(2.6)
$$(1-\theta) \frac{x}{\log x} \prod_{i=1}^{N} \frac{q_i - 2}{q_i - 1}.$$

Let x be so large that the number of T_k in the interval $(\theta x, x)$ is greater than

$$\left(1 - \frac{3}{2}\theta\right) \frac{x}{\log x} \prod_{i=1}^{N} \frac{q_i - 2}{q_i - 1}.$$

Let $S_{k,x}$ be the set of those primes p' in $(\theta x, x)$ for which there exists at least one $p \in (\theta x, x)$ such that

$$(2.7) p' \equiv 1 \pmod{p}.$$

The number of $S_{k,x}$ does not exceed the number of solutions of the equation

(2.8)
$$p'-1 = ap \quad 1 \le a \le 1/\theta, \quad p \le x.$$

Using the Brun—Selberg sieve method (see [4]) we see that (2.8) has at most

(2.9)
$$c \sum_{a \le 1/\theta} \frac{x}{\varphi(a) \log^2 x} = O\left(\frac{x}{\log^2 x} \log \frac{1}{\theta}\right)$$

of solutions.

If x is large enough then the right hand side of (2.9) is smaller than

(2.11)
$$\frac{\theta}{2} \frac{x}{\log x} \prod_{i=1}^{N} \frac{q_i - 2}{q_i - 1}.$$

Let now $x=x_k$ be so large that (2.5) and the other two conditions are satisfied. We continue the sequence G by all of the remained primes in $(\theta x_k, x_k)$. Hence

(2.12)
$$A(G, x_k) \ge A(G, x_k) - A(G, \theta x_k) \ge (1 - 2\theta) \frac{x}{\log x} \prod_{i=1}^{N} \frac{q_i - 2}{q_i - 1}.$$

Observing that

$$\prod_{i=1}^{N} \frac{q_i - 2}{q_i - 1} > \prod_{j=1}^{k-1} L(x_j, \theta) > 1 - \frac{\varepsilon}{2},$$

and $(1-2\theta) \ge 1-\frac{\varepsilon}{2}$, we get the inequality (1.7).

References

- [1] S. W. GOLOMB, Sets of primes with intermediate density, Math. Scand 3 (1955), 264-274.
- [2] P. Erdős, On a problem of Golomb, J. Austral. Math. Soc. 2 (1961/62), 1-8.
- [3] H. G. Meijer, Sets of primes with intermediate density, Math. Scand. 34 (1974), 37-43.
- [4] K. Prachar, Primzahlverteilung, Berlin, 1957.

(Received January 2, 1975.)