Problems and results on consecutive integers

By P. ERDOS (Budapest)
To the memory of my friend A. Kertész

In this short survey article I will discuss some questions which occupied me
on and off for fourty years, some of the problems are classical other special problems.
I will also prove some new results.

Denote by f(k) the smallest integer so that the product of f(k) consecutive
integers greater than k always contain a prime greater than k. The well known

theorem of Sylvester and Schur states f(k)=k and I proved f(k)= Toigk‘l‘c- [4]. Very

much stronger results have recently been proved by JUTILA, RAMACHANDRA and
SHOREY [15], they showed (improving previous results of TIIDEMAN)

¢,k loglog log k
log kloglogk ~

(1) fk) <

(1) is certainly very far from the “truth”. It seems sure that f(k)=o0(k*) and
probably f(k)<c,(log k)2 (the ¢’s are absolute constants not necessarily the same
if they have the same index). These conjectures are inaccessible at present and
1 have nothing to contribute towards their solution.

In [4] I prove that amongst kX consecutive integers greater than k at least k/6
of them have a prime factor greater than k. I sharpen and extend this result, but
first of all I introduce some notations. Put

Ay(m) = IIp*, p*|m, p =k

and denote by f(n, k) the number of integers n+i, 1=i=k which have at least one
prime factor greater than k; g(n, k) denotes the number of integers n+i, 1=i=k
all whose prime factors are =k (i.e. the number of integers n+i, 1 =i=k with n+i=
=A(n+1)). Clearly f(n, k)+g(n, k)=k. U(n, k) denotes the number of integers
m=n with P(m)=k where P(m) is the greatest prime factor of m; p(m) denotes
the smallest prime factor of m. g(n, k, r) denotes the number of integers n+i, 1=i=r
with P(n+i)=k.
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Theorem 1. Let a=>1, n>k*—k, then

1 2k
f(”’k)}k[l—a _logi
We further outline the proof of

Theorem 2. To every a=>1 there is an &,>0 so that for k=ky(x) and n>k*—k

o k) = k[l—-:;ﬂ,].

These theorems are no doubt very far from being best possible. DE BRunN [1]
and others proved that there is a ¢, so that for k -

(2 Uk*, k) = (c,+o(1))k*,

and in fact as o= ¢, tends to o a little faster than (([«]+1)!)~%. It is well known
and easy to see that for | =a=2 ¢,=1—log « but for «>2 though ¢, can be calculated
explicitely the formula for it is quite complicated. It seems certain that for log n=
=(a+o(1)) log k

(3) f(n, k) =(1—c,+o(1))k.

Ramachandra, Shorey and Tijdeman proved (their paper will appear in the
Journal fiir reine u. angew. Math.) that if n>exp (c (log k)?) then f(n, k)=k —n(k)
and Shorey proved (will appear in Acta Arithmetica) that if n>exp k*® then f(n, k)=

- [1 ck log log k
~ (logk)*
It seems even harder to get non trivial upper bounds for f(n, k). We have

Theorem 3. For n=k*—k we have

f(n, k) -::k(a—l)-l- gk

For «=2 this is trivial and I do not know any non trivial upper bound for
f(n, k) if n>k*, a>2. I can not even prove that there is an absolute constant ¢* so
that for every n<=k*

) g(n, k) = c®k, or f(n, k) <(1—c™)k.

(4) is related to another old conjecture of mine which often annoyed me greatly:
Is it true that to every « there is a ny(x) so that every n=ny(«) is the sum of two
positive integers a+b=n with P(a-b)<n'* 1 have been unable to prove this
for =2. By a heuristic independence argument one would expect that the number
of solutions of
n=a+b, P(a-b)<n'*

is (c2+o(1))n. Similarly one would expect that the events P(n)=k and P(n+1)=k
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are independent. More generally I conjecture that the number of integers n<k*
for which

P[ﬁ(n+i)] =k (r,xfixed, k—=)
i=1

is (¢;+o(1))k*. I have made no progress with this conjecture not even for r=2.
We obtain from (2) by a simple averaging process

T
lim = S k,r)=c,.

Independence arguments suggest
*I

0 lim = 3 g(n, k)t = &

n=1
but I could not prove (5).
Denote by n, the smallest integer with f(n,, k)=k. By the Chinese remainder
k=1

theorem we immediately obtain n,< [[ p,,; where k<p,<p..,<... are the
i=0

consecutive primes greater than k. It is easy to get a very much better upper bound
for n,. Observe that the number of integers m—<n, with P(m)=k is at least n/k
(since every set of k consecutive integers =n, all whose prime factors are =k).
Thus we obtain from (2) by a simple computation that for A=k,

(6) n, < klogl;log lnsk.

I think (6) is fairly sharp. I feel sure that for every é=0 and A=k, (e)
7 n, > exp ((log k)*~¢).

I am very far from being able to prove (7), in fact can not even show n,>k***
which seems a ridiculously weak result. The best that I can show is

n>k? exp ((log k)°)
for a certain ¢=0.

I once conjectured that for n=2k [Z] is always divisible by at least one of

the integers n—i, 0=i<k. ScHINZEL disproved this conjecture and our results
with ScHINZEL [18] makes it likely that there is a k, so that for k=k, the conjecture

only holds if k=p*. I now conjecture that there is a c<1 so that for n=2k [Z] always
has a divisor d satisfying cn<d=n.

Several mathematicians investigated P[(;:]] ([5]). I conjecture that for every

o --:—;— and k=>kgy(x)

(8) P [[;)] > min {exp (c,k*), exp c,(log n)*}.

7D
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The results of RANKIN and myself [6] imply that for k<c log n

lim ian[[:))/log n=0,
(&)~

for every k>(log n)* and ¢,—~1 as a—1.
It is known that P(n(n+1))>c log log n and perhaps

9) lim P(n(n+1))/(log n)*~* = e

but perhaps if «=0 then

for every e>0. (9) if true is certainly very deep. On probability grounds I expect
(by (2)) that for every >0 and infinitely many »

(10) P(n(n+1)) < (log n)**=.
(10) if true is no doubt very deep. I can not even prove that
lim inf log P(n(n+1))/logn = 0.
Let A(k) be the greatest integer so that for every n=h(k)

P ;ﬁ (n+:‘)] = h(k).

It is not difficult to prove A (k)= ck logk but no doubt /i(k) increases much faster
and it seems very difficult to get a good estimation for A(k). h(k)>k€ is certainly
true for every c if k=ky(c).

h(k)/k logk - <=
follows from (1).
A well known conjecture of Cramer states

Pu+1—Pn —
(log n)*

where p;<p,=<... is the sequence of consecutive primes. If (11) is true the order
of magnitude of /i(k) probably will be exp ((log k)?). Let in fact p,, be the smallest
prime for which p, ,;—p, >k. Clearly

(11) lim sup

h(k) = P[ﬁ(p,,k+i)].
i=1

The problems on h(k) are of course connected with the conjecture (8). Related
problems were investigated by ECKLUND, EGGLETON and SELFRIDGE [2].
For fixed n

P[ﬁ (n+i)| = u,(k)

i=1
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is clearly a non decreasing function of k. Denote by p™ the least prime greater
than n. Clearly u,(k) ceases to be interesting for k=p™ —n, since it then equals the
greatest prime =n-+k. It might be of some interest to determine the maximum
number of possible increases of u,(k), 1=k=p™ —n as a function of n — can it be
as big as log log n? or log n? The answer to the first question is probably yes to the

second one no.
P( II (pt+))=P
J<Pis1— Py

also is an interesting function. I do not think that P; tends to infinity, in fact perhaps
P,=3 for infinitely many i in other words there are infinitely many integers n=2%3#
for which n+1 and n—1 are both primes. On the other hand for most values of
i P; tends to infinity probably quite fast — the explanation of my vagueness is
ignorance.

By a simple averaging process I deduced [8]

(12) ,min A (n+i) = ck.
I conjectured that (12) holds for every ¢=0 if k= ky(c). This conjecture always

seemed very interesting to me, but unfortunately I was unable to make any progress
with it. More generally it would be interesting to investigate

A(k) = max min A(n+1).

A(k)— <> as k-=o is not hard to prove but I have no idea how fast A(k) tends to
infinity. A stronger conjecture than (12) is

- !

N Sy k - o
,-g’: Ak(ﬂ"‘!') o

perhaps even

- 1

It is easy to deduce by Turdn’s method [19] (using second moments) that the
normal order of

k
g (n+)

where ¢ is Euler’s constant. Clearly

& A i m k
(as n varies) is  (1+o(1))e T

min max Ay(n+i) =
n 1s=is

I do not know how large is the normal order of this function. Probably it is
more than k€ for every ¢ if k> ky(c). A well known result of MAHLER [17] implies
that for every k and ¢>0

(13) Ak[ﬁ(n+f')] < ni+e,
i=1

T
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On the other hand it is easy to see that for infinitely many »
(14) Az(n(n+1)) > enlog n.

It would be very interesting to sharpen (13) and (14) but I could not even prove
that for some fixed k

k
lim sup A, | [] (n+i)]/n logn = o=,
i=1

fl==o0

By an averaging process it is not difficult to prove that

tim s (&) -

holds for almost all #» and large k.

PLEASANT proved that v [[;]] = v(n) always holds (unpublished) (v(n) denotes
the number of distinct prime factors of n). SELFRIDGE and I conjectured [7]

n
max v([k]]/k —oo 48 N oo
1=k=n

but we have not even proved

(15) lglgn(t'[[Z))—k]—vm as n-—ee,

(15) follows from recent results of SHOREY and RAMACHANDRA (will appear
in Acta Arithmetica).
Let a<1, k=n**°M, Very likely

(16) v [[;]) = (1+o(1))k 2'; = (l+0(l))klog%.

(16) if true is certainly deep.
Put t;=(log n)'~%, ty=(log n)'*%. It is easy to see from the Chinese remainder

theorem that

Iy
IIT..SBP—Q 7 P g; n+i)= e
Very likely
Is
(17) lim rn 2 v(in+i)=1.

n-= t,loglogn &

I have no idea how to attack (17), perhaps (17) already holds for t,=logn,
for some related questions see [7].
I proved [9] that
max (%)) = (1+0) —”]L"::

l:liE'
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and the maximum is assumed for k=(1 +0(l))%. As k increases from 1 to -;. "’[[:)]

has of course a tendency to increase, but no doubt for every ¢ and n=ny(c) there are
values of k [1 Ek-:—’zl] for which

(&) =+ (1)) <

Grimm [14] conjectured that if n+1, ..., n+1t are consecutive composite numbers
then for 1=i=r there is a p;n+i, p,#p; for i#j. SELFRIDGE and I [10] proved this
for t=o0 (log n), we also showed that dnmm s conjecture if true is certainly very
deep. Ramachandra, Shorey and Tijdeman proved that Grimm’s conjecture holds
for r=[c(log n/loglog n)®]. Their paper will soon appear in J. reine u. angew. Math.
For further problems and results in this direction I have to refer to the original
papers which are quoted in the paper of Ramachandra, Tijdeman and Shorey.

Selfridge and I proved that the product of consecutive integers is never a power.
Our proof will soon appear in the /llinois Journal of Mathematics. The following
problem is of interest here: Denote by H(n, /) the smallest integer 7, for which

(n+i)...(n+i) =x,0=i, <...< iy = Hy(n,])

is solvable. Our theorem with Selfridge asserts H(n, /)=k for every k=1, n=1
and /=1.
There seems little doubt that this can be improved a great deal, but as far
as I know this question has not yet been seriously investigated.
k

Selfridge and I in fact prove that for every k and /=1 [[ (n+i) has a prime
i=1

k

factor p=k with p*| [ (n+i), 220 (mod /). We conjecture that in fact for k=2
j=1

there is such a prime with x=1, we made no progress with this deep'conjecturc.

1 once thought that for every A=>1 ]]{n+:) has a prime p for which p|| ﬂ(n+1),

i=1
but Mahler pointed it out to me that smcc x*—8y?=1 has infinitely many solutions
there are infinitely many values of n for which every prime factor of n(n-+ 1) occurs
with an exponent greater than one. I would guess though that the number of such
integers n=x is less than (log x)°. Probably there always is a p with p*|[n(n+1), =2,
in fact if @,=a,=... is the sequence of integers all whose prime factors are =3 then
one would conjecture lim (a;,,—a;)=-<=, and in fact a@;,,—a;=>c,i .
oo
Put
S,(m) = [[ p*, p*lm, a = r.
Let k be fixed. Determine or estimate

lim sup log S, []](n+ i)|/logn = .
Trivially o, =k and by Mahler’s remark «,=2. It would be interesting to improve
these bounds. It is fairly sure that for k=2, o, <k and I would not be surprised if
a,=2 for every k.
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Observe that

= IIp.

S, (m) ol plim

RIGGE [13] and a few month later I proved in 1939 that the product of consecutive
integers is never a square. Our proof was based on the fact that for k=4 the & integers
A (n+1)/Sy(Ay(n+1)), i=1, ..., k, can not all be different. Two strengthenings of
this result: Is it true that for r=1 there is a k,(r) so that for k= k,(r) the k integers
Ay (n+i)/S,(A,(n+1i))can not all be different? I have not decided this even for r=2.
Is there a c<1 so that for k=>k,(c) the ck integers A, (n+i)/S,(Ax(n+1)), 1=i=ck,
can not all be different?

. . ‘ n+i 2 o
Let /h(n) be the largest integer for which the mtegersm, i=]1, ..., k(")
1

are all distinct. It is very likely that infinitely often /i(n)>cn? “ but I do not see
at present whether /i(n)/n'/*—0 is true or false.

Denote by G (k) the largest integer for which there are G (k) consecutive integers
n +i, 1=i=G (k) for which the integers 4,(n+i), 1 =i=G (k) are all different. BASIL
GorpON and I proved some time ago the following

Theorem 4. Let 2=p,<p,<...<p,=k=p,.,=p,.q be the sequence of consecutive

primes. Then

We have no counterexample to G(k)=p,..—2. Since our proof has never been
published I give it here in full detail.
Before we prove our Theorems we state a few disconnected problems on

consecutive integers. Selfridge and I conjectured that for n=2k [nk] has a prime
hid
2
and I proved that there is an absolute constant ¢ so that for n=2k and k=>k,(c)

factor =— the sole exception is G] Ecklund proved this conjecture [3]. Selfridge

[Z] has a prime factor -:% [10]. Selfridge and I conjectured that perhaps ¢ can be

taken as 1. Very likely this is best possible since we almost certainly have

a9 im sup (i) = -

(18) if true will certainly be very hard to prove. Ecklund, Selfridge and I investigated
the smallest integer m, =k + 1 for which all prime factors of [’Z“] are greater than k
[12], our lower bounds for mi, are poor, we only get m,=k'*¢.

In a forthcoming paper in Mathematics of Computation GRAHAM, RUZSA,
StrAUS and I prove that to every two odd primes p and ¢ there are infinitely many

values of n for which p{[z:] and g1 [2: ] We could not extend this for three primes.
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We also state the following problem: Is it true that there is an absolute constant
¢ so that

2%< ¢ where p{[;';n] and p < 2n?
Many rather special problems can be stated on binomial coefficients — here

are a few which occurred me recently. Denote by «,, r=0, 1, ... the density of integers

n for which there are exactly r squarefree integers in the sequence [Z], l=k=n-1.

It is not difficult to prove that «, exists and Z %,=1. The following question seems
much more difficult: Denote by s(n) the number of squarefree integers amongs the
sequence [k]’ l=k=n—1. Probably s(n) can not be very large, perhaps s(n)=o0(n")

for every =0, but I have not obtained any sharp results.
The prime number theorem implies

- logn
121:;'""("1) = (1+o(D)) loglogn
It is very likely that for every k
k
(19) max v[]](m+r‘)] = (1+o0(1)) log nfloglogn.
=m=n {ml

(19) if true will be very hard to prove. Put (d(n) is the number of divisors of n)
D(n) = max d(m).
l=m=n

D(n) has been studied among others by RAMANUJAN in his paper “On highly
composite numbers” (see Collected papers of S. RamMANUIAN, Cambridge, 1927).
Almost certainly

lim sup max d(m(m+1))/D(n) = =

n—cc 1=Sm=n
but probably for a certain ¢=0
 max d(m(m+1)) = n°D(n).

All these questions seem very difficult. On the other hand it is a simple exercise
to prove that for every k (o (n) is the sum of the divisors of n)

"[ : ’”*”] o (m)

max — max —— —0.
1=m=n 1=m=n m
(m+1i)

Qw

-
Il

:l"

-

Put 4,= ]I Pi,» Where p; are the consecutive primes. The prime number theorem
implies A“’u—-—e Denote by g(k) the number of integers m—<A, for which
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(m+i, A)=1 for i=1,2, ..., p,. g(k) certainly tends to infinity with k but

perhaps
klim g(k)VPk < e?

Many similar questions can be asked which are connected with the growth
of pi+y—p;. Selfridge and I asked: Is it true that to every r there is a k,(r) so that
for k= k,(r) there is an m< A, with v((m+i, A,))=r for i=1,2, ..., p,? This problem
seems to be surprisingly difficult and is perhaps not affirmative for every r. A related
question states as follows:

Denote by K(n) the largest integer so that forevery |1 =i=K(n) v(n+i)=loglogn.
The Chinese remainder theorem implies K(n)=(1+o0(1))log n/(loglogn)* and
this is the best lower bound that I can get. I have no non trivial upper bound for
K(n). On probability grounds one would expect

: ; 1
Ilir}.iupK(n)/log n= m .

An old conjecture of Catalan states that 8 and 9 are the only consecutive powers.
This problem seemed intractable. A few months ago TUDEMAN proved that there
is a computable constant ¢ so that two consecutive integers greater than ¢ can not be
both powers and CHOODNOVSKI proved that there is an explicitely given function
L(n) so that if 1 =a,<a,<...is the sequence of powers then a,;,—a,> L(n) holds
for every n.

Now we prove our Theorems. Clearly [:] > %, also a well known lemma asserts

that p”l|(:] implies p# =n. Now put [:] =u, - u, where P(u,)=k and p(u,)=k. From

n(k)< we obtain u, <n**/1°8% Thus

2k
log k
b
(20) nf-kb = gy > n  losk L f-k

(20) immediately implies Theorem | by n=k*.
It might be of some interest to investigate

min p* = V(n, k) and min p*
() ()
r=

and try to obtain upper and lower bounds for these functions. I had no time to
investigate whether one can get any non trivial results.

We now outline the proof of Theorem 2. Let n—k+1=m<...<m-xn=n
be the integers which have a prime factor greater than k. In the proof of Theorem 1
we crudely assumed that the m; are entirely composed of the primes greater than
k and obtained Theorem | from (20). In fact we can improve this estimate by the
following

Lemma 1. 70 every n,=0 there is an n,=>=0 so that for k=ky(ny, no) all but n k
of the integers n—k+1=m=n have a prime factor p satisfying k"»<p=k.
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The proof of Lemma 1 follows easily by the sieve of Eratosthenes and will
be left to the reader.

From Lemma | we obtain that at least f(n—k, k) —n,k of the integers m; have
a prime factor p satisfying A":<p=k. Thus (20) can clearly be replaced by the
following sharper inequality

2k
(21) nf=kky = " TTOBR L =k L fm(S =k =m k)

Using n=k?* (21) easily implies Theorem 2.

Theorem 3 is nearly trivial. We evidently have [since [2] is an intcgcr]

k=1
(22) Il (n—i) = k!
i=0

where the dash indicates that we remove from n—i all prime factors greater than k.
From (22) and n=k* we have

k2 = gk > k\ kS (-kk) o fk+In=kk) o=k

which proves Theorem 3.

The most difficult proof is our proof with GORDON of Theorem 4. First we
observe G(k)=p,,,—2. Clearly the p,.,—2 integers A,(2), A;(3), ..., Ay(ps+2—1)
are all distinct since A, (i)=i for all of them except for A,(p,,,) which is 1. The
proof of the upper bound of Theorem 4 is a little more difficult. Suppose that the
G (k) integers A, (n+1i), 1=i=G(k) are all different. Observe that

(24) WA (n+i) = Gk)!Gk)~™® > G(k)*® . e=6k) . G (k)~™®),

where in [T"A,(n-+i), 1 =i=k, we omit for each p=k the integer n+ i which is divisible
by the highest power p* (if there are several such (n+i)’s we omit the greatest one).
(24) follows immediately since by assumption the A,(n+i), 1=i=G(k) are all
distinct. On the other hand

(25) WAGm+) =GR [T p)™ < GR)W . o260 +k+o(G0),
k)

k=p=G(

The first inequality of (25) follows from the fact that by Legendre’s formula
all primes p =k occur in a higher power in G(k)! then in IT"4, (n+1i) and by definition
A, (n+1) has no prime factor greater than k; the second inequality of (25) follows
from Stirling’s formula. (24) and (25) implies

e~ G(k)y+k+o(G(k)) - G(k)—x(k)

which by the prime number theorem implies G(k)=(2+o(1))k and hence the proof
of Theorem 4 is complete. It seems very likely that the upper bound in Theorem 4
can be improved but we have not been successful in our attempts.

To finish this paper I state one more problem. Determine or estimate the smallest
integer H(n) so that one can find two subsets of the integers n+1, n+2, ..., n+ H(n)
whose product is equal.
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