Problems and results on consecutive integers

By P. ERDŐS (Budapest)
To the memory of my friend A. Kertész

In this short survey article I will discuss some questions which occupied me on and off for fourty years, some of the problems are classical other special problems. I will also prove some new results.

Denote by f(k) the smallest integer so that the product of f(k) consecutive integers greater than k always contain a prime greater than k. The well known theorem of Sylvester and Schur states $f(k) \le k$ and I proved $f(k) < \frac{3k}{\log k}$ [4]. Very much stronger results have recently been proved by JUTILA, RAMACHANDRA and SHOREY [15], they showed (improving previous results of TIJDEMAN)

(1)
$$f(k) < \frac{c_1 k \log \log \log k}{\log k \log \log k}.$$

(1) is certainly very far from the "truth". It seems sure that $f(k) = o(k^{\varepsilon})$ and probably $f(k) < c_1(\log k)^{c_2}$ (the c's are absolute constants not necessarily the same if they have the same index). These conjectures are inaccessible at present and I have nothing to contribute towards their solution.

In [4] I prove that amongst k consecutive integers greater than k at least k/6 of them have a prime factor greater than k. I sharpen and extend this result, but first of all I introduce some notations. Put

$$A_k(m) = \prod p^{\alpha}, p^{\alpha} || m, p \leq k$$

and denote by f(n, k) the number of integers n+i, $1 \le i \le k$ which have at least one prime factor greater than k; g(n, k) denotes the number of integers n+i, $1 \le i \le k$ all whose prime factors are $\le k$ (i.e. the number of integers n+i, $1 \le i \le k$ with $n+i=A_k(n+i)$). Clearly f(n,k)+g(n,k)=k. U(n,k) denotes the number of integers $m \le n$ with $P(m) \le k$ where P(m) is the greatest prime factor of m; p(m) denotes the smallest prime factor of m. g(n,k,r) denotes the number of integers n+i, $1 \le i \le r$ with $P(n+i) \le k$.

Theorem 1. Let $\alpha > 1$, $n > k^{\alpha} - k$, then

$$f(n,k) > k \left(1 - \frac{1}{\alpha} \right) - \frac{2k}{\log k}.$$

We further outline the proof of

Theorem 2. To every $\alpha > 1$ there is an $\epsilon_{\alpha} > 0$ so that for $k > k_0(\alpha)$ and $n > k^{\alpha} - k$

$$f(n, k) > k \left(1 - \frac{1}{\alpha} + \varepsilon_{\alpha}\right).$$

These theorems are no doubt very far from being best possible. DE BRUIJN [1] and others proved that there is a c_{α} so that for $k \to \infty$

$$(2) U(k^{\alpha}, k) = (c_{\alpha} + o(1))k^{\alpha},$$

and in fact as $\alpha \to \infty$ c_{α} tends to o a little faster than $(([\alpha]+1)!)^{-1}$. It is well known and easy to see that for $1 \le \alpha \le 2$ $c_{\alpha} = 1 - \log \alpha$ but for $\alpha > 2$ though c_{α} can be calculated explicitly the formula for it is quite complicated. It seems certain that for $\log n = (\alpha + o(1)) \log k$

(3)
$$f(n,k) = (1 - c_{\alpha} + o(1))k.$$

Ramachandra, Shorey and Tijdeman proved (their paper will appear in the Journal für reine u. angew. Math.) that if $n > \exp\left(c(\log k)^2\right)$ then $f(n, k) \ge k - \pi(k)$ and Shorey proved (will appear in Acta Arithmetica) that if $n > \exp k^{\varepsilon}$ then $f(n, k) > k\left(1 - \frac{ck \log \log k}{(\log k)^2}\right)$.

It seems even harder to get non trivial upper bounds for f(n, k). We have

Theorem 3. For $n \le k^{\alpha} - k$ we have

$$f(n, k) < k(\alpha - 1) + \frac{k}{\log k}.$$

For $\alpha > 2$ this is trivial and I do not know any non trivial upper bound for f(n, k) if $n > k^{\alpha}$, $\alpha > 2$. I can not even prove that there is an absolute constant $c^{(\alpha)}$ so that for every $n < k^{\alpha}$

(4)
$$g(n,k) > c^{(\alpha)}k$$
, or $f(n,k) < (1-c^{(\alpha)})k$.

(4) is related to another old conjecture of mine which often annoyed me greatly: Is it true that to every α there is a $n_0(\alpha)$ so that every $n > n_0(\alpha)$ is the sum of two positive integers a+b=n with $P(a \cdot b) < n^{1/\alpha}$. I have been unable to prove this for $\alpha > 2$. By a heuristic independence argument one would expect that the number of solutions of

$$n = a+b$$
, $P(a \cdot b) < n^{1/\alpha}$

is $(c_{\alpha}^2 + o(1))n$. Similarly one would expect that the events $P(n) \leq k$ and $P(n+1) \leq k$

are independent. More generally I conjecture that the number of integers $n < k^{\alpha}$ for which

$$P\left(\prod_{i=1}^{r}(n+i)\right) \leq k \quad (r, \alpha \text{ fixed, } k \to \infty)$$

is $(c_{\alpha}^r + o(1))k^{\alpha}$. I have made no progress with this conjecture not even for r = 2. We obtain from (2) by a simple averaging process

$$\lim_{k\to\infty}\frac{1}{rk^{\alpha}}\sum_{n=1}^{k^{\alpha}}g(n,k,r)=c_{\alpha}.$$

Independence arguments suggest

(5)
$$\lim_{k \to \infty} \frac{1}{r^2 k^{\alpha}} \sum_{n=1}^{k^{\alpha}} g(n, k, r)^2 = c_{\alpha}^2$$

but I could not prove (5).

Denote by n_k the smallest integer with $f(n_k, k) = k$. By the Chinese remainder theorem we immediately obtain $n_k < \prod_{i=0}^{k-1} p_{s+i}$ where $k < p_s < p_{s+1} < \dots$ are the consecutive primes greater than k. It is easy to get a very much better upper bound for n_k . Observe that the number of integers $m < n_k$ with $P(m) \le k$ is at least n_k/k (since every set of k consecutive integers $\le n_k$ all whose prime factors are $\le k$). Thus we obtain from (2) by a simple computation that for $k > k_0$

$$(6) n_k < k^{\log k/\log \log k}.$$

I think (6) is fairly sharp. I feel sure that for every $\varepsilon > 0$ and $k > k_0(\varepsilon)$

(7)
$$n_k > \exp\left((\log k)^{2-\varepsilon}\right).$$

I am very far from being able to prove (7), in fact can not even show $n_k > k^{2+\epsilon}$ which seems a ridiculously weak result. The best that I can show is

$$n_k > k^2 \exp\left((\log k)^c\right)$$

for a certain c > 0.

I once conjectured that for $n \ge 2k \binom{n}{k}$ is always divisible by at least one of the integers n-i, $0 \le i < k$. Schinzel disproved this conjecture and our results with Schinzel [18] makes it likely that there is a k_0 so that for $k > k_0$ the conjecture only holds if $k = p^{\alpha}$. I now conjecture that there is a c < 1 so that for $n \ge 2k \binom{n}{k}$ always has a divisor d satisfying $cn < d \le n$.

Several mathematicians investigated $P(\binom{n}{k})$ ([5]). I conjecture that for every $\alpha < \frac{1}{2}$ and $k > k_0(\alpha)$

(8)
$$P\left(\binom{n}{k}\right) > \min \left\{ \exp \left(c_{\alpha}k^{\alpha}\right), \exp c_{\alpha}(\log n)^{\alpha} \right\}.$$

The results of RANKIN and myself [6] imply that for $k < c \log n$

$$\lim\inf P\Big(\binom{n}{k}\Big)\Big/\log n=0,$$

but perhaps if $\alpha > 0$ then

$$P\left(\binom{n}{k}\right) > n^{c_{\alpha}}$$

for every $k > (\log n)^{\alpha}$ and $c_{\alpha} \to 1$ as $\alpha \to 1$.

It is known that $P(n(n+1)) > c \log \log n$ and perhaps

(9)
$$\lim_{n \to \infty} P(n(n+1))/(\log n)^{2-\varepsilon} = \infty$$

for every $\varepsilon > 0$. (9) if true is certainly very deep. On probability grounds I expect (by (2)) that for every $\varepsilon > 0$ and infinitely many n

$$(10) P(n(n+1)) < (\log n)^{2+\varepsilon}.$$

(10) if true is no doubt very deep. I can not even prove that

$$\lim\inf\log P(n(n+1))/\log n=0.$$

Let h(k) be the greatest integer so that for every $n \ge h(k)$

$$P\left(\prod_{i=1}^{k} (n+i)\right) > h(k).$$

It is not difficult to prove $h(k) > ck \log k$ but no doubt h(k) increases much faster and it seems very difficult to get a good estimation for h(k). $h(k) > k^c$ is certainly true for every c if $k > k_0(c)$.

$$h(k)/k \log k \rightarrow \infty$$

follows from (1).

A well known conjecture of Cramer states

(11)
$$\lim \sup \frac{p_{n+1} - p_n}{(\log n)^2} = 1$$

where $p_1 < p_2 < ...$ is the sequence of consecutive primes. If (11) is true the order of magnitude of h(k) probably will be $\exp((\log k)^2)$. Let in fact p_{n_k} be the smallest prime for which $p_{n_k+1}-p_{n_k}>k$. Clearly

$$h(k) \leq P\left(\prod_{i=1}^{k} (p_{n_k} + i)\right).$$

The problems on h(k) are of course connected with the conjecture (8). Related problems were investigated by ECKLUND, EGGLETON and SELFRIDGE [2].

For fixed n

$$P\left(\prod_{i=1}^{k} (n+i)\right) = u_n(k)$$

is clearly a non decreasing function of k. Denote by $p^{(n)}$ the least prime greater than n. Clearly $u_n(k)$ ceases to be interesting for $k \ge p^{(n)} - n$, since it then equals the greatest prime $\le n+k$. It might be of some interest to determine the maximum number of possible increases of $u_n(k)$, $1 \le k < p^{(n)} - n$ as a function of n— can it be as big as $\log \log n$? or $\log n$? The answer to the first question is probably yes to the second one no.

$$P(\prod_{j < p_{i+1} - p_i} (p_i + j)) = P_i$$

also is an interesting function. I do not think that P_i tends to infinity, in fact perhaps $P_i=3$ for infinitely many i in other words there are infinitely many integers $n=2^{\alpha}3^{\beta}$ for which n+1 and n-1 are both primes. On the other hand for most values of i P_i tends to infinity probably quite fast — the explanation of my vagueness is ignorance.

By a simple averaging process I deduced [8]

$$\min_{1 \le i \le k} A_k(n+i) < ck.$$

I conjectured that (12) holds for every c>0 if $k>k_0(c)$. This conjecture always seemed very interesting to me, but unfortunately I was unable to make any progress with it. More generally it would be interesting to investigate

$$A(k) = \max_{n} \min_{1 \le i \le k} A_k(n+i).$$

 $A(k) \to \infty$ as $k \to \infty$ is not hard to prove but I have no idea how fast A(k) tends to infinity. A stronger conjecture than (12) is

$$\sum_{i=1}^{k} \frac{1}{A_k(n+i)} \to \infty \quad \text{as} \quad k \to \infty$$

perhaps even

$$\sum_{i=1}^{k} \frac{1}{A_k(n+i)} \ge (1+o(1)) \log k.$$

It is easy to deduce by Turán's method [19] (using second moments) that the normal order of

$$\sum_{i=1}^{k} \frac{1}{A_k(n+i)}$$
 (as *n* varies) is $(1+o(1))e^{-c}\frac{\pi^2}{6}\frac{k}{\log k}$

where c is Euler's constant. Clearly

$$\min_{n} \max_{1 \le i \le k} A_k(n+i) = k.$$

I do not know how large is the normal order of this function. Probably it is more than k^c for every c if $k \gg k_0(c)$. A well known result of Mahler [17] implies that for every k and $\varepsilon > 0$

(13)
$$A_k \left(\prod_{i=1}^k (n+i) \right) < n^{1+\varepsilon}.$$

On the other hand it is easy to see that for infinitely many n

$$(14) A_3(n(n+1)) > cn \log n.$$

It would be very interesting to sharpen (13) and (14) but I could not even prove that for some fixed k

$$\limsup_{n\to\infty} A_k \left(\prod_{i=1}^k (n+i) \right) / n \log n = \infty.$$

By an averaging process it is not difficult to prove that

$$\lim_{k\to\infty} A_k \left(\binom{n}{k} \right)^{1/k} = c$$

holds for almost all n and large k.

PLEASANT proved that $v\binom{n}{k} \ge v(n)$ always holds (unpublished) (v(n)) denotes the number of distinct prime factors of n). Selfridge and I conjectured [7]

$$\max_{1 \le k \le n} v \binom{n}{k} k \to \infty \quad \text{as} \quad n \to \infty$$

but we have not even proved

(15)
$$\max_{1 \le k \le n} \left(v \left(\binom{n}{k} \right) - k \right) \to \infty \quad \text{as} \quad n \to \infty.$$

(15) follows from recent results of Shorey and Ramachandra (will appear in Acta Arithmetica).

Let $\alpha < 1$, $k = n^{\alpha + o(1)}$. Very likely

(16)
$$v\left(\binom{n}{k}\right) = (1+o(1))k \sum_{n=1}^{n} \frac{1}{p} = (1+o(1))k \log \frac{1}{\alpha}.$$

(16) if true is certainly deep.

Put $t_1 = (\log n)^{1-\epsilon}$, $t_2 = (\log n)^{1+\epsilon}$. It is easy to see from the Chinese remainder theorem that

$$\limsup_{n\to\infty}\frac{1}{t_1\log\log n}\sum_{i=1}^{t_1}v(n+i)=\infty.$$

Very likely

(17)
$$\lim_{n \to \infty} \frac{1}{t_2 \log \log n} \sum_{i=1}^{t_2} v(n+i) = 1.$$

I have no idea how to attack (17), perhaps (17) already holds for $t_2 = \log n$, for some related questions see [7].

I proved [9] that

$$\max_{1 \le k \le \frac{n}{2}} v\left(\binom{n}{k}\right) = \left(1 + o(1)\right) \frac{n \log 2}{\log n}$$

and the maximum is assumed for $k = (1 + o(1))\frac{n}{2}$. As k increases from 1 to $\frac{n}{2}$, $v\binom{n}{k}$ has of course a tendency to increase, but no doubt for every c and $n > n_0(c)$ there are values of $k \left(1 \le k < \frac{n}{2}\right)$ for which

$$v\left(\binom{n}{k}\right) > v\left(\binom{n}{k+1}\right) - c.$$

GRIMM [14] conjectured that if n+1, ..., n+t are consecutive composite numbers then for $1 \le i \le t$ there is a $p_i | n+i, p_i \ne p_j$ for $i \ne j$. Selfridge and I [10] proved this for $t=o(\log n)$, we also showed that Grimm's conjecture if true is certainly very deep. Ramachandra, Shorey and Tijdeman proved that Grimm's conjecture holds for $t=[c(\log n/\log\log n)^3]$. Their paper will soon appear in J. reine u. angew. Math. For further problems and results in this direction I have to refer to the original papers which are quoted in the paper of Ramachandra, Tijdeman and Shorey.

Selfridge and I proved that the product of consecutive integers is never a power. Our proof will soon appear in the *Illinois Journal of Mathematics*. The following problem is of interest here: Denote by $H_k(n, l)$ the smallest integer i_k for which

$$(n+i_1)...(n+i_k) = x^1, 0 \le i_1 < ... < i_k = H_k(n, l)$$

is solvable. Our theorem with Selfridge asserts $H_k(n, l) \ge k$ for every k > 1, $n \ge 1$ and l > 1.

There seems little doubt that this can be improved a great deal, but as far as I know this question has not yet been seriously investigated.

Selfridge and I in fact prove that for every k and l>1 $\prod_{i=1}^k (n+i)$ has a prime factor $p \ge k$ with $p^\alpha \parallel \prod_{i=1}^k (n+i)$, $\alpha \ne 0 \pmod l$. We conjecture that in fact for k>2 there is such a prime with $\alpha=1$, we made no progress with this deep conjecture. I once thought that for every k>1 $\prod_{i=1}^k (n+i)$ has a prime p for which $p \parallel \prod_{i=1}^k (n+i)$, but Mahler pointed it out to me that since $x^2-8y^2=1$ has infinitely many solutions

but Mahler pointed it out to me that since $x^2-8y^2=1$ has infinitely many solutions there are infinitely many values of n for which every prime factor of n(n+1) occurs with an exponent greater than one. I would guess though that the number of such integers n < x is less than $(\log x)^c$. Probably there always is a p with $p^\alpha || n(n+1)$, $\alpha \le 2$, in fact if $a_1 < a_2 < \ldots$ is the sequence of integers all whose prime factors are ≥ 3 then one would conjecture $\lim_{i \to \infty} (a_{i+1} - a_i) = \infty$, and in fact $a_{i+1} - a_i > c_1 i^{c_2}$.

Put

$$S_r(m) = \prod p^{\alpha}, p^{\alpha} | m, \alpha > r.$$

Let k be fixed. Determine or estimate

$$\limsup_{n\to\infty} \log S_1\left(\prod_{i=1}^k (n+i)\right) / \log n = \alpha_k.$$

Trivially $\alpha_k \le k$ and by Mahler's remark $\alpha_k \ge 2$. It would be interesting to improve these bounds. It is fairly sure that for k > 2, $\alpha_k < k$ and I would not be surprised if $\alpha_k = 2$ for every k.

Observe that

$$\frac{m}{S_1(m)} = \prod_{p \mid m} p.$$

RIGGE [13] and a few month later I proved in 1939 that the product of consecutive integers is never a square. Our proof was based on the fact that for k>4 the k integers $A_k(n+i)/S_1(A_k(n+i))$, $i=1,\ldots,k$, can not all be different. Two strengthenings of this result: Is it true that for r>1 there is a $k_0(r)$ so that for $k>k_0(r)$ the k integers $A_k(n+i)/S_r(A_k(n+i))$ can not all be different? I have not decided this even for r=2. Is there a c<1 so that for $k>k_0(c)$ the ck integers $A_k(n+i)/S_1(A_k(n+i))$, $1 \le i \le ck$, can not all be different?

Let h(n) be the largest integer for which the integers $\frac{n+i}{S_1(n+i)}$, i=1,...,h(n)

are all distinct. It is very likely that infinitely often $h(n) > cn^{\frac{1}{3}-\epsilon}$ but I do not see at present whether $h(n)/n^{1/2} \to 0$ is true or false.

Denote by G(k) the largest integer for which there are G(k) consecutive integers n+i, $1 \le i \le G(k)$ for which the integers $A_k(n+i)$, $1 \le i \le G(k)$ are all different. BASIL GORDON and I proved some time ago the following

Theorem 4. Let $2=p_1 < p_2 < ... < p_s \le k < p_{s+1} < p_{s+2}$ be the sequence of consecutive primes. Then

 $p_{s+2}-2 \le G(k) \le (2+o(1))k$.

We have no counterexample to $G(k)=p_{s+2}-2$. Since our proof has never been published I give it here in full detail.

Before we prove our Theorems we state a few disconnected problems on consecutive integers. Selfridge and I conjectured that for $n \ge 2k \binom{n}{k}$ has a prime factor $<\frac{n}{2}$ the sole exception is $\binom{7}{3}$. Ecklund proved this conjecture [3]. Selfridge and I proved that there is an absolute constant c so that for $n \ge 2k$ and $k > k_0(c)$ $\binom{n}{k}$ has a prime factor $<\frac{n}{k^c}$ [10]. Selfridge and I conjectured that perhaps c can be taken as 1. Very likely this is best possible since we almost certainly have

(18)
$$\limsup_{n \to \infty} p\left(\binom{n}{k}\right) / n = \frac{1}{k}.$$

(18) if true will certainly be very hard to prove. Ecklund, Selfridge and I investigated the smallest integer $m_k \ge k+1$ for which all prime factors of $\binom{m_k}{k}$ are greater than k [12], our lower bounds for m_k are poor, we only get $m_k > k^{1+c}$.

In a forthcoming paper in *Mathematics of Computation* Graham, Ruzsa, Straus and I prove that to every two odd primes p and q there are infinitely many values of n for which $p \not\mid \binom{2n}{n}$ and $q \not\mid \binom{2n}{n}$. We could not extend this for three primes.

We also state the following *problem*: Is it true that there is an absolute constant c so that

$$\sum \frac{1}{p} < c$$
 where $p \nmid \binom{2n}{n}$ and $p < 2n$?

Many rather special problems can be stated on binomial coefficients — here are a few which occurred me recently. Denote by α_r , $r=0, 1, \ldots$ the density of integers n for which there are exactly r squarefree integers in the sequence $\binom{n}{k}$, $1 \le k \le n-1$.

It is not difficult to prove that α_r exists and $\sum_{r=0}^{\infty} \alpha_r = 1$. The following question seems much more difficult: Denote by s(n) the number of squarefree integers amongs the sequence $\binom{n}{k}$, $1 \le k \le n-1$. Probably s(n) can not be very large, perhaps $s(n) = o(n^{\epsilon})$ for every $\epsilon > 0$, but I have not obtained any sharp results.

The prime number theorem implies

$$\max_{1 \le m \le n} v(m) = (1 + o(1)) \frac{\log n}{\log \log n}.$$

It is very likely that for every k

(19)
$$\max_{1 \le m \le n} v \left(\prod_{i=1}^{k} (m+i) \right) = (1+o(1)) \log n / \log \log n.$$

(19) if true will be very hard to prove. Put (d(n)) is the number of divisors of n)

$$D(n) = \max_{1 \le m \le n} d(m).$$

D(n) has been studied among others by RAMANUJAN in his paper "On highly composite numbers" (see Collected papers of S. RAMANUJAN, Cambridge, 1927). Almost certainly

$$\limsup_{n\to\infty} \max_{1\le m\le n} d(m(m+1))/D(n) = \infty$$

but probably for a certain c>0

$$\max_{1 \le m \le n} d(m(m+1)) < n^c D(n).$$

All these questions seem very difficult. On the other hand it is a simple exercise to prove that for every $k(\sigma(n))$ is the sum of the divisors of n

$$\max_{1 \le m \le n} \frac{\sigma\left(\prod_{i=1}^{k} (m+i)\right)}{\prod_{i=1}^{k} (m+i)} - \max_{1 \le m \le n} \frac{\sigma(m)}{m} \to 0.$$

Put $A_k = \prod_{i=1}^k p_i$, where p_i are the consecutive primes. The prime number theorem implies $A_k^{1/p_k} \to e$. Denote by g(k) the number of integers $m < A_k$ for which

 $(m+i, A_k) > 1$ for $i=1, 2, ..., p_k$. g(k) certainly tends to infinity with k but perhaps

 $\lim_{k\to\infty} g(k)^{1/p_k} < e?$

Many similar questions can be asked which are connected with the growth of $p_{i+1}-p_i$. Selfridge and I asked: Is it true that to every r there is a $k_0(r)$ so that for $k>k_0(r)$ there is an $m< A_k$ with $v((m+i, A_k))>r$ for $i=1, 2, ..., p_k$? This problem seems to be surprisingly difficult and is perhaps not affirmative for every r. A related question states as follows:

Denote by K(n) the largest integer so that for every $1 \le i \le K(n) \ v(n+i) > \log \log n$. The Chinese remainder theorem implies $K(n) \ge (1+o(1)) \log n/(\log \log n)^2$ and this is the best lower bound that I can get. I have no non trivial upper bound for K(n). On probability grounds one would expect

$$\limsup_{n\to\infty} K(n)/\log n = \frac{1}{\log 2}.$$

An old conjecture of Catalan states that 8 and 9 are the only consecutive powers. This problem seemed intractable. A few months ago TIDDEMAN proved that there is a computable constant c so that two consecutive integers greater than c can not be both powers and Choodnovski proved that there is an explicitely given function L(n) so that if $1 = a_1 < a_2 < ...$ is the sequence of powers then $a_{n+1} - a_n > L(n)$ holds for every n.

Now we prove our Theorems. Clearly $\binom{n}{k} > \frac{n^k}{k^k}$, also a well known lemma asserts that $p^{\beta} \| \binom{n}{k}$ implies $p^{\beta} \le n$. Now put $\binom{n}{k} = u_1 \cdot u_2$ where $P(u_1) \le k$ and $p(u_2) > k$. From $\pi(k) < \frac{2k}{\log k}$ we obtain $u_1 < n^{2k/\log k}$. Thus

(20)
$$n^{f(n-k,k)} > u_2 > n^{k - \frac{2k}{\log k}} \cdot k^{-k}.$$

(20) immediately implies Theorem 1 by $n>k^{\alpha}$. It might be of some interest to investigate

$$\min_{p^{\alpha} \parallel \binom{n}{k}} p^{\alpha} = V(n, k) \quad \text{and} \quad \min_{\substack{p^{\alpha} \parallel \binom{n}{k} \\ p \leq k}} p^{\alpha}$$

and try to obtain upper and lower bounds for these functions. I had no time to investigate whether one can get any non trivial results.

We now outline the proof of Theorem 2. Let $n-k+1 \le m_1 < ... < m_{f(n-k,k)} \le n$ be the integers which have a prime factor greater than k. In the proof of Theorem 1 we crudely assumed that the m_i are entirely composed of the primes greater than k and obtained Theorem 1 from (20). In fact we can improve this estimate by the following

Lemma 1. To every $\eta_1 > 0$ there is an $\eta_2 > 0$ so that for $k > k_0(\eta_1, \eta_2)$ all but $\eta_1 k$ of the integers $n - k + 1 \le m \le n$ have a prime factor p satisfying $k^{\eta_2} .$

The proof of Lemma 1 follows easily by the sieve of Eratosthenes and will be left to the reader.

From Lemma 1 we obtain that at least $f(n-k, k) - \eta_1 k$ of the integers m_i have a prime factor p satisfying $k^{\eta_2} . Thus (20) can clearly be replaced by the following sharper inequality$

(21)
$$n^{f(n-k,k)} > n^{k - \frac{2k}{\log k}} \cdot k^{-k} \cdot k^{\eta_2(f(n-k,k) - \eta_1 k)}.$$

Using $n \ge k^{\alpha}$ (21) easily implies Theorem 2.

Theorem 3 is nearly trivial. We evidently have $\left(\operatorname{since} \binom{n}{k}\right)$ is an integer

where the dash indicates that we remove from n-i all prime factors greater than k. From (22) and $n \le k^{\alpha}$ we have

$$k^{k\alpha} \ge n^k > k! k^{f(n-k,k)} > k^{k+f(n-k,k)} e^{-k}$$

which proves Theorem 3.

The most difficult proof is our proof with GORDON of Theorem 4. First we observe $G(k) \ge p_{s+2} - 2$. Clearly the $p_{s+2} - 2$ integers $A_k(2)$, $A_k(3)$, ..., $A_k(p_{s+2} - 1)$ are all distinct since $A_k(i) = i$ for all of them except for $A_k(p_{s+1})$ which is 1. The proof of the upper bound of Theorem 4 is a little more difficult. Suppose that the G(k) integers $A_k(n+i)$, $1 \le i \le G(k)$ are all different. Observe that

(24)
$$\Pi' A_k(n+i) \ge G(k)! G(k)^{-\pi(k)} > G(k)^{G(k)} \cdot e^{-G(k)} \cdot G(k)^{-\pi(k)},$$

where in $\Pi'A_k(n+i)$, $1 \le i \le k$, we omit for each $p \le k$ the integer n+i which is divisible by the highest power p^{α} (if there are several such (n+i)'s we omit the greatest one). (24) follows immediately since by assumption the $A_k(n+i)$, $1 \le i \le G(k)$ are all distinct. On the other hand

(25)
$$\Pi' A_k(n+i) \leq G(k)! \left(\prod_{k$$

The first inequality of (25) follows from the fact that by Legendre's formula all primes $p \le k$ occur in a higher power in G(k)! then in $\Pi' A_k(n+i)$ and by definition $A_k(n+i)$ has no prime factor greater than k; the second inequality of (25) follows from Stirling's formula. (24) and (25) implies

$$e^{-G(k)+k+o(G(k))} > G(k)^{-\pi(k)}$$

which by the prime number theorem implies $G(k) \le (2+o(1))k$ and hence the proof of Theorem 4 is complete. It seems very likely that the upper bound in Theorem 4 can be improved but we have not been successful in our attempts.

To finish this paper I state one more *problem*: Determine or estimate the smallest integer H(n) so that one can find two subsets of the integers n+1, n+2, ..., n+H(n) whose product is equal.

References

- [1] N. G. DE BRUUN, On the number of positive integers $\leq x$ and free of prime factors >y, Indig Math. 13 (1951), 50—60.
- [2] E. F. ECKLUND JR., R. B. EGGLETON and J. L. SELFRIDGE, Factors of consecutive integers, Prof. Manitoba conf. Num. Math. 1971, 155—157; see also E. F. ECKLUND JR. and R. B. EGGLETON, Prime factors of consecutive integers, Amer. Math. Monthly 79 (1972), 1082—1089.
- [3] E. F. ECKLUND JR., On prime divisors of the binomial coefficient, *Pacific J. Math.* 29 (1969), 267—270.
- [4] P. Erdős, On consecutive integers, Nieuw Arch. voor Wisk. 3 (1955), 124-128.
- [5] e.g. [4] see also M. FAULKNER, On a theorem of Sylvester and Schur, J. London Math. Soc. 41 (1966), 107—110 and many recent papers of Ramachandra, Shorey, Tijdeman and others.
- [6] R. A. RANKIN, The difference between consecutive prime numbers, Journal London Math.. Soc. 13 (1938), 242—247, see also P. Erdős, On the difference of consecutive primes, Quarterly J. Math. 6 (1935), 134—138.
- [7] P. ERDŐS and J. L. SELFRIDGE, Some problems on the prime factors of consecutive integers, Illinois J. Math. 11 (1967), 428—430.
- [8] P. Erdős, On the product of consecutive integers III, Indig. Math. 17 (1955), 85-90.
- [9] P. Erdős, Über die Anzahl der Primfaktoren von $\binom{n}{k}$, Archiv der Math. 24 (1973), 53—56.
- [10] P. Erdős and J. L. Selfridge, Some problems on the prime factors of consecutive integers II, Proc. Wash. State Univ. Conf. number theory, Pullman, Wash. 1971.
- [11] P. Erdős, Some problems in number theory, Computers in number theory, Proc. Atlas Symp. Oxford held 1969, Acad. Press, 1971.
- 12] E. F. ECKLUND, P. ERDŐS and J. L. SELFRIDGE, A new function connected with the prime factors of $\binom{n}{k}$, Math. Comp. 28 (1974), 647—649.
- [13] V. RIGGE, Über ein diophantisches Problem, 9 Congress Math. Scand. 1939, 155—160 and P. Erdős, On the product of consecutive integers, Journal London Math. Soc. 14 (1939), 194—198.
- [14] C. A. GRIMM, A conjecture on consecutive composite numbers, Amer. Math. Monthly 76 (1969), 1126—1128.
- [15] M. JUTILA, On numbers with large prime factors II, will appear in the *Indian J. Math.*; K. RAMACHANDRA and T. N. SHOREY, On gaps between numbers with a large prime factor, *Acta Arithmetica* 24 (1973), 99—111; T. N. SHOREY, On gaps between numbers with a large prime factor II, *Acta Arith*. 25, (1974), 365—373.
- [16] M. Keates, On the greatest prime factor of a polynomial, Proc. Edinb. Math. Soc. (2) 16 (1969), 301—303.
- [17] K. Mahler, Ein analogon zu einem Schneiderschen Satz, Indig. Math. (1936), 633—640 and 729—737.
- [18] A. SCHINZEL, Sur un problème de P. Erdős, Coll. Math. 5 (1958), 198-201.
- [19] P. Turán, On a theorem of Hardy and Ramanujan, Journal London Math. Soc. 9 (1934), 274—276.

(Received January 18, 1975.)