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1. Introduction and Notations

Let R denote a (not necessarily noetherian) connected semilocal ring, U(R)
its group of units, and X'= X'(R) the topological space of signatures of R [8, Def. 2.1].
The space X is compact, Hausdorff, and totally disconnected, with a subbase of
the topology being given by the subsets W(a)={c in X|o(a) =—1}, a in U(R),
of X.

By a space over R we will mean a pair (£, B) where E is a projective (whence
free) R-module and B is a nondegenerate symmetric bilinear form on E. Isometries
of spaces will be written as = and for any natural number m thespace EL E | ... L E
(m times) will be denoted by mE or m(E, B). An element ¢ of E is called primitive
if it can be augmented to a basis of E. The space (E, B) is called isorropic if it contains
a primitive element e with B(e, e)=0. We will write E={(a,, ..., a,) to mean E has
an orthogonal basis ey, ..., e, such that B(e;, ¢;)=a; in U(R). The Witt ring of
equivalence classes of spaces will be denoted by W(R) and the representative of
a space (E, B) in W(R) by [E] or [B]. If E is a space then there exist a,, ..., @, in
U(R) such that [E]=[(ay, ..., a,)] in W(R) [7, Thm. 1. 16]. Any ¢ in X(R) induces
a ring homomorphism ¢: W(R)—~Z via ¢([{a, ..., a,)])=0c(a)+...+0o(a,).

In [8, Thm. 3. 20], the following Strong Approximation Property was introduced :

SAP If Y is a clopen (closed and open) subset of X, then Y= W(a) for some
a in U(R).

Following ELMAN and Lam [4, Def. 1.5], X is said to satisfy the Weak Approxi-
mation Property if

WAP The family of subsets W(a) of X, as a runs through U(R), forms a basis of
the topology of X.

It is easy to see (cf. [8, Thm. 3. 20 and 4, p. 1159], that SAP is equivalent to:
If Y,, Y, are two disjoint closed subsets of X, there is an element @ in U(R) with
o(a)=1 for all ¢ in Y,, and t(a) = —1 for all t in Y,. Moreover, WAP is equivalent
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to: For any closed subset Y of X and any t in X— Y, there is an element a in U(R)
with ¢(a)=1 for all ¢ in ¥ and 1(a) = —1.

If R is a formally real field ELMAN and LaM [4, p. 1184] and PREesTEL [10, p. 319)],
independently, introduced the following Hasse—Minkowski Property.

HMP R satisfies HMP, if for every space (E, B) such that |G([E])|<rankE,
for all ¢ in X, there is a natural number m such that m(E, B) is isotropic.

It is clear that SAP implies WAP and, in [4, Thm. 3.5], it was shown that if
R is a formally real field SAP and WAP are equivalent. If, in addition, R is also
pythagorean, [4, Thm. 5.3] shows that HMP is equivalent to the other two conditions,
and, indeed, for arbitrary formally real fields, [10, Satz 3.1 and 5, Thm. C] demontrates
the equivalence of all three conditions. The proofs depend on [3, Thms. 2.6 and
4.8] which seem to be quite deep, and, in particular, Theorem 4.8 of [3] relies on the
Hauptsatz of ARASON and PFISTER.

The purpose of this note is to prove the equivalence of WAP, SAP, and HMP
for connected semilocal rings with 2 in U(R), using only basic facts about spaces
and W(R), thus resulting in considerably easier proofs, even in the field case. Although
we assume, for the sake of simplicity, that our rings are connected, an extension
to the non-connected case presents no difficulties because of [8, Corr. 2. 18]. In
Section 4, we reprove a special case of [1, Satz 2.7] for the reader’s convenience.

The first author gratefully acknowlwdges partial support from NSF Grant
GP—40773X and the second from NSF Grant GP—37781.

2. Equivalence of WAP and SAP

We begin with the following lemma which is already implicit in, i.a., [4, 7, 8]:

Lemma 2.1. Ler R be a connected semilocal ring with 2 in U(R), (E;. B)) i=1, 2,
two spaces, and ry=rank E;. If ry=r,, and for ¢ll ¢ in X, 6([E,])=6([E,]), then there
is a natural number m such that

MME, > ™E, | 2""(r,—ry)H,

where H denotes the hyperbolic plane (1, —1).

PrOOF. By [8, Remark 2.2], the element [E;]—[E;] of W(R) lies in each minimal
prime ideal of W(R). Hence by [7, Ex. 3. 11] it is a torsion element of W(R), i.e.,
for some natural number m we have [2™E,]=[2"E,]. Since 2 is in U(R), the Witt
Cancellation Theorem holds for R[11], and so the result follows.

As usual a space (E, B) is called an n-Pfister space if E= ® (1, a;), a; in U(R).

1
Two n-Pfister spaces E, F are linked [3, Def. 4.1], if there is an (n— 1)-Pfister space
G and elements a, b in U(R), such that E=(1,a)®G and F=(1,b)®G. The spaces
E and F are stably linked if 2"E and 2™F are linked for some natural number m.

Theorem 2.2. (cf. [4, Thm. 3.5]). Let R denote a connected semilocal ring with
2 in U(R) and X=X (R) its space of signatures. Then the following are equivalent:
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(1) X satisfies WAP.

(2) X satisfies SAP.

(3) For any n-Pfister space E, there is a natural number m and an element
a of U(R) such that 2"E=x2"+"-1(], qa).

(4) Any n-Pfister space is stably linked to 2"(1).

(5) Any two n-Pfister spaces are stably linked.

Proor. We begin by noting that, in order to prove that X satisfies SAP, it
suffices to prove that given a,, ..., a, in U(R). There is an element a in U(R) such

that |’n] W(a;))= W (a). For, since the W(a)'s always constitute a subbase of the

1
topology of X, this shows that they actually form a basis. Then, if Y is an arbitrary
clopen subset of X, the clopen set X— Y is a union of W(a)’s. Since X— Y is a clo-
sed subset of the compact Hausdorff space X, it is itself compact, and thus there
exist a,, ...,a, in U(R) with X—Y=W(a)UW(ay,)U...UW(a,). Now from the

definition, W(—a)=X—W(a), and soY= ) W(—a;)=W/(a) for some a in U(R),
1
once the initial statement is proved.
(1)=(2).*) For any a,, ..., a, in U(R), let Y= W(q). Then Y is open and

1
compact and since X satisfies WAP, there are elements b,, ..., 5, in U(R) with
Y=W(b)U...UW(b,). By repeating some of the W(a;,)’s or W(b;)’s, if necessary,
we may suppose

AW@) =0 Wk, a b in UR).
1 1

Let E= ® (1, —a), F= @ (1, b). Then

if ¢ isin Y, we have a([E])=2", 6([F])=0,
and
if ¢ isin X—Y, we have 6([E])=0, ¢([F)]=2".

Hence E | F and 2"(1) satisfy the conditions of Lemma 2.1, so that for some natural
number m,
B L2 s P 1 20

Hence 2™E | 2™F contains a primitive isotropic element. By [I, Satz 2.7(c)] or
Proposition 4.1(i), there is an element a in U(R), such that 2"E represents —a while
2" F represents a. If R is a field, this is quite clear, without any reference.

Let 2"E={c, ..., Cgn+m). Since for ¢ in Y, we have G([2"E])=2"*", necessarily
o(c)=1fori=l1,2,...,2"m*" Hence by [8, Lemma 2.3(ii)], 6(—a)=1, i.e., o(a)=—1
for all ¢ in Y. A similar argument based on 2™ F shows that for all ¢ in X — Y we have
o(a)=1. Thus Y=W(a).

*) In case Ris a field, essentially the same proof of this implication was also found by T. C. CRAVEN.
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(2)=(3). Let E= @n)(l, a;) be an n-Pfister space and Y= W(a,)U W(ay)J...U
1

....UW!(a,). Then ¢([E])=0forcin Y and &([E])=2" for ¢ in X— Y. Since X satisfies
SAP, there is an element a@ in U(R) with Y= W(a) and clearly the equation G([E])=
=g ([2"~'(1, @)]) holds for all ¢ in X. Lemma 2.1 then proves (3).

The implication (3)=(4) is clear.

(4)=(5). If E and F denote two n-Pfister spaces, (4) guarantees the existence
of elements a, b, ¢, d in U(R), natural numbers m, m’, an (m+n— 1)-Pfister space G,
and an (m”"+n—1)-Pfister space H, such that

ME = (1,a)®G, 2"**(1) = (1, ) ®G,
™ F = (1, )@H, 2" +'(1) = (1, d)® H.

Since for all ¢ in X, we have ¢(2"*"(1))=2"*", Lemma 2.1 proves the existence of
natural numbers k, k” with

2"6 o 2m+u+k—1<l)’ zk'H = 2m‘+n+k’-—1<l>'
But then it is clear that 2m+k+m +¥ E and 2m+k+m +¥ F are linked, proving (5).
(5)=(2). As already remarked it suffices to show that for a,, ..., a, in U(R),
there is an @ in U(R) with Y= ﬂ W(a;)=W(a). Let E= ®(l —a;) and F=2"(1).

By (5), there is a natural number m, an (n+m—l)-Pﬁstcr space G, and elements
b, ¢ in U(R) with

"E=(1,0)®G, 2"F = (1,c)®G = 2™*+"(]).

Thus for all ¢ in X, we have 6([G]) = 2™*+"~1, But
forec in Y, we have 6([2"E)] = 2™*", and
fore in X-Y, we have 6([2"E]) = 0.

It follows, therefore, that ¢(b)=1 for ¢ in ¥, and a(b)=—1 for ¢ in X— Y. Hence
Y= W(—b), and the proof of Theorem 2.2 is complete since the implication (2)=(1)
is clear.

Remark 2.3. In [7, Def. 3.12] the notion of an abstract Witt ring for any abelian
p-primary gronp G was introduced. Conditions (2)—(5) are still equivalent for
a “small” [8, Rem. 3.17] abstract Witt ring, if G is a group of exponent 2. The

n
n-Pfister spaces are replaced by elements [[(1+g;) of the abstract Witt ring, the
L .

group U(R) is replaced by G, the sets W(a) by the sets W(g) as defined in [8, Thm.
3.18 (i1)], and the isometries in (3), (4), and (5) by equalities in the small abstract
Witt ring. However, Craven [2, Section 3] has shown that the implication (1)=(2)
cannot hold in such abstract Witt rings, so that it is not surprising that this part
of the proof uses facts about units of R represented by spaces.
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3. Equivalence of HMP and SAP

Theorem 3.1. (cf.[5, Thm. C and 10, Satz 3.1]). Let R be a connected semilocal
ring with 2 in U(R), then SAP is equivalent to HMP.

PrOOF. Let E be a space of rank n over R, and suppose |G([E])|<n for all
o in X. Then the possible values of G([E]) are —n+2, —n+4,...,n—4, n—2. Let
Yy={o in X|o([E])=—n+2k}, k=1,2,...,n—1. Clearly the Y, are a partition
of X and, of course, some Y, may be empty. Now, the function fz: X—Z defined
by fe(6)=a([E]) is continuous if Z is given the discrete topology [8, Lemma 3.3 (iv)],
so that each Y, is a clopen subset of X. Since X satisfies SAP, there are elements
by, by, ..., b, In U(R) such that W(b,)=Y,, W(b)=Y,UY,, ..., W(b,—o)=
=Y,UY,U...UY,_;. Now let F=x=(b,,...,b,_3) and o be an element of Y,,
k=1,2,...,n—2. Since Y, is contained in W(b,), W(bysy), ..., ..., W(b,—s), but
is disjoint from W(b,), W(b,), ..., W(b,_,), we have ¢([F))=(k—1)—(n—2—k+1)=
=—n+2k=a([E]). If ¢ lies in Y,_,, then since Y,_, is disjoint from all W (b,),
we still have 6([F])=n—2=a([E]). Since the Y;’s cover X, Lemma 2.1 guarantees
the existence of a natural number m such that 2"E=2"F | 2"H. Hence 2™E is isotro-
pic, and R satisfies HMP.

HMP=SAP. As at the beginning of the proof of Theorem 2.2, it suffices to
prove that for any two elements a, b of U(R), there is an element ¢ in U(R) with
W(a)\W(b)=W(c). Thus, for a,b in U(R), let E=(—1,a,b,ab). It is easily
verified that for all ¢ in X, we have ¢([E])= +2, so that by HMP, there is a natural
number m such that 2™E is isotropic. By multiplying by 2, if necessary, we assume
m=1. Thus 2"(—1) L 2"{a, b, ab) is isotropic and so again by [1, Satz 2.7 (c)] or
Proposition 4.1 (i), there is an element 7 in U(R) such that —¢ is represented by
2™(—1) and ¢ is represented by 2™(a, b, ab). Thus for some r; in R, t= 3r{, so that
by [8, Lemma 2.3 (i1)], o(¢)=1 for all ¢ in X. Now ¢ is represented by 2"(a) L (b)®
®2™(1,a) and by [1, Satz 2.7 (a)] or Prop. 4.1 (ii), there are units s and v in R
such that r=s+v, s is represented by 2™(a), and v is represented by (b)®2"(1, a).
Setting c=b"'v we then have t=s+be, with ¢ represented by 2™(1, a). Once
more [8, Lemma 2.3 (ii)] shows W(s)=W(a) and W(c)c W(a). Now let o lie
in W(c)< W(a) and suppose a(b)=1. Then o(bc)= —1=0(a), which again by [8,
Lemma 2.3 (ii)] would force a(t) = — 1, a contradiction. Hence W (c)c W(a)( W (b).
On the other hand, if ¢ lies in W(a)(\ W(b), then o(s)=—1 and so, since o(t)=
=1, we again see by [8, Lemma 2.3 (ii)] that a(bc)=1, but this means o(c)=—1,
or W(a)"\W(b)c W(c), i.e., W(a)\ W(b)=W(c) as desired.

4. Representations of units

The following Proposition is a special case of [1, Satz 2.7], and is only given
here for the reader’s convenience.

Proposition 4.1. Let R be a connected semilocal ring with 2 in U(R) and (E, B)
a space over R. Let E=E, | E,.

(i) If the rank of E is =3 and e is a primitive isotropic element of E, there existr
a primitive isotropic element ¢’ of E such that ¢’ =ei+e;, e in E;, and B(e], e]) lies
in U(R).
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(ii) If, in addition, rank E;=2, i=1,2, and e is an element of E with B(e, e) in
U(R), then there exists an element ¢ in E with ¢’ =e +e;, ¢, in E;, such that
B(e, e)=B(¢’, €’) and B(e}, ¢;) lies in U(R).

Proor. We first prove (i) and (ii) in case R is a field, necessarily of characteristic
different from 2. Since E=E, | E,, we have e=e, +e,, with ¢; in E;, and if both
B(e,, e,) and B(e,, e,) are different from zero we may take ¢ =e, ¢/ =¢;. Hence,
by renumbering, if necessary, we may suppose B(e,, ¢;)=0, i.e., E, is isotropic.
Since E is nondegenerate, E;, and E, are also, and so E; is universal. Since E, is
nondegenerate and the characteristic of R is not 2, there is a vector ¢; in E, with
B(e;, e;) #0. To complete (i), we simply choose e; in E; with B(ey, e;)= — B(es, €3).

In case (ii), let B(e,, e;)=B(e, e)=a+=0. Suppose first that R is not the field of
3 elements. Since R contains at least three nonzero elements, R contains a nonzero
element b= +a, and since E, is universal there is a vector &, in E, with B(¢,, &)=
=h. Now there is a nonzero element ¢ in R,c# +1, such that b=ca. Sincec=

2 —1\8
[%—l—] - [5—2—1] , we have e=u®—0v* with wu, v nonzero elements of R. Thus
b o ; . T PR T
b=(u*—v*a,or 0=F+u_§a’ and setting B By e, +e;, completes the

proof if R is a field of more than three elements. If R is the field of three elements,
then 2a+2a=a. But over R any space of rank 2 is universal [9, 62. 1, p. 157] and
thus there exist ¢/ in E; with B(e{ , /) =2a.

Still supposing R a field, a classical theorem due to Witt [9, 42.17, p. 98], ensures
that there is an isometry T of E such that T(e)=e’. Now there is a vector fin E
orthogonal to e and such that B(f, f)#0. For, if dim E=n, then dim (Re):t=n—1,

and if (Re): were totally isotropic then n—-lé%, which forces n=2. Thus, if

necessary, multiplying 7 on the right by the reflection .\-—-x—%,i—(}-rl}f—))- f, we may
assnme that det 7=+1.

To settle the case where R is a semilocal ring, let O*(E) denote the group of
those isometries of E whose images on E/m;E have determinant +1 for all maximal
ideals m;, j=1, ..., k, of R. By the above, there exist vectors &; in E/m;E with the
desired projections on E;/m;E;, i=1, 2, and elements T; in O*(E/m;E), such that
T_,-(e+m,E)=é}. Now K~eBuscH has proved that t{w natural map O*(E)—~

k

- ]l] O*(E/mjE) is surjective [6, Satz 0.4]. Hence if 7 is an element in O*(E)

k
mapping onto (7, Ty, ..., T}) in J] O*(E/m;E), it is clear that ¢’=T(e) and the
1

projections of e’ into E; and E,, have the desired properties.
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