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1. Introduction

Let P be an arbitrary (Kurosh—Amitsur) radical class of rings with P(R)
designating the P-radical of a ring R. For basic definitions and notation we refer
to [1]. We will let N denote the class of all nil rings; J the class of all Jacobsen radical
rings: and B the lower Baer radical class, that is B is the smallest radical containing
all nilpotent rings. Note that if for a class M of rings we let UM = {R|every 0 R/I§ M}
then, alternatively, B=UA where A is the class of all prime rings (that is, B is the
upper radical defined by the class of all prime rings).

A ring R will be called left P-primary if 1J=0 for ideals /, J of R implies either
J=0 or IS P(R). A right P-primary ring is defined symmetrically, and R is said to
be 2-sided P-primary if it is both left and right P-primary. That is, if we let Q,, Q,,
and Q denote respectively the classes of all left, right, and 2-sided P-primary rings
then Q=Q,NQ,. Throughout the paper there will be definitions, statements and
theorems which will be equally valid whichever of these three “‘primaries’ is chosen
and when this is the case we will write simply P-primary. For example, we will
say that an ideal 7 of a ring R (which we will write /<aR) is P-primary if R/I is
a P-primary ring, which means that 7 is a left P-primary ideal if R//is a left P-primary
ring, and similarly for / right or 2-sided P-primary. For an arbitrary /<R we will
also define G(/) to be the ideal of R defined by G(/)/I=P(R/I). Note here, for later
use, that if A< B where 4 and B are ideals of R then G(A4)< G(B).

When R is commutative it is, of course, true that the three “primaries” coincide
and if P=N then a P-primary ideal 7 of a commutative ring R is “primary™ in the
classical sense of E. NOETHER [see 2]. That is, if xy€l and y 4/ then x"€7 for some
integer n=1. Thus our theory is a generalization of the classical theory and we will
show that certain of the classical theorems can be generalized, particularly for
radicals which contain B or are hereditary (a radical P is hereditary if /<sREP
implies /¢ P). Our proofs will in some cases be similar to the proofs of the classical
theory. However, there are certain differences and in any case we will, for complete-
ness, at least sketch the proof. One other point to be remarked is that in most cases
the prooss for right or 2-sided P-primary exactly parallels that for left P-primary
and when this is so we will present only the left P-primary proof.

As for prime ideals we have alternative characterizations of P-primary ideals by:
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Proposition 1. An ideal I of R is left P-primary if and only if for left (right)
ideals A, B or R, whenever ABE I with BE I then ASG(I).

PROOF. Let A4, B be left ideals of R with ABSI. Then (A+AR)(B+BR)S 1.
Thus if 7 is left P-primary and BE 7 then A+ ARSG(I) so ASG(]). The converse
is obvious, as is the proof for right ideals (as well as the analogous
‘proofs for the right or 2-sided P-primary cases).

Proposition 2. An ideal I of R is left P-primary if and only if xRy I where
X, YER, implies either ycI or x€G(I).

Proor. Clear.

Remark 1. If P is the zero radical, that is P= {0}, then an ideal 7 of a ring R is
a P-primary ideal if and only if it is a prime ideal. On the other hand, all prime
ideals are P-primary for all radicals P. Also notice that for R an arbitrary ring
G(P(R))=P(R) hence also G(G(I))=G([) for any I<R) and so P(R) is a P-primary
ideal if and only if it is a prime ideal.

In all of the cases noted in Remark 1 all three P-primaries coincide. However,
this is not true in general, and in the following example we will construct for P=N
a ring which is left but not right P-primary.

Example 1. Let R be the ring (with unit) of all polynomials over a field F in
non-commuting variables x, y with relations x*=xy=0. We can write R={f,+/,x|
| fis f2€ F[¥]}. Now xRy=0 with x=0 and y non-nilpotent so y¢ P(R). Thus R is
not right P-primary. On the other hand, let fRg=0 for some f=f,+fox and g=
=g,+g.x. Then fg=0 and if g0 either g,#0 which implies f;=0 or else g,=0
but g,#0, and this also implies f;=0. But then f=f,x and clearly (x)S P(R). Thus
R is left P-primary by Proposition 2.

Remark 2. In this example it is clear, in fact, that if fRg=0 with g=0 then
f is a member of a nilpotent ideal so that f€ B(R). Therefore R is left P-primary
for all radicals P2 B. On the other hand, for any radical P such that y4 P(R) the
ring is not right P-primary. This includes any radical P such that BEPZJ and
from our example we conclude that Q, Q, for any such radical. This does, however,
still leave open the question of whether or not this is so for an arbitrary (non-trivial)
radical.

Remark 3. We should record one further situation in which all three P-primaries
coincide: If REP then R and all its ideals are automatically P-primary.

2. Intersections of P-primary ideals

Since the classical primary refers to N which is a hereditary radical, it would
be expected that more of the classical theory would apply to a hereditary radical
than to radicals in general. Thus we have:

Theorem 1. If P is a hereditary radical and A, B ideals of a ring R then G(AN B)=
=G(A)NG(B).
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PRrROOF. Since A() B is contained in both 4 and B we have in any case (whether
P is hereditary or not) that G(ANB)SG(A)G(B). Write G(A)=G and G(B)=H.
Now (GNH+ A)JA<G/A so by the hereditary property (G H+A)/A==(GN H)/
/(AN H)EP. Simitarly, (4N H+ B)/B<H|B so (AN H+ B)/B=(ANH)/(AN B)¢ P.
Since radicals are closed under homomorphic extensions, this implies
GMNH/ANBePand so GNHZSG(ANB).

As in the classical case this leads to a useful property of P-primary ideals:

Theorem 2. If P is a hereditary radical and A, B are P-primary ideals of a ring
R such that G(A)=G(B) then ANB is also a P-primary ideal with G(ANB)=
=G(A)=G(B).

Proor. We only need show P-primariness so suppose A, B left P-primary
with CDE AN B for some ideals C, D of R. If DL AN B then, say, DE A which
implies CSEG(A)=G (AN B).

Remark 4. This proof actually shows that if 4, B are P-primary and G(A)=
=G(B)=G(AMNB) then ANB is also P-primary whether P is hereditary or not.
However, when P is non-hereditary, even if G(4)=G(B), it is generally true that
G(AM B) is properly contained in G(A4), and we will give an example of such a case
below.

First, though, we will need to recall the Kurosh construction of the lower
radical LM for an arbitrary class M of rings. Let M, be the homomorphic closure
of M and for f an arbitrary ordinal M;= {|levery 07 R/I has a non-zero ideal in
M, for some x<p}, then LM= | J M, is the Kurosh lower radical of M (that is,

[

the smallest radical class containing M). It was shown [2, p. 618] that if all rings
in M, are idempotent then LM =M,. As a corollary we have: If M is a class of
rings with unit then LM =M,.

Proposition 3. Let P=LM where M is a class of rings with unit. (1) If a ring
R has radical P(R)#0 then R=U®@V where U and V are ideals of R with UEM,.
(2) If R is a ring with unit containing no non-zero orthogonal idempotents then P(R)#0
implies REM,.

PRrOOF. (2) is obvious from (1) so suppose R is a ring with P(R)#0 then R has
a non-zero ideal /¢ M,. But then we have 0= U</ with U€ M,. Since U is idempotent
it follows that U< R and since it has a unit it is a direct summand of R.

Example 2. We will construct a (necessarily non-hereditary) radical P and
a ring K containing ideals 4, B such that G(4)=G(B)=K (so A and B are P-primary)
but G(A()B) is a proper ideal of K.

Let Z,[x, y, z] be the ring of polynomials (commuting variables) over the
field Z, of integers mod 2, and let K=2Z,[x,y,z]/(z%). Define R=K/(x)=K/(y)
and let P=L{R} which satisfies the hypothesis of Proposition 3. Since both KJ(x)
and K/(y) arein P it follows that both (x) and (y) are P-primary with G(x)=G(y)=K.
Now (x)N(y)=(xy) and we let H=K/(xy)==Z,[x, y, z]/(xy, z*). We can write
H={f,+fsz+yg,+g.z} where f;, /,€Z,[x] and g,, g8,€Z,[y], and from this it
easily follows that the only idempotent in H is its unit. From Proposition 3 it follows
that if P(H)=0 then HEM,.
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Now to see what members of M, look like, let 7 be a proper ideal of R=
= ZJ[y, z]/(z®)={f1+/f.z} where f, f,€Z,[y]. Let fcZ,[y] be the polynomial of
smallest degree such that fz+ /<7 for some h€Z,[y] and let g€ Z,[y] be the polynomial
of smallest degree such that g</. It is easy to see that I=(fz+h,g) so that R/I
is a finite ring. But H is an infinite ring so H 3 R/I for any proper ideal / of R. Also
H % R since H has non-nilpotent zero divisors whereas R does not. Thus H¢ M,
so we conclude that P(H)=0, that is G(xy)=(xy) =K.

Remark 5. Note that in this example (z)*=0 with z£(xy) so (x)"(y) is not
a P-primary ideal of K. It would seem probable that (for some P) a ring could exist
containing ideals 4, B such that 4, B and AN B are all P-primary but G(4\ B)=
#G(A) N G(B).

3. The uniqueness theorems

An ideal [ of a ring R is said to have a P-primary representation if I=1,1...N1,
for some finite set {/;} of P-primary ideals of R. The representation is said to be
proper if the intersection is irredundant and all G(/;) are distinct. We clearly have,
as in the classical case:

Proposition 4. If P is a hereditary radical then any ideal I of a ring R which
has a P-primary representation has a proper representation.

Remark 6. As we noted in Example 2, when P is non-hereditary we cannot
assume that the intersection of P-primary ideals 4, B is P-primary even if G(A4)=G(B).
Thus an ideal may have an irredundant P-primary representation but not one which
is proper. Also note that ideals generally do not have P-primary representations
even when P is hereditary. Example 1 gives a case in which P=N is a hereditary
radical and a ring R which, even more, is (left) Noetherian, but the 0 ideal is not
the intersection of right P-primary ideals.

We suppuose now that P is an arbitrary radical and that /< R has an irredundant
P-primary representation. We will group by equal radicals; that is, we write /=4,(1...
...[14, where for some 1;=1 each 4,=1,(...N], ;, all I;; are P-primary, and
for each j there is a distinct G;=G([;;) for all i=1, ..., t;. We will call the {4,} the
components of the representation and the corresponding {G;} the component radicals.

For ideals A4, B of a ring R write (4:B)={x€R|BxS A4}.

Lemma. Let A be a left P-primary ideal of a ring R. If B=L,\...\I, for a set
{1;} of ideals of R such that all G(I;)%E G(A) then (A:B)=A.

ProoF. Clearly AS(A4:B) and we have I /[,...[,(A:B)= A. But G(I)EG(A)
implies 7;< G(A4) so we may remove /;, and by continuing the argument we arrive
at (A:B)S A.

Theorem 3. If an ideal I of an arbitrary ring has two irredundant P-primary
representations with components {A;} (j=1, ...,n) and {B;} (j=1, ..., m) with {G;}
and {H;} their respective component radicals, then n=m and (possibly reordering)
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PROOF. At least one of the {G;, H;} is not properly contained in any of the
others and we may suppose it is G;. Then G, £ G; for all j=2 and if G, is not equal
to any H; then G, € H; for all j. Now we are assuming the representations are left
P-primary and so there are left P-primary {J;;} with B;=J;; and H;=G(J;)).
By the Lemma we have (J;;: 4,)=J;; for all j and (J;;: 4,)=1;; for all j=2. Thus
(A;: A))=N(I;: A;)=A; for j=2 and similarly (B;: 4,)=B; for all . Since (4,: 4,)=
=R it is clear that (/: 4,)=A4,...MNA4,=B,N...N B, contradicting irredundance.

Thus G, equals one of the /; and we may suppose G,=H,. Thus G,=H, <G, H,
for all /=2 and using the Lemma in the same way, we obtain

(!:Alqgl) = m(AJ:AiF]BI) = (BI:A]QBI) e AgF\.... .ATA" - B;! A:... qu,

and we are done by induction. .

This is all simpler when (as in the case P is hereditary) the representations are
proper. Thus:

Corollary 1. If an ideal I/ of R has two proper P-primary representations
I=nN..NI,=J;N...NJ, then n=m and (possibly reordering) all G(I;)=G(J)).

If {G;} is a finite set of ideals of a ring then a subset with the property that none
of its members contain any of the G’s outside the set is called isolated: that is
(possibly relabeling), if there is some k=1 such that G, 2 G, for all j=k and i>k.
Note that we can certainly find at least one G; which doesn’t contain any other of
the G’s so there exists at least a one element isolated subset.

Theorem 4. Let an ideal I of R have two P-primary representations I=A,") ...
.NA,=B,N...N\ B, with component radicals G;=H,;. If {G,, ..., G} is an isolated
subset of the {G;} then A,N...NA,=B,N...NB,.

PROOF. Let C= ﬂAJ,D N4, E= nB,,andF M B;. Then I=CND=

i=k

=ENF so (I: DﬂF) (C D’iF)_(E DﬂF) But G;<G; for all i=k and j=k
so it follows immediately from the Lemma that (C: D"\ F)=C and (E: DN F)=E.

Corollary 2. Let an ideal I of R have two proper P-primary representations
I=LN .. .NL=JiN...NJ, with all G(I))=G(J)). If k is a positive integer such that
G(I})) 2G(I)) whenever j=k and i>k then LN..NL=J,N..NJ,.

4. Change of radical and the upper P-primary radicals

We will first consider P-primariness under certain changes of radical.

Proposition 5. If an ideal I of R is P-primary, then it is P’-primary for every
radical P’ 2 P.

Proor. This is clear since G(/)/[¢ePSP’ so G(I)/ ISP (R/I) and thus G(I)=
SG'(I).

Remark 7. Since the prime ideals are the 0-primary ideals, this yields the result
(already noted) that prime ideals are P-primary for all radicals P.
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Proposition 6. Let radicals PSP’ and suppose G(A)=G(B) for ideals A, B
of R, then also G'(A)=G'(B).

PROOF. Write G=G(A4)=G(B) and G'=G"(4). We have ASG and G'/A€P’
80 G'/GEP’. Also G/BEPZ P’ so by the homomorphic extension property G'/B€P’.
Thus G'=G"(A)SG’(B) and by symmetry they are equal.

For class M of rings let #M denote the hereditary closure of M, namely
IM={K|K=A,<A,.,<...<A,=ReM for some n=1}. Then clearly SM is
the smallest hereditary class containing M and it is well-known that L#M is the
smallest her:ditary radical containing M. Thus we have

Corollary 3. If A, B are P-primary ideals of R with G(4)=G(B) then A B
is P’-primary for P'=LJP where G'(ANB)=G'(A)=G"(B).

Remark 8. It follows that whenever an ideal has a P-primary representation
it also has a proper P’-primary representation for P’=L#P. Note that while the
{A;} of Theorem 3 would then be P’-primary the representation might still not be
proper since G;# G; need not imply that G'(4;) = G'(4)).

Theorem 5. For an arbitrary ideal I of a ring R there exists a radical P such
that I is P-primary which is minimal in the sense that if I is already Q-primary for
a hereditary radical Q then PS Q.

ProoOF. Let {D;} be the set of all ideals of R which properly contain 7 and let
A= 2 I(D;) where [(D;)={xcR|xD;S1I}. Define P=L{A/I} and suppose CDCI/

for ideals C, D of R. If DZ I then CS/(D+1) where D+1 properly contains 7.
Thus C£ A4 and so C/ISA/I€P. Therefore CSG(/) that is R is left P-primary.
Now if [ is left Q-primary then since /(D;)D;S1 where D;E 1, it follows that
I(D)/ISQ(R/I). Thus A/ISQ(R/I) and if Q is a hereditary radical then A/I€Q
so that P=L{A/I}SQ.

Remark 9. Note that there is a smallest hereditary radical P relative to which
the ideal 7 of the last theorem is left P’-primary, namely P’=LSP=LJS{A[I}.

Proposition 7. Let P be an arbitrary radical and suppose I=I,...NI, where
the {I;} are P-primary ideals of a ring R. Then I has a P’-primary representation
Sfor any P2 {G(I))/I}.

PrOOF. We have G(I))/I;6 P" so G(I,)=G"(I)). If I is left P-primary and CDEI;
with DL J; then CEG(1)E G’ (). Thus 1; is left P’-primary.

Corollary 4. Every ideal of a commutative Noetherian ring has a P-primary
representation for any radical P2 B.

Proor. This follows from the classical result [1, p. 9] that every ideal of a com-
mutative Noetherian ring has a “primary” representation.

We now show that if P is a hereditary radical then P-primariness is also a here-
ditary property, and (by an example) that this need not be true for non-hereditary P.

Theorem 6. Let P be a hereditary radical and R a P-primary ring. Then any
ideal I of R is also a P-primary ring.
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Proor. If /€P then it is automatically P-primary so let /¢ P. We suppose
R is left P-primary and C, D ideals of 7 such that CD=0. Then C/D=0 and RCID=0
so (RC+C)ID=0. If ID=0 then by Proposition 1 we have RC+CZSP(R) so
CZS P(R)NI=P(I). On the other hand, if /D=0 then JRD=0. Since /¢ Pso I< P(R),
there is some x<7 with x¢ P(R). But then Proposition 2 implies D=0.

Example 3. Let P={R|R*=R} which is known to be a non-hereditary radical
(the “‘idempotent™ radical). Let 7 be any ring such that /=0 and imbed 7 as an
ideal in a ring R with unit. Then R€ P so R is P-primary but /I?=0 with /< P(I)=0,
so I is not P-primary.

From Theorem 6 we have that when P is hereditary the three P-primary classes
0. 0,, and Q=0,MN Q, are all hereditary, so their upper radical exist. Since prime
rings are P-primary we have inclusions

AS0=0,N0Q S OlorQ) S QUQO,
UQ,UuQ,) € UQ)(orUQ,) S UQ S UA = B.

We can ask when these radicals are distinct, and answer the question in part by:

Theorem 7. (1) If PN\ B=0 then UQ = B, and (2) If P(\B=0 then U(Q,UQ,)=
=UQ,=UQ,=UQ=B.

Proor. (1) If 0=Re P B then R is automatically P-primary. Thus REQ so
R4 UQ and hence UQ = B. (2) If R€ B then every image R¢ B, and since B is a here-
ditary radical its ideals are all in B. But P(1B=0 so that P(R)=0 and if R were
left or right P-primary it would be prime, contradicting R€ B. We conclude that
R4(Q,U0Q,), that is ReU(Q,U0Q,).

Note that from part (2) of this theorem when P(1B=0 the upper P-primary
radicals exist (and are in fact hereditary radicals) whether or not P is itself hereditary.
Thus by [4, Theorem 1, p. 219].

Corollary 5. If P is an arbitrary radical for which P(1B=0 then: (1) If R is
a P-primary ring then it has an image 0= R each non-zero ideal of which contains
a P-primary ideal, and (2) For an arbitrary ring R if R has a non-zero ideal containing
a P-primary ideal then R itself contains a P-primary ideal.

SO

Remark 10. (1) of Theorem 7 leaves open the possibility that in case P[1B=0
some or all of the upper P-primary radicals might be distinct. Note that the ring
R of Example 1 which distinguishes between Q; and Q, does not separate UQ; and
UQ, since it has a prime image (R/(x)= F[y]) and hence is in neither.

Remark 11. Throughout this paper we have been tacitly assuming that we are
working in the category of all associative rings. However, the definitions of the
P-primaries do not require associativity, and it may be of interest to examine how
much of this theory remains when generalized to the not necessarily associative
rings. Propositions 1 and 2 must, of course, be dropped, but Theorems 1 and 2
and the first four remarks remain valid.

Note that if P is a radical defined in the category of all not necessarily associative
rings and W is the class of all associative rings then P=P(\ W is a radical in W.
On the other hand any radical P in W has an extension P (the lower radical P=LP
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for L defined in the class of not necessarily associative rings) such that P=PN\W.
Since an associative ring R is P-primary if and only if it is P-primary the three
examples may still be used (or nonassociative examples could no doubt be const-
ructed).

For uniqueness, one would need to redefine (4: B)=ZT where T<R and
BT A. The Lemma is now useless since it works only for case k=1 so for the proof
of Theorem 3 we must use Theorem 2 rather than the Lemma. We must therefore
limit ourselves to P a hereditary radical and Theorem 3 reads as does Corollary 1.
Theorem 4 and its corollary are gone, but we can retain Propositions 4—7, Theorem 5,
and the intervening remarks. Theorem 6 is, of course, gone so it is not clear whether
or not in general the upper P-primary radicals exist. However, Theorem 7 is still
valid so if PN B=0 they do exist (all equal to B) and Corollary 5 applies.
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