Investigations in the powersum theory V.

By S. DANCS and P. TURAN (Budapest)
To the memory of A. Kertész

1. Inour paper [1] to appear we proved as a first step to a general theorem the
following.

Theorem A. Let us consider the equation

(1.1) Y®+ta, YOVt . +a,=0, Y= Y(),a, real constans.
We suppose that the equation
(1.2 f@ =a,2"+a,12" 1 +...+a, =0 (a@,=1)
has no zeros in the strip
(1.3) [Imz] =4
Then all real solutions Y(t) #0 change sign in every real interval of length
.

24°
This is bestpossible for all n=2 and A=0.

(1.4)

An analogous result could have been proved for the difference equation

(15) x"+l‘+'b"_1x..+;_]+--.+blx;+1+box; = 0, I= 0, [,

2. The proof was based on a “‘onesided” powersum theorem (see [2]) which
proved to be useful in several situations e.g. in analytical number theory. We shall
not formulate it here but mention that in its proof the following auxiliary problem
played an essential role. Let n,(x) be a polynomial of n" degree with r,(0)=1 say
so that all of its roots are outside the angle

(2.1) larcz| = =
with a 0<x§;. One has to multiplity it by a polynomial ¢,(x) with g,(0)=1 and

possibly small degree k so that all coefficients of x,(x)g,(x) are nonnegative. In
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order to get (1.4) we had to solve in our paper IV. the corresponding problem when
in addition the restriction

(2.2) the coefficients of =, (x) are real

is satisfied. In the present paper — which is strictly speaking a digression — we are
going to show that a “theorem of alternative™ equivalent to the Farkas theorem
from the theory of linear inequalities gives possibility to go from the abovementioned
“multiplication problem™ over directly to the result (1.5) and then after a simple
passage to limit to theorem A. Calling a vector X in R" positive, X=0 when all
coordinates are positive the theorem of alternative in question* asserts that if G is
a matrix with real elements then exactly one of the inequalities

(2.3) GX =0, GX #0 (X column vector)
(2.4) YG =0, Y=0 (Yrow vector)

is solvable.

3. In order to prove theorem A on this way we shall make first a detour and
consider the product ¢(z)g,(z) where

(3.1) @(2) = dy+dyz+...+d, 2",
& (2) = xp+ X124+ ...+ x5, 2%,

and the x_s are real variables. The coefficients of the product, if X=(x,, Xy, ..., X}),
form a columnvector which can be written as

(3.2) DX

where D is an (n+k+ 1) X(k+ 1) matrix whose explicit form for k=n resp. k>n is

7 L 0
d, d, 0
dk dk—l du
dy+1 dy dy

D S5 -
dn =g X3 dn—t

d,
0 dn coo dypsy

I TR 2

*) See J, StoEr and C. WiTzGALL, Convexity and Optimization in Finite Dimensions 1, Berlin,
1970, p. 23.
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resp.

dy 0 0

dl do 0 . 0

&l dy 0 - 0

o dy dy 0 0

0 dn dn-l , dll

: d, :

> e 0 d,
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We define ky=ky (@) as the minimum of integer k’s for which there is a suitable
gx(z) £0 so that all coefficients of the product are nonnegative; if there is no such
k (when ¢(z) has a positive zero of odd multiplicity e.g.) then let k,= . We may

suppose k,=1. Choosing k in (3.1) as (k,—1) the system

(3.3 DX=0, DX#0

is not solvable. But then from the above quoted theorem of alternative the system
(3.9 YD=0, Y>0

is solvable. If

(3.5) Y= (Yo, Vs ooes Yuio)

is such a solution then we have

(3.6) »>0 (v=0,1,..., (+k))

and the relations
dﬂy0+dlyl +"'+dnyn =0

don+d1y, +..tdypsy =0

ApYio+ @ Vig+1+ ove +dnyn+kn =0

This means owing to a,=1 that the difference equation

(3°7) dnym+u+dn-1ym+u—l+°"+d0ym =0

m=0
has a solution which is positive for

(3.8) 0=m=ky+n.
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Hence if m, stands for the maximal length of an interval where a solution of the
equation (3.7) can be positive then we got

(3.9) my = ko+n.

4. Next we start with a solution yj, of the equation (3.7) which is positive for
an interval of length m,. This means that the system

doys+diyt+...+dy; =0
4.1 doyi +dyi+...+d Y51 = 0
doYmo-nt 1 Vmg-ni1t ..ty Ymy = 0
has a solution with
(4.2) y;i=0 (J=0,1,...,m).
But this means that the system
YD, =0, Y=>0, Yrow vector

is solvable by Y= Y" where D, stands for the (m,—n+ 1) X (my+ 1) matrix

40 0..0

34" S
4.3) B e~

" I |

% O )

The application of the theorem of alternative gives then the non solvability of the

system
D,X=0, D,X 0.

Hence if k, has the previous meaning then
(4.4) kot+1 = my—n+1.
This and (3.9) give the
Theorem 1. For the above defined m, and k the relation

my = ko+n
holds.
This theorem reduces the determination of maximal length of a positivity-

interval of an arbitrary solution of the difference equation (3.7) to the determination
of the minimal k =k, for which a ¢,(z)#0 polynomial exists so that the product
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in (3.1) has nonnegative coefficients. Since the following theorem of alternative
also holds

(4.5) GX =0
resp
(4.6) YG=0, Y=0, Y=0

the repetition of the previous reasoning gives

Theorem II. The relation
m, = k;+n Y#0

holds if my stands for the maximal length of nonnegativity interval of an arbitrary
solution of the difference equation (3.7) and k, is the minimal k for which a g,(z) poly-
nomial exists so that the product in (3.1) has positive coefficients.

Obviously if we know upper bounds for k,=k¢) and k,=k,(¢) then we get
upper bounds for m, resp. m,.

5. It was shown in [2] in the important case

(5.1) 0" (z) =r*—2cosarz+z2
r=0, —; <0< %

the inequality
n
ko(9") = [m B

and in [3] where for the first time the general theory of inequalities was applied
to that sort of equations that

T - T . .
ET_ S _|E|_ is an integer,
(5.2) ko(@™) =11, n
[m] -1 if |T| # integer.

In the general case (1.2) f(z) is a product of factors of form

z+r, r,>0
and also of the form

(5.3) z22—2cos a,r,z+r
r,>0, 0<|u|=nm
We have to care only with factors from (5.3) with

-
2)

0< |a,| <
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applying (5.2) to each them we get the general inequality

’ R ” n
@ o= 2 (g2« 2 ([75]
where 3 resp. 3" is the extended to the a,’s with
% = jnteger = 3,
resp. i
% > 2 and # integer.

Suppose now that for ¢(z) with real coefficients there is a » with

(5.5) o{xq;

so that ¢(z) =0 for
(5.6) larc z| = x
Then (5.4) and (5.6) give at once

Theorem III. If the polynomial ¢(z) of n™ degree and real coefficients satisfies
(5.6) then the inequality

wor<[lE] =3

holds.
Combining it with theorem I. we get
Theorem IV. If
5.7 ¢(2) = dy+dz+...+d,z, (d,=1)

with real d.'s and (5.6) is satisfied then no solution y, of the difference equation

{5°8) dﬂyl+dlyl+l+“'+dnyl+n =0
can be positive for more than

sl

consecutive integer l-values.
6. Next we show that equality in (5.9) can be attained for each 0-=x<-21-r-and
even n. Let namely n=2N and the coefficients ;" in (5.7) be defined by

6.1) dy +dfz+...+doyz®™ = (1—2cos az+2z2)¥,
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% . £ . : J g o
where 0-:0:-:—2- is such that? is not an integer (an unessential restriction). Then

we have
®=0

of course. Then all sequences y* of the form
(6.2) ¥ = (coteyl+...+cy— ¥V sin (d+ 9)
3, ¢, real constants, / variable satisfy the equation
(6.3) dy yi+dyf yisrt+..+diyyisey = 0
Let 3 be any number with
O0<d <n—u [E-]

o

for which in addition none of the numbers

vr—39

L] v=0’ :tl, v

are integers. Fixing such a 3=3, and writting

vi—3,
o

=B,

we see at once that the sequence

=TT (B,—I)sin (al+9,)
is of form (6.2) and s
We=0 for 1=0,1,..., N[[%]+l]—-]
indeed.

7. In order to deduce theorem A from theorem IV. we reformulate first
theorem 1IV. If z,, z,, ..., z, are different zeros of the equation (5.7) then all solutions
of equation (5.8) have the form

k
(7.1 n= 200z
“:
Where complex z,’s occur only in conjugate pairs further the Q,(/)’s are poly-

nomials in / so that

(7.2) Zk'degr Q.,(x) =n—k

u=1

9D
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and Q,(x)’s belonging to complex-conjugate z, have complex-conjugate coefficients
and conversely, each such sequence (7.1)—(7.2) satisfies an (essentially uniquely
determined) equation (5.8). Thus theorem IV. means that all sequences of type
(7.1)—(7.2) with no z;’s in the angle

(7.3) larc z| = »

are such that no consecutive L terms can be positive if only

n|n
(7.4) A 5 [[-;]+ l].

8. Now we deduce quickly theorem A. Let y be an arbitrary solution of (1.1)
where (1.2)—(1.3) satisfied. Denoting the zeros of (1.2) by ¢; (j=1, 2, ..., n) we have

k
(8.1) Y(t) = JP,(t)es'
=1
where ¢y, ..., ¢, are all pairwise different zeros of (1.2), the P,(f)’s are polynomials
with

k
(8.2) 2 degr P (1) = n—k.

u=1

The restrictions made imply that Y(¢) is real for real . If a is an arbitrary real number
and h is sufficiently small, both fixed then let us consider the sequence

(8.3) Y)Y Y(athly = 3 P (a+hl)etno(eint.

n=1

Suppose now that for u=1,2,....,n

(8.4) mjn Imé,|=A4>0

and we apply theorem IV. as reformulated in 7. with

(8.5) =6 Q,()=Pa+hl) p=12..,k
Then if / is sufficiently small then we can take as x in (7.3)

(8.6) x = hA.

Hence owing to (7.4) there are integers /, and /, with

O=4L=L=1L,
and with
n|ln
L= -f[m+l]+c, c=0
so that

y() =0, y(p)=0.



Investigations in the powersum theory V. 307

Since

3 nln
a=a+hl, = a+—2— [-;l-+h]+cb,

' [.'.l

n|n
a ﬂ'f'hfg Eﬂ'-i—i [Z"l'h]-f'di,

this means that
max Y(r) >0 min¥Y() =0
tel el

where
nmw n
I = [a, a+ﬂ+[5+c]h] .

Thus for #—-0 we obtained again theorem A.
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