On regular polynomial matrices Il

The associated matrix pencils; simple matrix pencils
ANNA LEE (Budapest)

1. Introduction

. Our paper [1] was devoted to regular polynomial matrices giving also a new
criterion for a polynomial matrix to be simple.

The present paper is composed of two parts. In part one we will show some
relations existing between a regular polynomial matrix D,(4, u) and the associated
matrix pencil. The second part is a supplement to [1], since in the special case of
simple matrix pencils some statements of [1] can be formulated sharper.

The following terms and notations will be used. A regular polynomial matrix
D, (7, n) of degree / will always denote its homogeneous form

(1.1) Di(A ) = AgA'+ A, 2 u+...+ Al A, #0; DG, p) £ 0,

where all A4; are n-square complex matrices. The characteristic polynomial of
Dy(7, p) is

(1.2) A, p) = |Dy(4, p)| = c,u"’k]_]l (2 — 2y )
e 0 a2 heokAL st,‘=nt
k=0
The reduced characteristic polynomial
A(Z, p) by -3
1.3 o(A, 1) = ——— = cubo h — 2 1) P
(1.3) (%5 1) 7 B A el k[_fl(r kK

hthok#, 1sp=a Kk=1,..,5), 1=p,=a, if 2,720.?)
and the reduced adjoint of D,(4, u)
adj Dy(4, 1)

(1.4) F(i,p) = >

play an important role in our discussions. Here 4,_,(/, ) denotes the ged of all
(n—1)th order subdeterminants of D,(4, u).

*) The inequality 1=§, =, is proved in [1].
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The roots of an arbitrary polynomial f(4, u) will always mean the — finite and
infinite — roots of the polynomial equation f(4, u)=0. For any homogeneous poly-
nomial f(4, u) we will use the abbreviation

f(l,au)l)=z‘.k, =1 k=1,..,s
S ’ﬂ)lz=1,u=o =

(1.5)
w k=1 s
M) = FYA e s et
@ 1o 1) 0
O it aml b

where Z, (k=0, 1, ..., s) are the roots of (4, u) in (1.3).

The asterisk on a matrix (or column vector) indicates the conjugate transpose;
E, is the r-square unit matrix; (d,, d,, ..., d;) denotes the diagonal matrix with d,
in the kth position of the main diagonal; ¢(X) is the rank of the matrix X.

A regular polynomial matrix will always mean a polynomial matrix represented
by (1.1)—(1.3). A regular polynomial matrix D,(4, u) is called simple if o[D,(2)]=
=n—a (k=0,1, ...,s) (cf. [1]). A regular matrix pencil is a linear binomial matrix

(1.6) JB+ud; |AB+pA| 2 0.

2. The associated matrix pencil

To a regular polynomial matrix D, (4, u) there can be associated a regular matrix
pencil is several ways (cf. [2], [3], [4]). We associate to D;(4, u) the matrix pencil
AB + pusd, where # and of are In-square matrices in the partitioned form

E —E
(2.1) B = | =

" E ¥ el
In the following some relations between D, (4, u) and the associated encil A%+ u</
will be verified.

Theorem 2.1. Let D,(4, n) be a regular polynomial matrix and 8+ psd the
associated matrix pencil; then
(1) \Dy(4, p)| = [AB+usd |,
(i) o[Dy(2)) = o(B+)—n(l—1)
k=0,1,....5; (LB+A) =3B,

(ii1)) D,(4, p) and ;B + psd have the same elementary divisors.
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PrOOF. It can be verified by means of direct calculation that the identity

: Dy(4, p) i
2.2) sompayg=|[2E8
En(l-ll
holds, where S and T are the partitioned matrices
Ein'GAgtpd): Ay i ... | A | Ay
(2.3) F =
E ip-'AE
and
¥ amad
(24) T= :
Ep—E|| | L i—wE
g | ¥ o gy

The determinant of S and T is according to (2.3) and (2.4)

hence (2.1) is a strictly equivalent relation. Assertion (i)—(iii) follows immediately
from (2.2) taking into account (2.3) and (2.4).

Remark. We know already from (i) and (ii) of theorem 2.1 that

(i") Dy(A, p) and ZZ+pusf have the same eigenvalues taken into account with
their multiplicities,

(ii") D;(%, n) has exactly as many linearly independent eigenvectors — belonging
to the eigenvalue 2, of multiplicity 2, — as A%+ u<f.
Therefore we obtain from (i) and (ii) the following theorem, its formulation agreeing
with that of theorem 4.2 of LANCASTER [4].

Theorem 2.2. A regular polynomial matrix D,(/, p) is simple if and only if
the associated pencil ).+ us is a simple pencil.

The following theorem can be verified by simple calculation.
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Theorem 2.3. Let D,(/, u) be a regular polynomial matrix. If u, is a right
eigenvector of D,(A, n) belonging to the eigenvalue /., then the partitioned vector

M Pt Lt w1t kw8
[1,0,...,0,0" k=0

is a right eigenvector of the associated matrix pencil /% + usZ belonging to the same
eigenvalue /,. A similar statement holds for left eigenvectors as well.

3. Simple matrix pencils

All statements and relations established ih [l] concermng regular polynomial
matrices are valid of course also for regular matrix pencils; it is even true that some
of the given expressions and relations receive a simpler form if formulated concerning
regular matrix pencils, which are a very simple special case of regular polynomial
matrices in general. In spite of this fact we will not go into details in reformulating
the results of [1] concerning matrix pencils. Here we restrict ourselves to the formula-
tion of additional relations valid for matrix pencils only. Our starting-point is theorem
1 of [1] which can be formulate concerning matrix pencils as follows:

Theorem 3.1. Let 2B+ A be a regular matrix pencil. If the polynomial 4(/., 1)
has only simple roots, then for the matrices

(3.1 P = 5,(1 )F()k) k=01,

the following assertions hold:

(1) e(P) =¢(BP) =P B)=0o k=1,..,5
0(Py) = 9(APy) = ¢(Pyd) =, k=0

(ii) (BP,)* = BP,; (P,B):=PB k=1,..,5s

(AP): = AP,; (PoA): = P,A k=0
(iii) P,AP, = P,BP, =0 if i# k.

ProOF. Assertions (i) and (ii) agree with those of theorem 1 of [1] considering
that for matrix pencils
(~B+ pA) 0(.B+puAd)
0. oy =
According to (3.1) it is sufficient to prove (iii) for the matrices F(4;) and F(4;) i=k.
We consider the relations

(.B+uA)F(, i) = 80, W) E
F(z, )(AB+uAd) = 6(2, p) E.
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Substituting 2=/, and A=/,, resp. (k=i), we obtain
(3.2) ;"k BF().*) = —AF(;*)
J.,F(3)B = —F(j) A.

Premultiplying the first relation of (3.2) by F(4;) and postmultiplying the second by
F(7;), we obtain

(3.3). (x—2) F(2) BF(7) = 0
and since /, =4, it follows according to (3.2) and (3.3) that
F(3)BF (i) = FU)AF() =0 i=k; ik =0,

If in (3.2) we premultiply the first relation and postmultiply the second by F(/,),
we obtain

F(l) AF (%) = F(Z0) BF (%) = F(2) BF () = F(/y) AF(79) =0

since BF(7y)=F(%2,) B=0. Assertion (iii) is proved now for all cases.
Let the matrices (3.1) be decomposed in basis factors, that is

(3.4 Po=UVy:; e =0(VD=0F) k=0,1,..,s,

where U, and ¥, are matrices of type nXay. It is known from [1] that for 2B+ puA4
the columns of U, and the rows of V;' yield o, linearly independent right and left
eigenvectors resp., belonging to the eigenvalue 4, of multiplicity «,. Hence we obtain
from theorem 3.1.

Corollary 1. If (2, u) has only simple roots, then the regular matrix pencil
/B+ 1A is simple and can be transformed into the diagonal form
V*(B+uA)U = (UE,y, A=y ) Eny, ... = igtt) Ev),
or by putting u=1,
V*(@AB+A)U = (E,,, A—ADE,,, ..., (A—2A) E,).
The transformation matrices ¥ * and U are obtained from the matrices in (3.4) as
V* = VoV .V U=[U0.. .Ul
It is of interest to note here that according to theorem 3 of [1] the following two
statements are equivalent for a regular matrix pencil ZB+uA:

%) B+ uA is simple,
p) é(%, u) has only simple roots.

It is stated in theorem | of [1] that under the assumption of 4(4, ) having only
simple roots, D;(4)P, and P.D[(/;) are idempotent matrices of rank o
(k=0, 1, ..., 5). In the case of matrix pencils these idempotents are AP,, BP, (k=
=1,...,5) and PyA, P,B (k=1, ..., s) resp., and according to (iii) of the theorem
proved above both sets of matrices are orthogonal. Hence taking into account the
well-known theorem concerning orthogonal idempotents (cf. e.g. [5] pp.), we obtain
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Corollary 2. If for the regular matrix pencil AB+uA the polynomlal 8(2, p)
has only simple roots, then

(3.5) APy+B S P, =E

k=0
PyA+ 3 P,B=E.
k=1

Before finishing this section we consider the restriction |[B|=0. Then (3.5) re-
duces to

B 3P, = E; ZP,,B E

k=1
and this yields according to (3.2) the relations

5 L
1= 3P; —-A=B 3 )PB.
k=1 k=1

Also the matrices (3.1) can be expressed in another form. There can be established

Theorem 3.2. Let iB+ A (|B|=0) be a simple matrix pencil, i.e. let the poly-
nomial (/) have only simple roots. If

5(%)
0" (2 (A—7)

is the Lagrangean interpolation polynomial belonging to d(72), then the matrices (3.1)
can be expressed as

(3.6) P, = L,(—B '4)B-'; P, = B-'L(—AB™!) k=1,...,s

ProoF. It is sufficient to prove one form of (3.6). Let us introduce the notation

L(}) = k=1,..,58

(v)

FOHA) $=01;..3 k= lo.a

i (v-l- 1)!
It is easy to verify the relations
5(!‘+1) A i
BG“’ =T‘T_'}:—*i(‘*j-':&')5-(f.k8+/”0iv+” | P FEC
) (;
Taking into account that G~V = i.-si'ﬂl B~'=0, we obtain successively
(3-1)
Gy = 5—(5_1(;':‘)3-1 (4 ,(B+A)6 ()")
o¢=N (2 (4,
{ = 1():)“(_8_1’4 4E) ( ? }
063 (Jy . 05 D (4) )(ft) }
(s=3) — 2y ) o e [ 14—
Gy -{ =) E+(—B~'A— A E) Y ———FE+(-B'A-/LE)
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and finally we arrive at
(EX))
F{/’.,‘)zG,f."".—_{a %) gy (B 'A-—;,‘E)[ +(—BA- )E)[

) ()
+(=Br A= E) 2 sf"") E”]} B3,
The expression in the parenthesis {...} on the right side of (3.7) is the Horner-arrang-

ing of the polynomial

0(4) _ 0'(4) +5” (74)
- T 2!

oC -V ()

— | E+

6"1(}.,‘)

(3.8) A=)+ ... +—X@A-4)1

for .= — B~'A. Hence by (3.7) and (3.8) we have

5(—B-1A)
3 () ( ) & (7)(—BA— 7 E)

which proves the theorem.

P = B'=L(-B'A)B' k=1,

= F(%4) =

Remark. In the case of B= E the topic discussed in [1] and in this section reduces
to the usual eigenvalue/eigenvector problem of the matrix —A4. It is of interest to
point to the fact, that in this most special case our approach followed in [1] and in
this section agrees with that of the known approach of the eigenvalue/eigenvector
problem of matrices of simple structure (see e.g, WEDDERBURN [6] and EGERVARY [7]).
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