On regular polynomial matrices II

The associated matrix pencils; simple matrix pencils

ANNA LEE (Budapest)

1. Introduction

Our paper [1] was devoted to regular polynomial matrices giving also a new criterion for a polynomial matrix to be simple.

The present paper is composed of two parts. In part one we will show some relations existing between a regular polynomial matrix $D_l(\lambda, \mu)$ and the associated matrix pencil. The second part is a supplement to [1], since in the special case of simple matrix pencils some statements of [1] can be formulated sharper.

The following terms and notations will be used. A regular polynomial matrix $D_l(\lambda, \mu)$ of degree l will always denote its homogeneous form

(1.1)
$$D_l(\lambda, \mu) = A_0 \lambda^l + A_1 \lambda^{l-1} \mu + ... + A_l \mu^l; \quad A_0 \neq 0; \quad |D_l(\lambda, \mu)| \equiv 0,$$

where all A_i are *n*-square complex matrices. The characteristic polynomial of $D_l(\lambda, \mu)$ is

(1.2)
$$\Delta(\lambda, \mu) \doteq |D_{l}(\lambda, \mu)| = c\mu^{\alpha_{0}} \prod_{k=1}^{s} (\lambda - \lambda_{k}\mu)^{\alpha_{k}}$$
$$c \neq 0; \quad \lambda_{k} \neq \lambda_{i} \Leftrightarrow k \neq i; \quad \sum_{k=0}^{s} \alpha_{k} = nl.$$

The reduced characteristic polynomial

(1.3)
$$\delta(\lambda,\mu) \doteq \frac{\Delta(\lambda,\mu)}{\Delta_{n-1}(\lambda,\mu)} = c\mu^{\beta_0} \prod_{k=1}^{s} (\lambda - \lambda_k \mu)^{\beta_k}$$

 $\lambda_k \neq \lambda_i \Leftrightarrow k \neq i; \quad 1 \leq \beta_k \leq \alpha_k \quad (k = 1, ..., s), \quad 1 \leq \beta_0 \leq \alpha_0 \text{ if } \alpha_0 \neq 0.*)$ and the reduced adjoint of $D_l(\lambda, \mu)$

(1.4)
$$F(\lambda, \mu) \doteq \frac{\operatorname{adj} D_l(\lambda, \mu)}{\Delta_{n-1}(\lambda, \mu)}$$

play an important role in our discussions. Here $\Delta_{n-1}(\lambda, \mu)$ denotes the gcd of all (n-1)th order subdeterminants of $D_l(\lambda, \mu)$.

^{*)} The inequality $1 \le \beta_k \le \alpha_k$ is proved in [1].

328 Anna Lee

The roots of an arbitrary polynomial $f(\lambda, \mu)$ will always mean the — finite and infinite — roots of the polynomial equation $f(\lambda, \mu) = 0$. For any homogeneous polynomial $f(\lambda, \mu)$ we will use the abbreviation

$$f(\lambda_k) = \begin{cases} f(\lambda, \mu)|_{\lambda = \lambda_k, \, \mu = 1} & k = 1, \dots, s \\ f(\lambda, \mu)|_{\lambda = 1, \, \mu = 0} & k = 0 \end{cases}$$

$$(1.5)$$

$$f^{(\nu)}(\lambda_k) = \begin{cases} \frac{\partial^{\nu} f(\lambda, \mu)}{\partial \lambda^{\nu}} \Big|_{\lambda = \lambda_k, \, \mu = 1} & k = 1, \dots, s \\ \frac{\partial^{\nu} f(\lambda, \mu)}{\partial \mu^{\nu}} \Big|_{\lambda = 1, \, \mu = 0} & k = 0, \end{cases}$$

where λ_k (k=0, 1, ..., s) are the roots of $\delta(\lambda, \mu)$ in (1.3).

The asterisk on a matrix (or column vector) indicates the conjugate transpose; E_r is the r-square unit matrix; $\langle d_0, d_1, ..., d_s \rangle$ denotes the diagonal matrix with d_k in the kth position of the main diagonal; $\varrho(X)$ is the rank of the matrix X.

A regular polynomial matrix will always mean a polynomial matrix represented by (1.1)—(1.3). A regular polynomial matrix $D_l(\lambda, \mu)$ is called *simple* if $\varrho[D_l(\lambda_k)] = n - \alpha_k$ (k = 0, 1, ..., s) (cf. [1]). A regular matrix pencil is a linear binomial matrix

(1.6)
$$\lambda B + \mu A; \quad |\lambda B + \mu A| \neq 0.$$

2. The associated matrix pencil

To a regular polynomial matrix $D_t(\lambda, \mu)$ there can be associated a regular matrix pencil is several ways (cf. [2], [3], [4]). We associate to $D_t(\lambda, \mu)$ the matrix pencil $\lambda \mathcal{B} + \mu \mathcal{A}$, where \mathcal{B} and \mathcal{A} are *In*-square matrices in the partitioned form

(2.1)
$$\mathcal{B} = \begin{bmatrix} A_0 & & & \\ & E & & \\ & & \ddots & \\ & & & E \end{bmatrix}; \quad \mathcal{A} = \begin{bmatrix} A_1 & A_2 \dots A_{l-1} & A_l \\ -E & & & \\ & & \ddots & \\ & & & -E & 0 \end{bmatrix}.$$

In the following some relations between $D_l(\lambda, \mu)$ and the associated encil $\lambda \mathcal{B} + \mu \mathcal{A}$ will be verified.

Theorem 2.1. Let $D_l(\lambda, \mu)$ be a regular polynomial matrix and $\lambda \mathcal{B} + \mu \mathcal{A}$ the associated matrix pencil; then

(i)
$$|D_1(\lambda, \mu)| \equiv |\lambda \mathcal{B} + \mu \mathcal{A}|,$$

(ii)
$$\varrho[D_l(\lambda_k)] = \varrho(\lambda_k \mathcal{B} + \mathcal{A}) - n(l-1)$$

$$k = 0, 1, ..., s; \quad (\lambda_0 \mathcal{B} + \mathcal{A}) \stackrel{.}{=} \mathcal{B},$$

(iii) $D_1(\lambda, \mu)$ and $\lambda \mathcal{B} + \mu \mathcal{A}$ have the same elementary divisors.

PROOF. It can be verified by means of direct calculation that the identity

(2.2)
$$\mathscr{S}(\lambda \mathscr{B} + \mu \mathscr{A}) \mathscr{T} = \begin{bmatrix} D_l(\lambda, \mu) & & \\ & E_{n(l-1)} \end{bmatrix}$$

holds, where S and T are the partitioned matrices

and

The determinant of S and T is according to (2.3) and (2.4)

$$|S| = 1, |T| = 1,$$

hence (2.1) is a *strictly equivalent relation*. Assertion (i)—(iii) follows immediately from (2.2) taking into account (2.3) and (2.4).

Remark. We know already from (i) and (ii) of theorem 2.1 that

- (i') $D_l(\lambda, \mu)$ and $\lambda \mathcal{B} + \mu \mathcal{A}$ have the same eigenvalues taken into account with their multiplicities,
- (ii') $D_l(\lambda, \mu)$ has exactly as many linearly independent eigenvectors belonging to the eigenvalue λ_k of multiplicity α_k as $\lambda \mathcal{B} + \mu \mathcal{A}$.

to the eigenvalue λ_k of multiplicity α_k — as $\lambda \mathcal{B} + \mu \mathcal{A}$. Therefore we obtain from (i) and (ii) the following theorem, its formulation agreeing with that of theorem 4.2 of LANCASTER [4].

Theorem 2.2. A regular polynomial matrix $D_l(\lambda, \mu)$ is simple if and only if the associated pencil $\lambda \mathcal{B} + \mu \mathcal{A}$ is a simple pencil.

The following theorem can be verified by simple calculation.

330 Anna Lee

Theorem 2.3. Let $D_l(\lambda, \mu)$ be a regular polynomial matrix. If u_k is a right eigenvector of $D_l(\lambda, \mu)$ belonging to the eigenvalue λ_k , then the partitioned vector

$$[\lambda_k^{l-1}u_k^*, \lambda^{l-2}u_k^*, ..., \lambda_k u_k^*, u_k^*]^* \quad k = 1, ..., s$$
$$[u_0^*, 0, ..., 0, 0]^* \quad k = 0$$

is a right eigenvector of the associated matrix pencil $\lambda \mathcal{B} + \mu \mathcal{A}$ belonging to the same eigenvalue λ_k . A similar statement holds for left eigenvectors as well.

3. Simple matrix pencils

All statements and relations established ih [1] concerning regular polynomial matrices are valid of course also for regular matrix pencils; it is even true that some of the given expressions and relations receive a simpler form if formulated concerning regular matrix pencils, which are a very simple special case of regular polynomial matrices in general. In spite of this fact we will not go into details in reformulating the results of [1] concerning matrix pencils. Here we restrict ourselves to the formulation of additional relations valid for matrix pencils only. Our starting-point is theorem 1 of [1] which can be formulate concerning matrix pencils as follows:

Theorem 3.1. Let $\lambda B + \mu A$ be a regular matrix pencil. If the polynomial $\delta(\lambda, \mu)$ has only simple roots, then for the matrices

(3.1)
$$P_k = \frac{1}{\delta'(\lambda_k)} F(\lambda_k) \quad k = 0, 1, ..., s$$

the following assertions hold:

(i)
$$\varrho(P_k) = \varrho(BP_k) = \varrho(P_kB) = \alpha_k \quad k = 1, ..., s$$
 $\varrho(P_0) = \varrho(AP_0) = \varrho(P_0A) = \alpha_0 \quad k = 0$ (ii) $(BP_k)^2 = BP_k; \quad (P_kB)^2 = P_kB \quad k = 1, ..., s$ $(AP_0)^2 = AP_0; \quad (P_0A)^2 = P_0A \quad k = 0$ (iii) $P_iAP_k = P_iBP_k = 0 \quad \text{if} \quad i \neq k.$

PROOF. Assertions (i) and (ii) agree with those of theorem 1 of [1] considering that for matrix pencils

$$\frac{\partial(\lambda B + \mu A)}{\partial \lambda} = B; \quad \frac{\partial(\lambda B + \mu A)}{\partial \mu} = A.$$

According to (3.1) it is sufficient to prove (iii) for the matrices $F(\lambda_k)$ and $F(\lambda_i)$ $i \neq k$. We consider the relations

$$(\lambda B + \mu A) F(\lambda, \mu) = \delta(\lambda, \mu) E$$
$$F(\lambda, \mu) (\lambda B + \mu A) = \delta(\lambda, \mu) E.$$

Substituting $\lambda = \lambda_k$ and $\lambda = \lambda_i$, resp. $(k \neq i)$, we obtain

(3.2)
$$\lambda_k BF(\lambda_k) = -AF(\lambda_k)$$
$$\lambda_i F(\lambda_i) B = -F(\lambda_i) A.$$

Premultiplying the first relation of (3.2) by $F(\lambda_i)$ and postmultiplying the second by $F(\lambda_i)$, we obtain

$$(\lambda_k - \lambda_i) F(\lambda_i) BF(\lambda_k) = 0$$

and since $\lambda_k \neq \lambda_i$, it follows according to (3.2) and (3.3) that

$$F(\lambda_i)BF(\lambda_k) = F(\lambda_i)AF(\lambda_k) = 0 \quad i \neq k; \quad i, k \neq 0.$$

If in (3.2) we premultiply the first relation and postmultiply the second by $F(\lambda_0)$, we obtain

$$F(\lambda_0)AF(\lambda_k) = F(\lambda_0)BF(\lambda_k) = F(\lambda_k)BF(\lambda_0) = F(\lambda_k)AF(\lambda_0) = 0$$

since $BF(\lambda_0) = F(\lambda_0)B = 0$. Assertion (iii) is proved now for all cases.

Let the matrices (3.1) be decomposed in basis factors, that is

(3.4)
$$P_k = U_k V_k^*; \quad \varrho(U_k) = \varrho(V_k) = \varrho(P_k) \quad k = 0, 1, ..., s,$$

where U_k and V_k are matrices of type $n \times \alpha_k$. It is known from [1] that for $\lambda B + \mu A$ the columns of U_k and the rows of V_k^* yield α_k linearly independent right and left eigenvectors resp., belonging to the eigenvalue λ_k of multiplicity α_k . Hence we obtain from theorem 3.1.

Corollary I. If $\delta(\lambda, \mu)$ has only simple roots, then the regular matrix pencil $\lambda B + \mu A$ is simple and can be transformed into the diagonal form

$$V^*(\lambda B + \mu A) U = \langle \mu E_{\alpha_0}, (\lambda - \lambda_1 \mu) E_{\alpha_1}, \dots, (\lambda - \lambda_s \mu) E_{\alpha s} \rangle,$$

or by putting $\mu = 1$,

$$V^*(\lambda B+A) U = \langle E_{\alpha_0}, (\lambda-\lambda_1)E_{\alpha_1}, \dots, (\lambda-\lambda_s)E_{\alpha s} \rangle.$$

The transformation matrices V^* and U are obtained from the matrices in (3.4) as

$$V^* = [V_0 V_1 ... V_s]^*; \quad U = [U_0 U_1 ... U_s].$$

It is of interest to note here that according to theorem 3 of [1] the following two statements are equivalent for a regular matrix pencil $\lambda B + \mu A$:

- α) $\lambda B + \mu A$ is simple,
- β) $\delta(\lambda, \mu)$ has only simple roots.

It is stated in theorem 1 of [1] that under the assumption of $\delta(\lambda, \mu)$ having only simple roots, $D'_l(\lambda_k)P_k$ and $P_kD'_l(\lambda_k)$ are idempotent matrices of rank α_k $(k=0,1,\ldots,s)$. In the case of matrix pencils these idempotents are AP_0 , BP_k $(k=1,\ldots,s)$ and P_0A , P_kB $(k=1,\ldots,s)$ resp., and according to (iii) of the theorem proved above both sets of matrices are orthogonal. Hence taking into account the well-known theorem concerning orthogonal idempotents (cf. e.g. [5] pp.), we obtain

332 Anna Lee

Corollary 2. If for the regular matrix pencil $\lambda B + \mu A$ the polynomial $\delta(\lambda, \mu)$ has only simple roots, then

(3.5)
$$AP_0 + B \sum_{k=0}^{s} P_k = E$$
$$P_0 A + \sum_{k=0}^{s} P_k B = E.$$

Before finishing this section we consider the restriction $|B| \neq 0$. Then (3.5) reduces to

$$B \sum_{k=1}^{s} P_k = E; \quad \sum_{k=1}^{s} P_k B = E$$

and this yields according to (3.2) the relations

$$B^{-1} = \sum_{k=1}^{s} P_k; \quad -A = B \sum_{k=1}^{s} \lambda_k P_k B.$$

Also the matrices (3.1) can be expressed in another form. There can be established

Theorem 3.2. Let $\lambda B + A$ ($|B| \neq 0$) be a simple matrix pencil, i.e. let the polynomial $\delta(\lambda)$ have only simple roots. If

$$L_k(\lambda) = \frac{\delta(\lambda)}{\delta'(\lambda_k)(\lambda - \lambda_k)} \quad k = 1, ..., s$$

is the Lagrangean interpolation polynomial belonging to $\delta(\lambda)$, then the matrices (3.1) can be expressed as

$$(3.6) P_k = L_k(-B^{-1}A)B^{-1}; P_k = B^{-1}L_k(-AB^{-1}) k = 1, ..., s.$$

PROOF. It is sufficient to prove one form of (3.6). Let us introduce the notation

$$G_k^{(\nu)} = \frac{1}{(\nu+1)!} F^{(\nu)}(\lambda_k) \quad \nu = 0, 1, ...; \quad k = 1, ..., s.$$

It is easy to verify the relations

$$BG_k^{(v)} = \frac{\delta^{(v+1)}(\lambda_k)}{(v+1)!} E - (\lambda_k B + A) G_k^{(v+1)} \quad v = 0, 1, ..., s.$$

Taking into account that $G_k^{(s-1)} = \frac{\delta^{(s)}(\lambda_k)}{s!} B^{-1} \neq 0$, we obtain successively

$$\begin{split} G_k^{(s-2)} &= \frac{\delta^{(s-1)}(\lambda_k)}{(s-1)!} B^{-1} - B^{-1}(\lambda_k B + A) \frac{\delta^{(s)}(\lambda_k)}{s!} B^{-1} \\ &= \left\{ \frac{\delta^{(s-1)}(\lambda_k)}{(s-1)!} E + (-B^{-1}A - \lambda_k E) \frac{\delta^{(s)}(\lambda_k)}{s!} E \right\} B^{-1} \\ G_k^{(s-3)} &= \left\{ \frac{\delta^{(s-2)}(\lambda_k)}{(s-2)!} E + (-B^{-1}A - \lambda_k E) \left[\frac{\delta^{(s-1)}(\lambda_k)}{(s-1)!} E + (-B^{-1}A - \lambda_k E) \frac{\delta^{(s)}(\lambda_k)}{s!} E \right] \right\} B^{-1} \end{split}$$

and finally we arrive at

(3.7)
$$F(\lambda_k) = G_k^{(0)} = \left\{ \frac{\delta'(\lambda_k)}{1!} E + (-B^{-1}A - \lambda_k E) \left[\dots + (-B^{-1}A - \lambda_k E) \left[\frac{\delta^{(s-1)}(\lambda_k)}{(s-1)!} \right] E + (-B^{-1}A - \lambda_k E) \frac{\delta^{(s)}(\lambda_k)}{s!} E \right] \dots \right\} B^{-1}.$$

The expression in the parenthesis $\{...\}$ on the right side of (3.7) is the Horner-arranging of the polynomial

(3.8)
$$\frac{\delta(\lambda)}{(\lambda - \lambda_k)} = \frac{\delta'(\lambda_k)}{1!} + \frac{\delta''(\lambda_k)}{2!} (\lambda - \lambda_k) + \dots + \frac{\delta^{(s)}(\lambda_k)}{s!} (\lambda - \lambda_k)^{s-1}$$

for $\lambda = -B^{-1}A$. Hence by (3.7) and (3.8) we have

$$P_k = \frac{1}{\delta'(\lambda_k)} F(\lambda_k) = \frac{\delta(-B^{-1}A)}{\delta'(\lambda_k)(-B^{-1}A - \lambda_k E)} B^{-1} = L_k(-B^{-1}A)B^{-1} \quad k = 1, ..., s,$$

which proves the theorem.

Remark. In the case of B=E the topic discussed in [1] and in this section reduces to the usual eigenvalue/eigenvector problem of the matrix -A. It is of interest to point to the fact, that in this most special case our approach followed in [1] and in this section agrees with that of the known approach of the eigenvalue/eigenvector problem of matrices of simple structure (see e.g., WEDDERBURN [6] and EGERVÁRY [7]).

References

- [1] A. Lee, On regular polynomial matrices I. A new criterion for a polynomial matrix to be simple; *Publ. Math. (Debrecen)* **23** (1976), 000—000.
- [2] H. WAYLAND, Expansion of determinantal equations into polynomial form; Quart. Appl. Math., 2 (1945), 277—306.
- [3] B. DIMSDALE, Characteristic roots of a matric polynomial; J. Soc. Ind. Appl. Math., 8 (1960), 218—223.
- [4] P. Lancaster, Lambda-Matrices and Vibrating Systems, Pergamon Press, 1966.
- [5] P. Halmos, Finite Dimensional Vector Spaces, Princeton, 1958.
- [6] J. H. M. WEDDERBURN, Lectures on Matrices, New York, 1934.
- [7] E. EGERVÁRY, Matrix-függvények kanonikus előállításáról és annak néhány alkalmazásáról. A Magyar Tud. Akad. III. Osztályának Közleményei 3 (1953), 417—458.

(Received December 28, 1969; in revised form July 21, 1974.)