Univalent functions convex in one direction

By W. C. ROYSTER (Lexington, Kentucky) and MICHAEL ZIEGLER (Milwaukee, Wisconsin)

1. Introductory Remarks

A domain D in the complex plane is convex in one direction (the direction of the
imaginary axis) if for every pair of points (u, v;) and (u, vs) in D the set of points
(u, to,+(1—1)v,), 0<t<1, is also in D. A function f{(z), regular and univalent in the
unit disc E, is called convex in one direction if f(E) is convex in one direction. This
class of functions was introduced by FEJER [1] and studied more extensively by Ro-
BERTSON [5], and [6].

In 1936 Robertson proved the following theorem [6].

Theorem A. Let f(z)=z+ > a,z" be regular in E and suppose f(z) satisfies one
n=2

of the following conditions:

(i) f(2) is regular on z|=1 and f(E) is convex in one direction.

(ii) if E,={z: |z|<r,0<r=1}, then there exists a positive =3(f) so that for
all rin 1—0<r=1, f(E,) is convex in one direction.
Then there exist real numbers p and v, 0=pu=n and 0=v=n ,s0 that

(1.1) Re {—ie"(1—2cosve " z+e~2%"z2) f'(2)} = 0.

The numbers u and v have a geometrical interpretation which will be discussed
below.

Conditions (i) and (ii) in the above theorem are restrictive in the sense that one
can give examples of functions f(z) which do not satisfy either condition such that
J(E) is convex in one direction.

Recently W. HENGARTNER and G. SCHOBER obtained a condition similar to
(1.1) by dispensing with the assumptions of regularity on the boundary and convexity
in one direction of the level curves and assuming the normalization that z= +1
correspond, in some sense, to the left and right extremes of f(E). If f(z) is regular in
E and |zy| =1, then f(z,) is a right (left) extreme of f(E) if there is a sequence of points
{z,} in E with the property that jin‘l z,=2z, and .}inl Re {f(z)}= sup Re {f(2)}

(igf Re {f(z)}). The following is a summary of results due to Hengartner and
Schober which appear in [3].

11*



340 W, C. Royster and M. Ziegler

Theorem B. Let f(z) be regular and non-constant in E. Suppose f(z) maps E
univalently onto a domain D convex in one direction. Then:

(i) if the prime ends f(1) and f(—1) are the right and left extremes of D, then
(1.2) Re{(1-2%)f'(2)} =0, z<E.

(i) if f(1) is both the right and left extreme of D, and there is at least one vertical
ray in the complement of D which meets 0D from above, then

(1.3) Im{(1-2)*f'(z)} = 0, z<E.

(iii) if f(—1) is both the right and left extreme of D, and there is at least one vertical
ray in the complement of D which meets d D from below, then

(1.4) Im{(1-2)*f'(z)} = 0, z€E.

Conversely, if f(z) satisfies (1.2), (1.3) or (1.4), then f(z) maps E univalently onto a
domain convex is one direction with the corresponding normalization.

Conditions (i), (i), and (iii) are also restrictive in that functions f(z) can be
found which do not satisfy any of the three normalization requirements and which
map E onto a domain convex in one direction.

The main result of this paper is to show that the above restrictions can be removed
and that Robertson’s condition (1.1) is the proper one provided certain interpretations
are given to the parameters u and v. In Section 2 we prove that any function which
is convex in one direction satisfies (1.1) for appropriate x and v and, conversely, any
function satisfying (1.1) must map E univalently onto a domain convex in one direction.
The parameters g and v are used to decompose the class of all functions convex
in one direction into subclasses. Some mapping properties of functions in these
subclasses are studied in Section 3.

2. Principal Result

Theorem 1. Let f(z) be a non-constant function regular in E. The function f(z)
maps E univalently onto a domain D convex in the direction of the imaginary axis if
and only if there are numbers p and v, 0=u<2n and 0=v=m, such that

(2.1) Re {—ie™(1—2cosve " z+e~¥z%) f'(z)} = 0. :z€E.
Furthermore, f(é"*~") and f(¢'**") are the right and left extremes, respectively, of D.

PRrROOF. Suppose f(z) maps E univalently onto a domain D convex in one di-
rection. Since the theorem is obviously true for f(z) =z, we can assume f(z) is not the
identity function and D is not the entire plane. Let f(z,) and f(z,) correspond to right
and left extremes of D. Choose u and v so that z; =¢'*~") and z,=¢€*+"), 0=u<2n
and O=v=mn. If z,z,, then v=0 or n and it is possible to construct a function w(z)
mapping E onto E so that w(z;)=1 and w(z,)= —1. A general expression for such a
function is given by

2.2) w(z) = ied0=M (z—1)/(1 —iz)
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where €7 =(1—izf)/(1 +izp), t=e"(a—if)/(1 —iap), x=cos v/(1+sin v), and B is an
arbitrary real number satisfying —1<pf<1. A direct calculation shows that w(zy) =1,
w(z,)= — 1. Furthermore, by proper choice of f it is possible to make any point on
the upper half of |w|=1 the preimage of any point ¢'® where u—v<¢<=u+v, that is,
any function which maps E onto E and satisfies the requirement that z, is the preimage
of w=1 and z, is the preimage of w= —1 can be expressed in the form given in (2.2)
for a suitable choice of f. Now let g(z) be defined by f(z)=g(w(z)). Since f(z) and
w(z) are both univalent in E, it follows that g(z) is univalent in E and maps E onto D.
Furthermore g(z) satisfies condition (i) of Theorem B, hence Re {(1—z%)g’(z)}=0.
A direct calculation shows that

(1-w(2?)g’' (w@) = [(1—w@)/W @S (2) =
=(=—ie"/sin v)(1 —2ze~ ™ cos v+ 22~ 2*) f'(2)

which, since z, =z, implies 0<v=<r, yields (2.1). Now assume z,=z,=¢e'*. Since D
is convex in one direction and is not the entire plane, there must be at least one
vertical ray in the complement of D issuing from the boundary of D. If this ray
meets D from above then applying condition (i) of Theorem B to the function
g(z)=f(e"z) yields (2.1). If the ray meets @D from below, an application of part
(ii1) of Theorem B to g(z)=f(e'"~"z) gives (2.1).

Conversely, if f(z) satisfies (2.1), then the function g(z), as defined above, will
satisfy the hypothesis of Theorem B which implies that g(z) maps E univalently onto
a domain convex in one direction and consequently f(z) will do the same.

This shows that Robertson’s condition (1.1) is the correct for any univalent
function convex is one direction and that hypothesis (i) and (ii) are supzrfluous

3. Mapping Properties

Let I represent the class of normalized univalent functions which map E onto
domains convex in one direction, that is, f(z) is in I' if and only if £(0)=0, f’(0)=1
and f(z) satisfies (2.1) for some choice of u and v. With the exception of a possible
translation and magnification, every simply connected domain convex in one di-
rection will be the image of some function in I'. The parameters u and v offer a con-
venient and interesting decomposition of I' into subclasses. Let I'(v, u) be the class
of all functions in I' which satisfy (2.1) for a given pair p and v and let I'(v) =
= [J, I'(v, n). The condition f’(0)=1 implies that Re {—ie**}=0, hence yu must
satisfy 0=pu=n when f{(z) is normalized.

If 2 is the class of regular functions p(z) with positive real part in E and norma-
lized by p(0)=1, then (2.1) implies that f(z) is in I (v, u) if and only if

(3.1) zf’(z) = h,(e="*z)[cos u+isin up(z)]
when A, (z)=z(1—-2cos vz+2z%)~1, p(2)€?, 0=v=n and Osu=mn. It is interesting

to note that the class I'(v, 0) consists only of the function f(z)= f (h,(2)/t)dt and
I'(v, ) has as its only member —f(—z).
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The number v can be considered a measure of the distance between the two
points on the unit circle which in some sense maximize Re {f(z,)—f(z2)}. If f(2)
is in I'(v) and z, and z, are the points which correspond to the right and left extremes

of f(E), then |arg z,—arg z,|=2 min {v,-T—r-—v} where the arguments of z; and z,

are chosen so as to make the absolute value of their difference as small as possible.
The choice of v is not necessarily unique since the function f(z)=i/2 log [(i+2)/(i—2)]
is in I'(v) for every v#0.

The remainder of this paper is concerned with determining some of the mapplng
properties of I' (v). It is convenient to begin with some preliminary lemmas concerning
the representation (3.1) since it is fundamental in studying the mapping properties,

Lemma 1. Let h,(z)=z/(1 —2cosvz+2z?%), 0=v=n, then

r/(1-2 +r3)), r < (1—si
(32 D/0+3r loos v e & b, ()] {{r;sm v(: Ii(:i)ltl( lr—)iu: v)/ If:os :n v):{ lj)slv]

with the interpretation that the first inequality on the right is used for all r when v=0
or © and the second is used for all r when v=n/2, and

(3.3) Re {zh,(2)/h,(2)} = (1—1?)/(142 [cos v| r+1%), |z| = r.
PrOOF. A brief calculation shows that
(3.4) g(0) = |h,(re')|® = r2[1+4r* cos* v—2r*+r*+4r* K (cos 6)] 71,

where K(x)=x%*—ax, a=(1+r%cosv/ r and |x|=1. Thus the maximum value o.
K(x) is 1+ |a| and the minimum value is —a%/4 when |a|=2 and 1 —|a| when |a|=2
Substitution of these values into (3.4) immediately yields (3.2). Since zh,(z)/h,(z)=
=(1-2z2)/(1—2bz+2z%), b=cos v, (3.3) is equivalent to the following inequalities:

2r(14+cos O)[b(1—2br+r?)+2r(1—cos0)] =0, b =0,
2r(cos 0—1)[b(1+2br+r¥)—2r(cos8+1)] =0, b =0,
both of which are clearly valid for all r and 6.
Lemma 2. If p(z) is in @ and 0=pu=mn, then
(3.5) (1=r)/(1+4r) = |cos p+isinpp(2)| = (1+r)/(1—=r), |z] =7
with equality when p=m/2 and p(z)=(1+2)/(1 —2z).
Lemma 3. If p(z) is in & and P is real, then

(3.6) 22’ @)/ (p(2)+iB)| = 2r/(1—-1%), |z| =1,

with equality when =0 and p(z)=(1+2)/(1—2).

Lemma 2 follows directly from the fact that p(z) is subordinate to (1 +2)/(1—z)
and lemma 3 can be found in [4].
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Theorem 2. If f(z) is in I (v), then
(3.7 (1=r)/(1+r)(1+2r [cos v|+r®) = | f'(2)],
(14+r)/(1=r)(142r|cos v|+r?), r = (1—sin v)/|cos v|
LN i v}t (l—sin Wlcos | Fr<1

where the inequalities in (3.8) are treated in the same manner as those in (3.2) when
v=0, &, or n/2. These results are the best possible.

PRrOOF. (3.7) and (3.8) follow directly from (3.1), (3.2) and (3.5). Equality occurs
in (3.7) and the first inequality in (3.8) for f(z) defined by f'(2)=
=(1+e&z2)/(1+2i cos vz—2z*%) (1 —ez) where e=—i if cos v=0 and e=i if cos v<0.
Equality occurs in the second inequality in (3.8) for the same function f(z) at z=iz,
where z,=(1/2)[(1+72) cos v+iV4r:—(1+r*)? cos? v] and e= —iZ,/r.

Theorem 3. If f(z) is in I'(v), then for 0<v<n

(3.8)

3.9) log[(14+7)/(1+2|cosv| r+rH)2)/(1—|cos V) = |f(2),
(3.10) & log [(1—=2 [cos v|r+rH)V2/(1—r))/(1—=|cos v]), r < (1—sin v)/|cosv|
3.11) /@) = {r/sin v(l=r), (1—sinv)/lcosv|=r<1

and for v=0or n
(3.12) rfl+r2 = |f@)|=r/(1—-r) |z|=r.

PrROOF. The upper bounds follow directly from (3.8) by integrating the maximum
value of | f'(z)| and the lower bound follows from integrating the minimum value of
| f7(2)| along the inverse of the segment joining the origin to the point on f(|z|=r)
closest to the origin. [See for example [3];. Inequalities (3.9), (3.10), and (3.12) are
sharp for f(z) defined by f’(z)=(1+ez)/(1+2i cosvz—z*(l—ez), ¢ =+i. (3.11)
is not sharp, but the order is correct since 4,(z) is in I'(v) and |h,(z)|=0(1—r)~ L

Letting r—1 in (3.9) yields the following.

Corollary. If f(z) is in I'(v) then f(E) contains the disk
|w| < {log [2/(1+|cos v]]}/2(1 —[cos v|) = @,, (1/2)l0g2 = o, = 1/4.
Theorem 4. The radius of convexity of I'(v) is

G13) = %{1 +[5+4|cos V]2 —[2 +4[cos v] +2(5 +4lcos v])V2]V2},

Proor. Differentiating (3.1) logarithmically we obtain
Re {l +zf"(2)|f'(2)} = Re{e~"*zh,(e~"2)/h,(e~"2)} + Re {zP'(2)/[p(z) —i cot ]} =
= [1-2r—2(142|cos v|)r2—2r34+r4/(1 —r2) (1 +2r |cos v|+r?),
where we have used (3.3) and (3.6) and have assumed u 0. This last assumption is no

restriction since I'(v, 0) contains only one function, f,(z)= f [A,(2)/t]dt, and this
o
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function is convex in the entire unit disc. Evidently, f(z) maps |z|<r onto a convex
domain whenever 1—2r—2(1+2|cos v|)r?*—2r*+r*=0. A brief calculation shows
r, as given in (3.13) is the smallest positive root of the above polynomial. If f(z) is

defined by
f'(z) =(—=iz2)/(1+2cos v iz—z*)(1+iz), cosv =0,
then f(z) is in I'(v) and

zf”(z)] 5! 1—2r—2_r”——4r2cosv—2r’+r‘ s
1) R g (1=r*(1+2rcosv+r® R

when r=r,, thus f(z) is not convex in any larger disk. If cos v=0 then g(z)=
=—f(—2z) is in I'(v") where v'==n/2—v and, since cos v=cos v/, g(z), and hence
f(2), is not convex in any disk with radius greater than r,.

1+

Theorem 5. If f(z)=z+ Z'H a,z" is in I'(v),
n=32

2n f .
’ ¥V2=/sinv(l—r) v0,=n
L= do é{

f @)l n/(1-r)%, v=0o0rn

0

and
1 v=m/2

la,| =12V2/sinv, 0< |v—=/2| < n/2
n, v=0orm.

PROOF. Let zf'(z)=h,(e"#z)[cos u+isin u p(z)], where
hy(z)=z2+ 3(sinkv/sinv)z* and p(z)=1+ > p,2*,
k=2 k=1

2n ’ = . 2n2(1+4r%)
| oy = = 3 ol
S Ih(2)Pdo 2n 2 (sin®kv/sin® v)r =0 =27 cos v 7 )

0
and, using the fact that |p,|=2,

on o oo

f |cos u+isinup(z)*dd = 2= [H— 2, Isin pi’}p*lzr“] =2n [l +4 Zr"‘] =

. k=1 k=1

_ 2n(14+3)
- 1-2 -

Thus

2= n
L= [ |'()|d0 = [ |h(e=")|-|cos u+isinpup(z)| d0 =
0

0

- 2x
= {f |h,,(e-i;=z)}2d6- f |Cosu+isinpp(z)|zd8} 1/2 -
. 0

2 { P(1+3r%) _}”2
1=r | (A+r*(1=2rfcos2v+rY) ) °

1A
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Now r2(1+3rH)(1+4r)~%(1—2r*cos 2v+r‘)‘1-=:(ﬁsin v)“! [v#0 or =] and
<1/2(1—=r)? [v=0 or =] yields the desired result. The inequality |a,|=1 for v=mn/2
follows from a theorem in [3] and |a,|=n for v=0 or n is obvious since f(z) is close
-to-convex. Both inequalities are sharp. We have not been able to determine the
sharp bounds on |a,| when 0= |v—n/2|<n/2, however the bound on L, shows that
the coefficient of f are bounded, since

nla,| = 1/(2nr") fﬂ |zf”(2)| = V2/2sin v F*(1—r)

which implies
la,| = (V2/2sin v)(1+1/(n=1))* = 2¥2/sin v
where r=1—1/n.

It is possible to obtain a smaller asymptotic bound for |a,| by applying a lemma
due to GRONWALL [2] which states if M, (v)—— Z |sin kv|, then M (v)= hmM (v)

exists and equals 2/n if v/m is irrational; M(nkﬂ) [cot(njzl)]/l-:zjn, if k I(k-.:)‘)
are relatively prime positive integers. Indeed it follows from (3.1) that

sin ny n—lgsinkv

- e—i(n=1u o= ikn
1 sin v +rsm,ukg1' sin v Pr-k>
so that
sin sin kv
| <
(3.14) \na,| = o= |+28m,u [l+k§ — ],

where O0=u=n, 0=v=n. Hence
. -1 :
la,| = 142 smp[nT] = 1+(n--1)sinp

and if 90, = we have using the lemma and (3.14) that

Tt o] = 2308 py(y < 508 4
N sinv TSIy msiny
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