A certain radius of convexity problem

By V. KARUNAKARAN (Madras)

Introduction. Let E denote the unit disc and C denote the class of functions f regular in E normalised by f(0)=f'(0)-1=0 and which satisfies the condition that it maps E onto a domain which is convex. It is interesting to ask whether

f and
$$g \in C$$
 imply $\lambda f + (1 - \lambda)g \in C$ for $0 < \lambda < 1$.

(Cf. Problem 6.11 in [2].). This problem could be answered in the negative. However the radius of convexity of the family consisting of $\lambda f + (1-\lambda)g$ for arbitrary $f, g \in C$ and each fixed $\lambda \in (0, 1)$ is still not known. A more general problem would be to ask for the radius of convexity of $\lambda f + (1-\lambda)g$ where f is convex and g is starlike, (with respect to origin). Since a complete solution is not known, it will be interesting to consider special cases in which the problem admits a complete solution. We can weaken the question either by specialising f or g or both. In this context the choice of g = zf' is interesting, since the starlike function associated to an $f \in C$ is zf', in the sense that $f \in C$ iff zf' is starlike (with respect to origin). We specialise f also by requiring that p(z) = [1 + (zf''(z))/f'(z)] should satisfy

$$|(p(z)-1)(p(z)+1)^{-1}| < \alpha$$
 for $z \in E$ and $0 < \alpha \le 1$.

We also choose $\lambda = 2^{-1}$.

Both the choices $\lambda=2^{-1}$ and the speciality of f indicated above are motivated by the fact that the result obtained may be a natural refinement of the one obtained by Livingston in [3]. The technique we adopt is suggested by the work in [4]. Thus in this paper we find out the radius of convexity of the family $C(\alpha)$ which can be described as follows.

 $f(z) \in C(\alpha)$ iff f is regular in E and satisfies f(0) = 0, f'(0) = 1 and $p(z) - 1)(p(z) + 1)^{-1} < \alpha$ where p(z) = [1 + (zf''/f')] and then

$$P(\alpha) = \{g(z) = 2^{-1} [f(z) + zf'(z)]/f(z) \in C(\alpha)\}.$$

Theorem. The radius of convexity γ^* of the family $C(\alpha)$ can be descirbed as follows.

(i) For
$$0 < \alpha \le [(\sqrt{5}+1)/4]$$
, $\gamma^* = [(p-1+\alpha)/2\alpha]^{1/2}$ where $p^2 = (1-\alpha)(1+3\alpha)$.

(ii) For
$$[\sqrt{5}+1/4] \le \alpha \le 1$$
, $\gamma^* = (2\alpha)^{-1}$.

PROOF. Let $g(z) = 2^{-1} [f(z) + zf'(z)], f(z) \in C(\alpha)$ p(z) = [1 + (zf''(z)/f'(z))], $p^*(z) = [1 + (zg''(z)/g'(z))],$ and $-w(z) = (p(z) - 1)\alpha^{-1}(p(z) + 1)^{-1}, r = |z|$. From $g \in P(\alpha)$ we have |w(z)| < 1 for $z \in E$. w(0) = 0 and so by Schwarz lemma $|w(z)| \le r$ $(z \in E)$. Simple calculation shows that

(1)
$$\operatorname{Re} p^{*}(z) = -1 + 2 \operatorname{Re} q(z) - \operatorname{Re} \alpha z w'(z) q(z)$$

where $q(z) = [1 + \alpha w(z)]^{-1}$.

From $|w(z)| \le r$ we have

$$|q(z)-a| \le d$$
 where $a = (1-\alpha^2 r^2)^{-1}$, $d = \alpha ra$.

Now $\Phi(z)=z^{-1}w(z)$ satisfies $|\Phi(z)| \le 1$ $(z \in E)$ and so by a well known result [1],

$$|\Phi'(z)| \le (1-r^2)^{-1}(1-|\Phi(z)|^2).$$

So, $|zw'(z)-w(z)| \le (r^2-|w(z)|^2) (1-r^2)^{-1}$ and thus Re $zw'(z)q(z) \le \text{Re } w(z)q(z) + (r^2-|w(z)|^2) (1-r^2)^{-1} |q(z)|$. Using these result and (1) elementary calculations give

(2) Re
$$p^*(z) \ge -2 + 3(a+u) - (1-\alpha^2 r^2)(1-r^2)^{-1}[(a+u)^2 + v^2]^{-1/2}(d^2 - u^2 - v^2)$$

where u and v real numbers depending on z, q(z) = a + u + iv, $u^2 + v^2 \le d^2$. If we denote the right side of (2) which is a function of u and v by s(u, v) we find that

$$\partial s(u,v)|\partial v = \alpha^{-1}(1-r^2)^{-1}(1-\alpha^2r^2)vR^{-4}T(u,v)$$

where R = |q(z)| and T(u, v) > 0.

So the right side of (2) considered as a function of v with u fixed takes its minimum for $u^2+v^2 \le d^2$ at v=0 and so,

(3) Re
$$p^*(z) \ge -2 + 3(a+u) - (1-\alpha^2 r^2)(1-r^2)^{-1}\alpha^{-1}(a+u)^{-1}(d^2-u^2)$$
.

Now we consider the right side of (3) as a function F(u) of $u \ge -d$, with r fixed and calculate the number $u_0 = u_0(r)$ where F takes its absolute minimum. Since $|u| \le d$ in (3) and F takes its minimum for $|u| \le d$ at u_0 , we have,

(4)
$$\operatorname{Re} p^*(z) \ge F(u_0) \quad \text{if} \quad u_0 \ge -d.$$

If $u_0 < -d$, F is a monotonic increasing function of u and so,

(5) Re
$$p^*(z) \ge F(-d)$$
 if $u_0 < -d$.

Now g is convex for $|z| < \varrho$ if Re $p^*(z) > 0$ for $|z| < \varrho$. Thus we can get (i) and (ii) from (4) and (5) by elementary calculations which can be left to the reader. We can see (ii) is sharp for each α by considering the function f defined by

$$p(z) = (1 - \alpha z)(1 + \alpha z)^{-1}$$
. In the case of (i),

consider the function f defined by $w(z)=z(z-t)(1-tz)^{-1}$ where t is determined by the condition $1+\alpha w(r_1)=[u_0(r_1)+a]^{-1}$,

$$r_1^2 = (2\alpha)^{-1}(p-1+\alpha).$$

The detailed calculation is again left to the reader.

In conclusion the author would like to thank Professor K.S. Padmanabhan for helpful discussions. His thanks are also due to the *referee** for valuable suggestions towards improvement.

References

[1] C. CARATHEODORY, Theory of functions, Vol. II, Chelsea, New York, 1954, p. 18.

[2] W. K. HAYMAN, Research Problems in function theory, The Athlone Press of the *University of London*, 1967, p. 38.

[3] A. E. LIVINGSTON, On the radius of Univalence of certain analytic functions, Proc. Math. Amer. Soc. 17 (1966), 352—357.

[4] V. SHING and R. M. GOEL, On radii of convexity and starlikeness of some classes of functions, J. Math. Soc. Japan, 23 (1971), 323—339.

RAMANUJAN INSTITUTE, UNIVERSITY OF MADRAS, MADRAS-5, INDIA.

(Received March 22, 1974; in revised form July 14, 1975.)

^{*} J. DEÁK (Budapest)