Modules that are finite sums of simple submodules

By ROBERT GILMER (Tallahassee, Florida)

A module M over a commutative ring R is said to be completely reducible
[4, p. 167] if each submodule of M is a direct summand of M. Each submodule
of a completely reducible module is completely reducible, and in a completely
reducible module, the following five conditions are equivalent:

(1) M is Noetherian.

(2) M is Artinian.

(3) M has finite length.

(4) M is a finite sum of simple submodules, where a module N is simple if

(0) and N are the only submodules of N.

(5) M is a finite direct sum of simple submodules.

A finite sum of simple modules is completely reducible [4, p. 168], and hence
each submodule of a finite sum of simple modules is again a finite sum of simple
modaules. It is the purpose of this paper to consider the following question.

If each proper submodule of M is a finite sum of simple modules, is M a finite
sum of simple modules?

We prove that he answer to the preceding question is negative, and in Theorem
1 we determine, to within isomorphism, those modules for which each the proper sub-
module is a finite sum of simple modules. First we need a description of the simple
R-modules: if X is a nonempty subset of an R-module M, then Ann(X) denotes
the annihilator of X — that is, Ann(X)={rcR|rx=0 for each x in X}. The
following result is well known [4, p. 133].

Result 1. A nonzero commutative ring R has no ideals other than (0) and
R if and only if either R is the zero ring on a cyclic group of prime order or R is
a field.

There is an analogue of Result 1 for noncommutative rings [3; Exercise 2. p. 101]:

A nonzero associative ring S has only two right ideals, (0) and S, if and only
if either S is the zero ring on a cyclic group of prime order or S is a division ring.

Result 1 enables us to determine all nonzero simple modules over a ring R.

Proposition 1. Let M be a nonzero module over a commutative ring R. In order
that M be simple, it is necessary and sufficient that one of the following conditions
(1) or (2) is satisfied:
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(1) Scalar multiplication is trivial and the additive group of M is cyclic of prime
order.

(2) Scalar multiplication is not trivial, R/Ann (M) is a field, and M is a one-
dimensional vector space over R/Ann (M) under the induced scalar multiplication.

PRrOOF. It is clear that M is simple if (1) or (2) is satisfied. We show that if M
is simple and (1) fails, then condition (2) is satisfied. Since (1) fails, scalar multiplica-
tion is nontrivial, for the only nonzero simple abelian groups are those of prime order.
Thus, let m be an element of M such that Ann (m)=R. Since M is simple,
M=Rm and the mapping r--rm is an R-module homomorphism of R onto M
with kernel Ann (M). Therefore R/Ann (M) and M are isomorphic R-modules
as well as isomorphic (R/Ann (M))-modules. It then follows from Result 1 that
R/Ann (M) is a field and that M is a one-dimensional vector space over R/Ann (M).

We note that in seeking to determine conditions under which each proper sub-
module of an R-module M is a finite sum of simple modules, there is no loss of
generality in assuming that R has an identity element and M is unitary, for if
R™ is the ring obtained from R by canonically adjoining an identity of characteris-
tic 0 (see [1] or [2; p. 5]), then M is uniquely a unitary R*-module in such a way
that the scalar multiplication between elements of R and elements of M is retained
[2; Exercise 4, p. 9], and under this multiplication the R-submodules of M are
the same as the R*-submodules of M. Hence in our statement of Theorem 1 we
assume that R has an identity element and M is unitary.

Theorem 1. Assume that R is a commutative ring with identity and M is a uni-
tary R-module. If each proper submodule of M is a finite sum of simple submodules
of M, then either (1) M is a finite sum of simple submodules, or (2) M is cyclic,
R/Ann (M) is a local ring with maximal ideal P/Ann (M), and P*<= M. Conversely,
each proper submodule of M is a finite sum of simple submodules if (1) or (2) is satisfied.

PrOOF. We assume that M is nonzero and that each proper submodule of

M is a finite sum of simple submodules of M. Thus if N is a nonzero proper sub-

module of M, then N=8§,+...+S,, where each S; is nonzero and simple.

Proposition | implies that P,=Ann (S;) is a maximal ideal of R for each i, and
[ 4

hence Ann (N)= () P; is a finite intersection of maximal ideals of R. Let {P,}
1

be the family of maximal ideals of R, and for each «, let N, be the submodule
of M consisting of elements of M annihilated by P,. As we have just observed,
IN, contains each proper submodule of M. Hence, if M is not cyclic, then
M=ZN,. We show that this implies that M is a finite sum of simple submodules:
we consider separately the cases where exactly one, or more than one, of the sub-
modules N, is nonzero.

Case 1. M=N, for some a. Then to within isomorphism, M is a vector space
over R/P,. Since each proper subspace of M is finite-dimensional, M itself is
finite-dimensional. Thus M is a finite sum of simple submodules.

Case 11. MO N, for each . We choose « so that N,=(0) and we show that
M=N,® > N;. Thus if mecN,N(ZNy), then for some finite set {f;}] of elements

f#x
B=a, mEN,N(Np+...+N): hence P,m=0=(Ps,N...N\P;)m, and since
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P,+(Py,N...NPy)=R, Rm=0 and m=0. It follows that N, and 3 N, are

pf#=a
proper submodules of M, and hence are finite sums of simple submodules. Conse-
quently, M is a finite sum of simple submodules.

We have proved that condition (1) is satisfied if M is not cyclic. If M is cyclic,
then as in the proof of Proposition 1, M is isomorphic, as an R-module or as an
(R/Ann (M)) module, to R/(Ann (M)). Hence to complete the proof of the first
half of Theorem 1, we consider a ring S with identity such that each proper ideal
of S is a finite sum of minimal ideals of S. and we seek to prove that either § is
a finite sum of minimal ideals or S is local with nonzero maximal ideal P such
that P2=(0). If S has more than one maximal ideal, then S can be written as the
sum of two proper ideals, and hence S is a finite sum of minimal ideals. Assume
that S is quasi-local with maximal ideal P. Since P has finite length as an S-
module, S also has finite length, so S is Noetherian; that is, S is a local ring.
We have already observed that the annihilator of xS, for each nonzero element
x of P, is a finite intersection of maximal ideals of S, and hence is P; consequently
P2=(0). Thus either P=(0). S is a field, and S is a finite sum of minimal ideals,
or we have the second of the desired conditions satisfied.

We turn to a proof of the converse, which is quite easy. As previously remarked,
(1) implies that each submodule of M is a finite sum of simple submodules, and if
(2) is satisfied, then we need only observe that each proper ideal of the local ring
R/Ann (M) is a finite sum of minimal ideals. Thus P/Ann (M) has this property,
for P is finitely generated and P*S Ann (M) so that P/Ann (M) is a finite-dimen-
sional vector space over the field R/P. Since each proper ideal of R/Ann (M)
is contained in P/Ann (M), it follows that each proper ideal of R/Ann (M) is
a finite sum of minimal ideals, and our proof of Theorem 1 is complete.

We observe that if R is a local ring with nonzero maximal ideal P such that
P*=(0), then each proper submodule of the R-module R is a finite sum of simple
submodules, while R itself is not completely reducible; moreover, both P and
R/P are finite sums of simple modules in this case. Thus the answer to the question
posed at the beginning of the paper is negative. We conclude with a positive result
concerning completely reducible modules.

Proposition 2. Assume that the R-module M is the sum of a finite family {M}}
of submodules. If each M; is completely reducible, then so is M.

Before embarking upon the proof, we establish a lemma that allows us to reduce
to the case where M is the direct sum of the family {M}i.

Lemma 1. If {M.}] is a finite family of completely reducible submodules of an
R-module M, then 2 M; is the direct sum of a finite family of completely reducible
1
submodules.

Proor. It suffices to consider the case n=2. The submodule M, M, is
a direct summand of M,, say M,=N,&(M,\M,). It then follows that M, +M,=
=N, M,, where N,, as a submodule of M, is completely reducible.

PROOF OF PROPOSITION 2. By Lemma | and induction, it suffices to show that
each submodule N of M,&M, is a direct summand of M,+=M,. We consider



8 R. Gilmer

first the case where N\ M,=N(M,=(0). If ¢ is the projection map of M,TM,
onto M,, then o(N) is a direct summand of M; — say M;=p(N)S U: we prove
that M,=M,=NaU&M,. If myeM, and if my;=p(n)+u is the decomposition
of m, with respect to the direct decomposition o(N)&U of M,, then m=
=n+u,+(¢(m)—n), where o(n)—n<M,, and hence M,&M,=N+U+M,.
To show that the sum N+ U+ M, is direct, we need only prove that NN(U+ M,)=
=(0). Thusif n=u+m, isin N((U+ M,), where ucU and m,€M,, then o(n)=
=uco(N)NU=(0) and n=my,e N1 My=(0).

In the general case, N\ M; is adirect summand of M;, say M;=(NNM;)@®N;.
Then M,2M,=(NNM)&(NNM;)&N,&N, and N=(NNM)B(NNMy)
S[NM(N;£N,)). The modules N; are completely reducible and NN(N;$SN,)
is such that [NN(N,@&Ny)]NN,=NNN,=NNN,NM)=(NNM)NN;=(0). By
the case previously considered, N, & N,=[N(1(N,EN,)]&EN; for some submodule
N;. Therefore M, M,=N&N,;, and this completes the proof of Proposition 2.
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