Modules that are finite sums of simple submodules

By ROBERT GILMER (Tallahassee, Florida)

A module M over a commutative ring R is said to be completely reducible [4, p. 167] if each submodule of M is a direct summand of M. Each submodule of a completely reducible module is completely reducible, and in a completely reducible module, the following five conditions are equivalent:

- (1) M is Noetherian.
- (2) M is Artinian.
- (3) M has finite length.
- (4) M is a finite sum of simple submodules, where a module N is simple if (0) and N are the only submodules of N.
- (5) M is a finite direct sum of simple submodules.

A finite sum of simple modules is completely reducible [4, p, 168], and hence each submodule of a finite sum of simple modules is again a finite sum of simple modules. It is the purpose of this paper to consider the following question.

If each proper submodule of M is a finite sum of simple modules, is M a finite sum of simple modules?

We prove that he answer to the preceding question is negative, and in Theorem 1 we determine, to within isomorphism, those modules for which each the proper submodule is a finite sum of simple modules. First we need a description of the simple R-modules; if X is a nonempty subset of an R-module M, then Ann(X) denotes the annihilator of X — that is, $Ann(X) = \{r \in R | rx = 0 \text{ for each } x \text{ in } X\}$. The following result is well known [4, p. 133].

Result 1. A nonzero commutative ring R has no ideals other than (0) and R if and only if either R is the zero ring on a cyclic group of prime order or R is a field.

There is an analogue of Result 1 for noncommutative rings [3; Exercise 2. p. 101]:

A nonzero associative ring S has only two right ideals, (0) and S, if and only if either S is the zero ring on a cyclic group of prime order or S is a division ring.

Result 1 enables us to determine all nonzero simple modules over a ring R.

Proposition 1. Let M be a nonzero module over a commutative ring R. In order that M be simple, it is necessary and sufficient that one of the following conditions (1) or (2) is satisfied:

6 R. Gilmer

(1) Scalar multiplication is trivial and the additive group of M is cyclic of prime order.

(2) Scalar multiplication is not trivial, R/Ann(M) is a field, and M is a one-dimensional vector space over R/Ann(M) under the induced scalar multiplication.

PROOF. It is clear that M is simple if (1) or (2) is satisfied. We show that if M is simple and (1) fails, then condition (2) is satisfied. Since (1) fails, scalar multiplication is nontrivial, for the only nonzero simple abelian groups are those of prime order. Thus, let m be an element of M such that $Ann(m) \neq R$. Since M is simple, M = Rm and the mapping $r \rightarrow rm$ is an R-module homomorphism of R onto M with kernel Ann(M). Therefore R/Ann(M) and M are isomorphic R-modules as well as isomorphic R/Ann(M)-modules. It then follows from Result 1 that R/Ann(M) is a field and that M is a one-dimensional vector space over R/Ann(M).

We note that in seeking to determine conditions under which each proper submodule of an R-module M is a finite sum of simple modules, there is no loss of generality in assuming that R has an identity element and M is unitary, for if R^* is the ring obtained from R by canonically adjoining an identity of characteristic 0 (see [1] or [2; p. 5]), then M is uniquely a unitary R^* -module in such a way that the scalar multiplication between elements of R and elements of R is retained [2; Exercise 4, p. 9], and under this multiplication the R-submodules of R are the same as the R^* -submodules of R. Hence in our statement of Theorem 1 we assume that R has an identity element and R is unitary.

Theorem 1. Assume that R is a commutative ring with identity and M is a unitary R-module. If each proper submodule of M is a finite sum of simple submodules of M, then either (1) M is a finite sum of simple submodules, or (2) M is cyclic, R/Ann(M) is a local ring with maximal ideal P/Ann(M), and $P^2 \subseteq M$. Conversely, each proper submodule of M is a finite sum of simple submodules if (1) or (2) is satisfied.

PROOF. We assume that M is nonzero and that each proper submodule of M is a finite sum of simple submodules of M. Thus if N is a nonzero proper submodule of M, then $N = S_1 + \ldots + S_t$, where each S_i is nonzero and simple. Proposition 1 implies that $P_i = \text{Ann}(S_i)$ is a maximal ideal of R for each i, and hence $\text{Ann}(N) = \bigcap_{i=1}^{t} P_i$ is a finite intersection of maximal ideals of R. Let $\{P_\alpha\}$ be the family of maximal ideals of R, and for each α , let N_α be the submodule of R consisting of elements of R annihilated by R_α . As we have just observed, $R = \sum N_\alpha$ contains each proper submodule of $R = \sum N_\alpha$. We show that this implies that $R = \sum N_\alpha$ is not cyclic, then $R = \sum N_\alpha$. We show that this implies that $R = \sum N_\alpha$ is nonzero.

Case I. $M = N_{\alpha}$ for some α . Then to within isomorphism, M is a vector space over R/P_{α} . Since each proper subspace of M is finite-dimensional, M itself is finite-dimensional. Thus M is a finite sum of simple submodules.

Case II. $M \supset N_{\alpha}$ for each α . We choose α so that $N_{\alpha} \neq (0)$ and we show that $M = N_{\alpha} \oplus \sum_{\beta \neq \alpha} N_{\beta}$. Thus if $m \in N_{\alpha} \cap (\Sigma N_{\beta})$, then for some finite set $\{\beta_i\}_1^n$ of elements $\beta \neq \alpha$, $m \in N_{\alpha} \cap (N_{\beta_1} + \ldots + N_{\beta_n})$; hence $P_{\alpha} m = 0 = (P_{\beta_1} \cap \ldots \cap P_{\beta_n})m$, and since

 $P_{\alpha}+(P_{\beta_1}\cap\ldots\cap P_{\beta_n})=R$, Rm=0 and m=0. It follows that N_{α} and $\sum_{\beta\neq\alpha}N_{\beta}$ are proper submodules of M, and hence are finite sums of simple submodules. Consequently, $N_{\alpha}=0$ and $N_{\alpha}=0$ are finite sums of simple submodules.

quently, M is a finite sum of simple submodules.

We have proved that condition (1) is satisfied if M is not cyclic. If M is cyclic, then as in the proof of Proposition 1, M is isomorphic, as an R-module or as an (R/Ann(M)) module, to R/(Ann(M)). Hence to complete the proof of the first half of Theorem 1, we consider a ring S with identity such that each proper ideal of S is a finite sum of minimal ideals of S, and we seek to prove that either S is a finite sum of minimal ideals or S is local with nonzero maximal ideal P such that $P^2=(0)$. If S has more than one maximal ideal, then S can be written as the sum of two proper ideals, and hence S is a finite sum of minimal ideals. Assume that S is quasi-local with maximal ideal P. Since P has finite length as an S-module, S also has finite length, so S is Noetherian; that is, S is a local ring. We have already observed that the annihilator of S, for each nonzero element S of S, is a finite intersection of maximal ideals of S, and hence is S; consequently S is a finite sum of minimal ideals, or we have the second of the desired conditions satisfied.

We turn to a proof of the converse, which is quite easy. As previously remarked, (1) implies that each submodule of M is a finite sum of simple submodules, and if (2) is satisfied, then we need only observe that each proper ideal of the local ring R/Ann(M) is a finite sum of minimal ideals. Thus P/Ann(M) has this property, for P is finitely generated and $P^2 \subseteq Ann(M)$ so that P/Ann(M) is a finite-dimensional vector space over the field R/P. Since each proper ideal of R/Ann(M) is contained in P/Ann(M), it follows that each proper ideal of R/Ann(M) is a finite sum of minimal ideals, and our proof of Theorem 1 is complete.

We observe that if R is a local ring with nonzero maximal ideal P such that $P^2=(0)$, then each proper submodule of the R-module R is a finite sum of simple submodules, while R itself is not completely reducible; moreover, both P and R/P are finite sums of simple modules in this case. Thus the answer to the question posed at the beginning of the paper is negative. We conclude with a positive result concerning completely reducible modules.

Proposition 2. Assume that the R-module M is the sum of a finite family $\{M_i\}_{1}^{n}$ of submodules. If each M_i is completely reducible, then so is M.

Before embarking upon the proof, we establish a lemma that allows us to reduce to the case where M is the direct sum of the family $\{M_i\}_{1}^{n}$.

Lemma 1. If $\{M_i\}_{1}^n$ is a finite family of completely reducible submodules of an R-module M, then $\sum_{i=1}^{n} M_i$ is the direct sum of a finite family of completely reducible submodules.

PROOF. It suffices to consider the case n=2. The submodule $M_1 \cap M_2$ is a direct summand of M_1 , say $M_1 = N_1 \oplus (M_1 \cap M_2)$. It then follows that $M_1 + M_2 = N_1 \oplus M_2$, where N_1 , as a submodule of M_1 , is completely reducible.

PROOF OF PROPOSITION 2. By Lemma 1 and induction, it suffices to show that each submodule N of $M_1 \oplus M_2$ is a direct summand of $M_1 \oplus M_2$. We consider

8 R. Gilmer

first the case where $N\cap M_1=N\cap M_2=(0)$. If ϱ is the projection map of $M_1\oplus M_2$ onto M_1 , then $\varrho(N)$ is a direct summand of M_1 —say $M_1=\varrho(N)\oplus U$; we prove that $M_1\oplus M_2=N\oplus U\oplus M_2$. If $m_1\in M_1$ and if $m_1=\varrho(n)+u$ is the decomposition of m_1 with respect to the direct decomposition $\varrho(N)\oplus U$ of M_1 , then $m_1=n+u_1+(\varrho(n)-n)$, where $\varrho(n)-n\in M_2$, and hence $M_1\oplus M_2=N+U+M_2$. To show that the sum $N+U+M_2$ is direct, we need only prove that $N\cap (U+M_2)==(0)$. Thus if $n=u+m_2$ is in $N\cap (U+M_2)$, where $u\in U$ and $m_2\in M_2$, then $\varrho(n)=u\in \varrho(N)\cap U=(0)$ and $n=m_2\in N\cap M_2=(0)$.

In the general case, $N\cap M_i$ is a direct summand of M_i , say $M_i = (N\cap M_i) \oplus N_i$. Then $M_1 \oplus M_2 = (N\cap M_1) \oplus (N\cap M_2) \oplus N_1 \oplus N_2$ and $N = (N\cap M_1) \oplus (N\cap M_2) \oplus [N\cap (N_1 \oplus N_2)]$. The modules N_i are completely reducible and $N\cap (N_1 \oplus N_2)$ is such that $[N\cap (N_1 \oplus N_2)] \cap N_i = N\cap N_i = N\cap (N_i \cap M_i) = (N\cap M_i) \cap N_i = (0)$. By the case previously considered, $N_1 \oplus N_2 = [N\cap (N_1 \oplus N_2)] \oplus N_3$ for some submodule N_3 . Therefore $M_1 \oplus M_2 = N \oplus N_3$, and this completes the proof of Proposition 2.

References

[1] J. L. DORROH, Concerning adjunctions to algebras, Bull. Amer. Math. Soc. 38 (1932), 85-88.

[2] R. GILMER, Multiplicative Ideal Theory, New York, 1972.[3] I. N. HERSTEIN, Topics in Algebra, Massachusetts, 1964.

[4] O. Zariski and P. Samuel, Commutative Algebra I, Princeton, New Jersey, 1958.

(Received June 26, 1974; in revised form November 18, 1975.)