On radicals in a certain class of semigroups

By HARBANS LAL (New Delhi)

We shall call a semigroup S a σ -reflexive semigroup if any subsemigroup H in S is reflexive (that is, for all a, b in S, $ab \in H \Rightarrow ba \in H$) ([2, 3, 7]). A commutative semigroup is clearly a σ -reflexive semigroup. J. Bosák [1, p. 209] and R. Šulka [6, p. 221] proved that if S is a commutative semigroup and J any ideal of S, then the Clifford, McCoy, Ševrin, Schwarz and Luh radicals with respect to J (respectively denoted by $R_J^*(S)$, $M_J(S)$, $L_J(S)$, $R_J(S)$ and $C_J(S)$) are equal to $N_J(S)$, the set of all nilpotent elements of S with respect to J. For their definitions, we refer to [1, 6]. Further J. E. Kuczkowski [4] proved that if S is a C_2 -semigroup, then $M_J(S) = L_J(S) = R_J^*(S) = C_J(S) = N_J(S)$ for every ideal J of S. The purpose of this note is to extend the previous result to the class of σ -reflexive semigroups obtaining the following

Theorem. If S is a σ -reflexive semigroup and J any ideal of S; then $R_J(S) = M_J(S) = L_J(S) = R_J^*(S) = N_J(S) = C_J(S)$.

First we recall the following proposition from [2].

Proposition. Any semigroup S is σ -reflexive if and only if it satisfies the following condition:

$$\forall a, b \in S, \exists m = m(a, b) \ge 1; ab = (ba)^m.$$

Before coming to the proof of the theorem, we prove the following two lemmas.

Lemma 1. Let S be a σ -reflexive semigroup. Then an ideal of S is prime if and anly if it is completely prime [1].

PROOF. Clearly it suffices to prove that any prime ideal is completely prime. Let P be any prime ideal and $ab \in P$, where $a, b \in S$. We shall show that $a \in P$ or $b \in P$. Let x be any arbitrary element of S. Then by the previous proposition, $ax = (xa)^m$, where m is an integer ≥ 1 . Now $axb = (xa)^m$. $b \in P$ for every x in S, since $ab \in P$, whence $aSP \subseteq P$. As P is prime, we get $a \in P$ or $b \in P$, so that P is a completely prime ideal.

Corollary. Let S be a σ -reflexive semigroup and J any ideal of S. Then $M_I(S) = C_I(S)$.

Let x be any element of a semigroup S. The principal ideal generated by x will be denoted by J(x).

10 H. Lal

Lemma 2. Let S be a σ -reflexive semigroup. Then for any x, y in S, $J(x) \cdot J(y) = J(xy)$.

PROOF. Clearly $J(xy) \subseteq J(x) \cdot J(y)$. Let $a \in J(x)$ and $b \in J(y)$. Then a is one of x, $t_1 x$, xt_2 , or $t_1 xt_2$ and b is one of y, $t_3 y$, yt_4 , or $t_3 yt_4$ where $t_i \in S$ for i = 1, 2, 3, 4. By making use of the previous proposition, it is a routine verification that $ab \in J(xy)$ in every case. Thus $J(x) \cdot J(y) \subseteq J(xy)$, whence the lemma.

PROOF OF THE THEOREM. J. BOSÁK [1, Theorem 2] proved that

$$R_J(S) \subseteq M_J(S) \subseteq L_J(S) \subseteq R_J^*(S) \subseteq N_J(S) \subseteq C_J(S),$$

for any semigroup S. Since $M_J(S) = C_J(S)$ by the above corollary, we get the equality of five of them barring $R_J(S)$. This will be equal to the others if we show $R_J^*(S) \subseteq R_J(S)$ and this we do now. Let $a \in R_J^*(S)$; then $a^n \in J$ for some positive integer n. Since $[J(a)]^n = J(a^n) \subseteq J$, by Lemma 2, J(a) is a nilpotent ideal with respect to J and hence $a \in R_J(S)$. This completes the proof of the theorem.

Remark. This theorem no more remains true if we drop from its hypothesis the σ -reflexivity of the semigroup. For instance, let $S = \{0, a_1, a_2, a_3, a_4\}$ be a semigroup with the following multiplication table:

Here $H = \{0, a_2, a_4\}$ is a subsemigroup of S such that $a_3a_1(=0)$ is in H, whereas $a_1a_3(=a_3)$ is not in H; whence S is not σ -reflexive. Let $J = \{0\}$; then $R_J(S) = M_J(S) = L_J(S) = R_J^*(S) = \{0\}$; $N_J(S) = \{0, a_3, a_4\}$ and $C_J(S) = S$. This example is due to S. Schwarz [5].

References

[1] J. Bosák, On radicals of semigroups, Mat. Časop., 18 (1968), 204-212.

 [2] M. CHACRON and G. THIERRIN, σ-Reflexive semigroups and rings, Canad. Math. Bull., 15 (1972), 185—188.

[3] A. H. CLIFFORD and G. B. Preston, The Algebraic Theory of Semigroups, Math. Surveys No. 7, Vol. II, (Amer. Math. Soc), 1967.

[4] J. E. Kuczkowfki, On radicals in a certain class of semigroups, Mat.-Fyz. Časopis, 20 (1970), 278—280.

[5] Š. Schwarz, On dual semigroups, Czechslovak, Math. J., 10 (85) (1960), 201—228.

[6] R. Šulka, On nilpotent elements, ideals and radicals of a semigroup, Mat.-Fyz. Časopis, 13 (1963), 209—222 (Russian).

[7] G. THIERRIN, Contribution a la theorie des anneaux et demigroupes, *Comment. Math. Helv.*, 32 (1957), 93—112.

[8] F. Szász, Radikalbegriffe für Halbgruppen mit Nullelement, die dem Jacobsonschen ringtheoretischen Radikal ähnlich sind, Math. Nachr. 34 (1967), 157—161.

[9] F. Szász, On radicals of semigroups with zero, I. Proc. Japan Acad. 46 (1970), 595-598.

HANS RAJ COLLEGE, DELHI UNIVERSITY, DELHI-7, INDIA.