Tridiagonal matrices and functions analytic in two half-planes

By JIRI GREGOR (Praha)

The problem of eigenvalues and eigenvectors of real symmetric tridiagonal matrices is known
to be equivalent to a second order discrete boundary problem. The characteristic polynomials of
these matrices are orthogonal in a certain sense. The best way to derive some of their properties
arises while studying the above mentioned boundary problem. The aim of this paper is to show
that in case of antisymmetric?) tridiagonal matrices similar methods with some modifications may
give further interesting results,

I. Introduction

The second order discrete boundary problem may generally be formulated
for the difference equation as:

(n CnVne1 = (an+;'bn)yn_cn-1yn-l!

where n are non-negative integers, a,, b,, ¢, are real numbers, b,=0, ¢,=0. Let to
be found a nontrivial set of constants y,, »,, ... y,, such that y,+hAy,-,=0 for
a fixed real number /s and a fixed integer m while taking y_,=0.

If considering y,=»(4) it can be seen that y, are polynomials in the A vari-
able and the eigenvalues of the boundary problem are the zeros of the polynomial
Vm (‘;’) +h.vm—l (’;')

Let A denote the tridiagonal matrix of order m+1 with elements
a,‘_lfbk_l fOl‘ f.= k
Cor/Vbiaby for i—1=k
Cl"l/v;bl’-lbi fOI‘ i'+‘ l = k
0 otherwise

d‘:=

Its eigenvalues coincide with those of the above formulated boundary problem for
h=0; the coordinates of its eigenvectors are the above mentioned constants y,, y,, ...
s
The results concerning the eigenvalues and eigenvectors of the formulated
boundary problem of the matrix 4 can be found in the basic literature (see e.g. [1],

1) A matrix A is called antisymmetric if its sum with its transpose equals to a diagonal matrix
(not necessarily zero).



12 J. Gregor

[2]. [3]). Besides these two initial formulations an additional possibility is being ap-
plied: the polynomials (%) are orthogonal polynomials (e.g. ¢,=1, a,=0, b,=2
gives the Hermite polynomials, e.t.c.). The elementary results of their unified theory
are generally known: all the zeros of these polynomials (the eigenvalues of the
corresponding boundary problem or the eigenvalues of the corresponding tridiagonal
matrix) are real numbers, they are simple roots of the corrensponding polynomials
with so called “interlacing™ property.

Let us investigate a modified second order discrete boundary problem leading
to an antisymmetric tridiagonal matrix. It can be shown that many consequences
of the outlined theory remain valid, although none of the simple properties of eigen-
values as mentioned previously can be proved. This modified boundary problem has
many interesting relations with theories such as the theory of analytic functions and
their integral representations, the theory of continued fractions, the theory of mo-
ments etc. similarly as in the “*classical’” case. In the latter case all these relationships
are treated in the three outstanding books mentioned before. The methods given in
these books will be followed in this paper.

If. A difference equation and the corresponding
boundary problem; basic results

Let us consider the following second order difference equation:

(2) Yis1— V-1 = (G +AB) Vi

where o, B, are real constants, f;=0,k=0,1,.... Any sequence {yi(A)}izo
satisfying (2) will be called its solution belonging to 4. Any (m+1)-dimensional
vector {yy(4), 11(4), ..., ¥ (4)} will be called its solution of order m belonging to
/. ¥.(2) are coordinates of this solution. For standard initial values we shall use
the notation as follows: P,(4) stands for the k-th coordinate if y_,=P_;=0
and y,=Py=1; similarly Q,(4) if y_,=0_,=1 and y,=Q,=0.

In general if y_, and y, are constants, y,=0, all the coordinates y,(4) are
polynomials of exact degree k; if y,=0 then deg y,<k.

To compare equation (2) with (1) we may replace ¢, in equ. (1) by 1/d,d,,,
and denote y,/d,=Y,; we obtain

(l’) }’rr+l+Yu—1 = (and;lz'{'bndnz)‘)yn'
This equation shows the distinction between (1) and (2).

The following problems can be formulated:

A:Let A bean antisymmetric tridiagonal matrix of order m with off — diago-
nal elements a; ;_,= —a;_, ;=0. The eigenvalues and eigenvectors are to be found.

B: Let equ. (2) be given. All the m dimensional vectors {¥y, V1s -« Vim-1}
satisfying (2) and the boundary conditions y_,;=y,=0 are to be found.

C: Let a finite continued fraction be given as:

1 1 1

(3) fm(") -~ ﬁm-l;'-l-:(m‘l - ﬁm_2).+afm_2 +-”+ ﬁol—ku‘]
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with f;#0,i=0,1, ... m—1. All the poles and zeros of the rational function f,
are to be found.

Denoting in problem A the elements a;= —x;_,/f;—, and @;,, ;= —1/VBi_.B:
(i.e. supposing without loss of generality that all the subdiagonal elements are of
equal sign) it can be shown, that the problems A, B, C are essentially equivalent:
the solution of any of them gives in fact the solution of the remaining two.

Now let us formulate a few results concerning solutions of equation (2).

It will be useful to note that the coordinates of the ‘“‘standard” solution, the
polynomials P, are identical with the determinants

o+ Por  —1 |} TN 0 0
1 u+pi -1 .. 0 0
X 0 1 Oo+fal ... 0 0
) P)=| ~ '__.ﬁ’
0 0 0 skt =i
0 0 | o 1 Oy—1+ Bu-14
for k=1.

1. Proposition. Let {x;} and [1k} be any solutions of equ. (2) belonging to
u and 2 respectively. Then for any positive integer k there is

X X i k ;
(5) B = (D) (o y-1—xo 1y (A —p) 3 (— 1)+ Bx; v
i Y Ve+1 i=0
a
Xg —Xg+1| _ : - p) 3 ¢
(6) g = X-1Vot+Xo¥-1+ 2 [20+Bi(u+ 2] x; y;.
Y o Yesa i=0

PRrOOF. Let the left-hand side of (5) be M,. There is

Xi Xie1—Xj=1
Yo Vidi=Yi=i

|1 w+Bin

=X Vi 1 a+B,7 = (A—p)Bix; y;.

Ml'+Mi—l =

Multiplying each of these equations for i=0, 1, ... with (—1)" we obtain the first
of the desired results by summation. Similarly, forming N,—N,_; in (6) we get the
second formula.

Let us put i=4i=z and apply the relation §,(2)=y,(1). From (5) and (6)
follows:

k
(7) Rejiyps1 = ReJ_"oJf'—l‘F‘Z; (a;+B:Re2) |y (2)?
and
k
(8) Imj, yesr =D Imp,y_,+Imz ‘Z; (=1, |y (22

In equation (5) we may subtract on the left side the first row from the second
one; after dividing equ. (5) by (1 —u) we obtain:



14 J. Gregor

If xq»_y—x_,7,=0 forany p and A, in particular for any standard solution
P, or Q,, there is (the prime stands for d/d})
X (2) Xp+q1(2)
xk(2) Xipa(2)

From (3) we get that any two linearly independent solutions p, and ¢, of (2),
both belonging to /. satisfy identically the equation.

k
= 3 (=) gt ().

i=0

9

(10) PeGs1— QPrsr = (— 1) (Pog-1—P-190)
and in particular the standard solutions satisfy
(11) Pka+1+QkPl+l=(—])k-

The proof of the following proposition immediatelly comes from (10):

2. Proposition. Two consecutive coordinates of any solution, belonging to 1
cannot have any common zero; the same holds true for any corresponding two coordina-
tes of two independent solutions of the equation (2).

3. Proposition. Let B;=0 for i=k and let the initial conditions of equ. (2)
satisfy the condition Re yoy_,=0. Then all the zeros of the k-th coordinate of the
solution are contained in a strip parallel to the imaginary axis:

Yu(%) = 0= min (—a/f;) = Re /4, = max (—a/f)).

The proof follows from (7); for any 4 outside of the strip we have either
%+p;iRei=0 or «;+p;Re <=0 for all i=0,1,....k and therefore J,yis1+
+ Vi Pe+170.

4. Proposition. Let y,(i)=0: iy is a multiple zero of y,(2) if and only if
k—1
(12) 2 (1)Biyi(4) = 0.
i=0

ProOF. The “if statement™ follows from (9) while considering 2. Proposition
the converse is evident from (9).
The equivalence of Problems B and C can be proved:

5. Proposition. The ratio of two consecutive coordinates of the standard solution
P, of equ. (2) equals to the continued fraction (3) i.e. f,,(z2)=P,,_1(2)/Py,(2).

ProoF. Evidently fi(z)=1/(2y+ pyz). Now the proof comes by induction. Let
Si(@2)=P,_1(2)/P,(z). Take P;_,(z)/P(z)+o,+pP,z. Evidently its inverse equals
Je+1(2); we get

Ji+1(2) = P(2)/[ox+ By 2) P (2) + Py -1 (2)] = Pi(2)/ Py +1(2),

which completes the proof.
It can be verified that

0.() 1 L 2 1
Po(2) og+foz qy+piz T Gyt Bu-1z’

(13)
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When, in addition to what has been said P, (z) is considered as in formula (4),
it can be concluded that the equivalence of problems A, B, C has been established.

This paragraph can be finished with a proposition, that motivates the considera-
tions below.

6. Proposition. Let f,, be as in 5. Proposition and let D(y, I') be the comple-

ment of the strip in 3. Proposition; }*:miin[—%], I'=max [—%] Then f,, is
i : i

a function analytic and nonzero in both simply connected components of the domain

D(y,I'). Moreover, f, maps the half-planes Re z=I" and Re z<7y respectively

onto the right and left half-planes.

PrOOF. The first part is an evident consequence of 3. Proposition. The second
statement follows from equ. (7).

7. Corollary. Statements of 6. Proposition hold true for continued fractions
with terms 1/(x;+f;z), i=0, ..., m—1 in arbitrary order.

8. Corollary. The eigenvalues /, of a tridiagonal antisymmetric matrix 4= [a;],
8is1,i=—08;,;+1>0, a3, =0 for |i—k|>=1,i,k=1,2,...,n satisfy the inequality

min a; = Re }; = max a;.
1=i=n 1=i=n

I11. Functions analytic in two half-planes

The results given above, namely the 6. Proposition shows that it could be useful
to introduce a special class of analytic functions. The following notations will be
used: Let y,I" be real numbers, y=I, with cases y=—oc or I'=+e not ex-
cluded. The set of complex numbers z with Re z=a and Re z<=a will be denoted
by D% and D* respectively; let for y=I' be D=D(y, ')=D" UD", ; evidently
the strip in 3. or 6. Propositions is equal to the set CD (C for the complement).

9. Definition. Let G(y, I') denote the class of functions f with the following
properties:
1) / is a function analytic in D(y, I'),
ii) f(Z)=f(z) for z€D(y,T'),
i) AADL)c D, f(DY)cD’,
iv) f in DZ and f in D', are the analytic continuation of each other.

Note that the class G(— ==, 0) is identical with the class of positive real functions.
Some results and methods relating to this class may be used here (see [6], [7],). The
following proposition illustrates this:

10. Proposition. Let f€G(y,I'). Then the function f cannot have any zero
in the domain D(y,I') and all its zeros z, with Re zo=I" or Re z,=7y must be
simple.
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Proor. Let z,€D(y, I') and f(z,)=0. Then, in a sufficiently small neighbour-
hood of z, we have

f(2) = rFel**(a,+a,.,re’®+...), a; real,

where z=z,+re/?, a,#0, k equals to the order of the considered zero-point. The
real part of the first term here Re g, r*e/*® assumes positive as well as negative
values for k=1 and —m<¢@=n contrary to our hypothesis that fcG(y, I').
Letnow bee.g. Re zy=I (thecase Re z,=7y can be treated similarly). Then —%4

~=qo<—72t- and the above argument holds true for k=2, therefore it must be k=1.

The following simple lemma summarizes some conclusions concerning the
class G(y,I'): the lemma needs no further proof if noting that Re:z Re-:-:a-D
for any complex number z with Re z=0 and if considering 10. Proposition.

11. Lemma. The following statements are valid:

i) if y¥Y=vy and I''=TI" then G(y, NG, I'’);
i) f€G(y, I') if and only if 1/f€G(y,T);
i) f€G(y, I') if and only if for any a=0 thereisafcG(y,I'):

iv) Ier x, B be nonnegative numbers, fcG(y,,I'y), 2€G(ys, I's), then of+fgc<
€G(min (7, y5), max (I'y, I'y)).

12. Lemma. Let ¢<G(y,I') and a,=0; then for any real -Z—;

- %o Y ] o §
(14) f(2) = ;-i‘.+¢(:) EG[mm[ao, }'] ’ max[au . I']]
a,

The proof follows immediately from 11. Lemma when considering that

13. Propositon. Let y and I be finite and f€G(y, I'). Then there exist two
nondecreasing functions t, and tp, both with their even part equivalent to zero and
with

¢ (D)
F i B

<+ for i=9y,TI

and two nonnegative numbers A;,i=y,I' such that
-+ oo
dir
Ar(z—-IN)+ f z_—F_-{-ﬂ

1 = a
g b +=-ﬂ— for zeD'

A,(z—-+ f pR———

for zeD%,

+ oo
here, f means the “valeur principale”, j*= —1.
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Proor. It has been proved earlier [4], that @£G(— <=, 0) if and only if there
exists a nonnegative number u and a nondecreasing function t with its even part
equivalent to zero and satisfying

o de(t)
1422

dr(r)
_ﬁf

<+ such that ¢@(z) = uz+ f

for z¢DS.

Let us take f<G(y,I'). Since condition Re z=>I implies Re f(z)=0, it follows
for w=z—TI": Re w=0=Re f(z)=0. Therefore

-G-.m d
@)= 4rz-D+ [ =

because all other assumptions are evidently satisfied.
The citied result can be modified to be applied in case <G (0, + ==). Namely,
YeG(0, +)=

dr(r)

Y(z) = vz+ j zeD" .

with v=0 and 7t with the same properties as above. Therefore with similar reasoning
for the half-plane Re z<7 the second part of our statement holds true. It makes the
proof complete.

The functions 7, and 7, can be expressed by the Stieltjes—Perron formula [1]
or by its modification [4]. Without loss of generality it can be assumed that 7;(0)=0,
i=y,I'. Foranyreal ¢t and ¢ denoting

7,(t; ©) =%(r,(r+0) +r,-(t-0))+%(t,-(c+0)+ri(c—0))

the functions 1; are given as
A .
t(t; ¢) -xl_!1}1+ -ch Re f(x+jy)dy,
(16) o
7,(t; ) =~ lim — f Re f(x+jy)dy.

Using once more the results in [4] and iv) from 9. Definition it can be stated:
14. Lemma. Let fcG(y, f(z)
D(y,I'). Then B=A,=Ay.

The relationship between the class G(y, I') and the continued fractions of
certain type has already been shown in 12. Lemma. In this direction a stronger
result can be formulated:

=B= on any closed subset of

2D
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15. Proposition. Let fcG(y,I'), and let lf.r?., zf() =A, A, y<I' finite.

If there exists a real number o satisfying the condition

1
S +jt)

for all real values of t, then the function ¢ defined by

A('-y)=a=Re

1

e TG

belongs to the class G(y,I'). Similarly, if there exists a real number [ such that

1

Ay-TI=-p = RCm

then the function ) defined by
(@) =

belongs to the calss G(y,T).
If, moreover the number o (or —p) is the exact bound of

1
A(z—y)—B+V(2)

1 1 : ‘ Ze.
Re 7 +in ["" “"W] then lim ¢(z)=0 (lim y(2) = 0).

Proor. We shall prove the statement concerning only the function ¢. The
proof of the rest could be given almost identically. From f<G(y,I') follows that

-1—€G(?, r) and

f +
B - " dry

for all z satisfying Re z>I". Here,

Evidently, the function
7 = — lim Re —— d
"™ wa-r, f[ flx +JJ’) ]y
satisfies all the relevant conditions of 13. Proposition and therefore the function

. dtr
°@= | 755

——
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has the following properties: i) ¢ (D%)c D%, ii) ¢(2) =%— A(z—TI')—a. We may

use ii) for the analytic continuation of the function ¢. Using again the assumption
f€G(y, I'), we get for Rez<y

=+ oo
dr, N

0@ =4G-+ [ =t

dr,

=+ oo
Az-N)-a=AT-y)-a2+ [ T

The constant A(I'—y)—a is nonpositive and so is the real part of the integral for
Re z<7y; therefore ¢(D7.)c D" and together with the property i) above this
means that @€G(y, I').

: 1
Let now be a—'llrgo Rem
*

r . o
I—T 4t be made arbitrarily small for any value of z.

. By the appropriate choice of B can the

modulus of the integral
lt|]>-B

In the half-plane Re z=TI" can also the value of be made arbitrarily

[,
5 F=L'+]
small when choosing |z| large. This completes the proof.

If feG(y, ') with y=T, the above proposition can be simplified:
16. Proposition. Let feG(I', I'). Then

1

&= 2ehre@

A=0

I

where @(2)EG(I',I') and lim (P(z)z(}.

s—~oo 2

The proof proceeds in the same manner as before though it is much simpler.

Fig. 1

2.
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IV. Examples

17. Example. The driving-point impedance of a series-parallely network consist-
ing of constant resistances, inductances and capacitances as shown in Fig. 1. can be
expressed as a finite continued fraction

o — s i e
Ry'+Coz + Ry+Liz+ + Ry_1+Ly 4z
Therefore fcG(y, I'), where
¥ = min (—R{~V"""/x), I = max(—R{~V"""/x)
Cije for i even
= {L;sz for i odd.

Essentially the same functions f with different meaning of constants have been
used by MiITrA and SAGAR [5] as transfer functions of digital filters.

18. Example. For approximation purposes in network theory a set of poly-
nomials @, is being used. These polynomials satisfy the equation

1 2k —1 1 |
o250 ool

which may readily be identified with equation (2) for o«,=0, f,=2k+1, 2=1/s.
Solutions of this equation with standard initial conditions are known as Lommel
polynomials. In the network theory the so-called Bessel polynomials are used; these
satisfy the above equation and the initial conditions w_,=w,=1, which means
that w,=P,+ Q. From equ. (7) follows: all the zeros of Lommel polynomials are
simple and lie on the imaginary axis. The Bessel polynomials are stricly Hurwitz
polynomials, the ratio of the two consecutive Bessel polynomials is a positive real
function.

The Lommel and Bessel polynomials together with some of their applications
can be found in [7] in more detail.

The boundary problem (2) and the class G(y, I') of the functions are closely
related to many interesting topics which could not be dealt with, here. Some further
results on infinite continued fractions and the problem of moments will be published
later.
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