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1. The Fourier—Laguerre expansion of a function f(x)<L[0, =) is given by

(1.1) fx) ~ 3 a,LP(x)
n=0
where
(1.2) rml)["ﬂ] a, = [ ey ()LL) dy

and L!*(x) denotes the nth Laguerre polynomial of order x> —1, defined by
the generating function

(1.3) Z‘L"’(x)a) =(l-w)~* 1ewcp[ lf-w]

n=0

and the existence of the integral in (1.2) is presumed.
A sequence {Sn} is said to be summable by harmonic means if

(1.4) hm (log m)~1 2’ k+l
exists.
By the relation L!*(0) = [n-l—a] . we have

3,100 = {F@+D)™ [ ey /() 3 L0()dy =
(1.5) & L 8
= {F@+ D} [ ey fO)LEV () dy.

The Cesaro summability of the series (1.1) at the point x=0 has been studied
by KOGBETLIANTZ ([1]) and SzeGG ([4], [S]). Very recently, GuprTA ([2]) estimated
the order of the function by Cesaro means of the series (1.1) at the point x=0
after replacing the continuity condition in Szegé’s theorem ([5]) by a much lighter
condition. He established the following theorems:
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Theorem A: If

[
i) 1
(1.6) F(1) _‘f Tdy = o[log J']
and
e 1
(1.7 [ ey T3 G dy < =,
then 3

a5 (0) = o(log n),
provided k > m+—l-.

2
Theorem B: If
? /W) {
(1.8) f -—y—’dy:o logT
r
(f"’O, -1 —ps °°),
and if
- 1
a—k—=
[ ey T3 1) dy < o,
1
then
a,"(0) = o[(log n)**1],
provided that k=u+1/2.

PANDEY ([3]) investigated the harmonic summability of the series (1.1) at the
point x=0 and proved the following theorem:

5 |
Theorem C: For -géa:_; S T the series (1.1) is summable by harmonic means
at the point x=0 to the sum A, provided

(1.9) f \b(y)ldy = o(t**Y), as t—o
Poi . o B 5 |
(1.10) J ety TR e0)dy =o(m * )
and .
e 1
(1.11) [ ey F [ @()|dy = o(1),
where :

®(y) = {T'(@+ 1)} ey [f(y) —A].

2. The object of this paper is to estimate the order of the function by harmonic
means of the series (1.1) at the point x=0. All the conditions of our theorem I are
much lighter than the corresponding conditions of Pandey, but the condition (2.1)
is the same as that of Gupta while (2.2) and (2.3) together are much lighter than
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Gupta’s second condition. In theorem II we have proved an extension of theorem
I, like that of Gupta, by introducing a parameter p to arrive at a deeper insight into
the behaviour of the harmonic means.

We write
P(y) = I+ 1D} ey [f(»)-f(0)]

and establish the following theorems:

Theorem 1. For —%gag _%

1,(0)—/(0) = o(log n),
provided that

2.1 fo% dy = o[log%], as t—-0,

w fixed positive constant

n « 3 e 1
2.2) [ @Ry T3 |d(y)|dy =o(n ¥ Tlogn)
and ¥
(2.3) [ 2y 3 |@(y)|dy = o(logn), as n— <.

Theorem II. For ——=a= —%

1,(0) —£(0) = o[(log n)**1],
provided that

w @ 1 p+1
(2.4) S/ ’}J(fl)' dy = o[[log-—t—] ]
T
(@as t =0, —1 <p=<e);
® fixed positive constant
n a 3 a 1
(2.5) [ &2y T3 |d(y)|dy = o[n * 3 (logn)+1]
and o
= 1
(26) [ ey 2o dy = ol(logny*1], as n <.

3. In the proof of the theorem we shall require the order estimates and the
asymptotic properties of the Laguerre functions given by Szegé ([5], pp. 175 and 238).
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Order estimates. If « is an arbitrary real number, nad ¢ and ® are fixed
positive constants, and n— =, then

a 1
x_?’_:()(n2 ‘) if -:— =Xx=w
(3.1) L (x) =
o(n), if 0=x= %

Asymptotic property. If 2 be an arbitrary real number, w=0, 0<=n<4, then

for n—=, we have
& 1

LI nTi, w=x=@—n)n;

(3.2) max e*2x2 1 |LO(x)| ~| |

nt s x=gn,
4. ProOF OF THEOREM I. There is no loss of generality if we assume that f(0)=0.
From (1.4) and (1.5), we have

@.1) 1,(0) = (log n)~* 2 f O ()L (y)dy =

k+l

= (logn)™ >— j P(Y)LEV () dy +

k+1

+(logm)~! —— f ey f(P)LEV(y)dy =

= s " ¢ ¢ r 2+1) (4, 3.1 oy
= (logn)™! M—k-i-l [.;f + f +f f](b(v)L (»)dv+o(1)
= Il+!2+}.3+]4+0(l),

say, where w is a fixed positive constant. Using (3.1) and (2.1). we get

O(k*+Y) c/n

(42) I, = (logm Z‘ v f |[®@(y)|dy = O(n**Y)o(n=*"1logn) = o(logn).

Again, using (3.1), we find that

I, = (logn)™* 2 f @0y Tdy =

k=11 “1"”

x 5
2 O(TY £ sl l00)
SR Zﬁ 7 s

c/n

(4.3) = O(n'z‘? 3 ) f BON = o 0og )

e+l
cim y
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Now, using (3.2) and (2.2), we get

n O(k2 2 i __:..3
= dogn 328 oy i 0] dy =

1
1 k(n—k+1) o
2 1
(4.4) = O(n- ‘)o(n 2 dlogn) = o(logn).
Finally, by second part of (3.2) and (2.3), we get
5

L= dogn 3 ”‘m Jerooy iy -

k=1 M

n x 3
= O[(logn)~ 112 ‘] Z f ey 2 3|d(y)|dy =

1

G ”Jf e |0 (y)| dy =

212
¥

oo 1
(4.5) = 0(1) [ e*d(y)|y 3dy = o(logn).

Thus the theorem gets proved on account of (4.1), ..., (4.5).

5. Proor o THEOREM II. Theorem II can be proved exactly on the same lines
as Theorem 1.

I am highly grateful to Dr. D.P. Gupra for his valuable help during the
preparation of this paper.
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