The Lie derivatives and areal motion in areal space

By B. N. PRASAD (Gorakhpur)

Summary: The purpose of the present paper is to obtain the Lie derivatives
of a vector field and connection coefficient in areal space. The Lie derivative thus
obtained are used to obtain the areal motion and various commutation formulae.

1. Introduction. A space in which the fundamental metric concept i.e. an m-
dimensional area is defined by means of an m-fold integral, is called an areal space.
There are two approaches to introduce the geometrical concept of areal space. The
first approach is due to Davies ([2], [3], [4], [5]), KawaGucHI ([6], [7]), KAWAGUCHI
and KATSURADA ([8], [9]), KAwAGUCHI and TaANDAI [10] and TANDA1 ([11], [12].
[13,] [14]). In these works a simple m-vector =; , satisfying the well known
Pliicker relations has been used. The other approach is due to Runp ([17],[18])
in which the use of this m-vector is avoided. This theory is based on a systematic
exploitation of the homogeneity conditions which characterize Lagrangians of
parameter invariant integrals.

The deformation theories in Finsler and Cartan spaces were developed by
KNEBELMAN [1], DAviIes [2], Runp [16] and YANO [15]. These theories have also been
studied in an areal space by IGARASHI [19]. The geometric concept in this work is
based on the first approach of areal space. The purpose of this paper is to inves-
tigate Lie derivatives in areal spaces from the point of view of Rund’s approach.
After giving the fundamental formulae of areal spaces in § 2 we define the Lie deriva-
tive of a vector field in § 3. The section 4 is devoted for rewriting the Lie derivative
of a vector field in terms of covariant partial derivatives. In § 5 the Lie derivative
of the connection coefficient has been obtained. The various commutation formulae
involving the Lie derivative have also been obteined. In the last section the concept
of the areal motion has been introduced.

Our considerations are purely local in character. In some places the detailed
calculations have been suppressed for the sake of brevity. With regard to such
instances reference is made to Runp ([17], [18]).

Throughout this paper the Latin indices i.j, A, k... run over 1 to n while
Greek indices o, f, y ... run over | to m.

2. Fundamental formulae. Let a subspace C,, given by the equation

(2.1) =29
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be immersed in an n-dimensional differentiable manifold X, where r* denotes
a system of independent parameters in C,,. Assuming that the functions (2.1) are
of class C*, their first derivatives being denoted by

- %

o

i
The matrix II%“ is always supposed to be of rank m.

(2.2) %

We consider a Lagrange function L(x, xi) of the n+nm variables x¥, X!
satisfying the conditions

(A) The function L is of class C* in all its arguments and it is scalar with
respect to transformations of the local coordinates x* of X,.

(B) The function L is positive for all independent sets of arguments x;

(C) The integral

(2.3) I= {L{ 2t Aan &
G

over a fixed region G of C,, is invariant under the transformations of the parame-
ters 1%
(D) The nmxnm determinant

E aﬁ Le.’m
2 0% 0x}

D=dct[

is non vanishing for linearly independent x%.
The condition C is equivalent to the relation (RuNp [17]).

oL .
In view of (2.4) we have
2.5) mLEm = gif (x*, 5%)3L.%)
where

g _mPL™
0 V=7 oxoa]

From (2.5) it is evident that if L is interpreted as a measure of the area dA of an
element of an m-dimensional subspace spanned by x; at the point x/ of X, in the
sense that

2.7 dA =L )de A ...A d™

then the tensor (2.6) can be regarded as a suitable areal metric tensor. It is to be
noted that gi’f is symmetric in pairs of indices such as (x,7); (f, /). Furthermore,

g =gif.
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The connection coefficient I'}; defined by (RunD [18])

(2.8) ri;=— [Pk13+ 8{) a;ﬂ x:]
where

, oghy  ogly  ogli ol
- if — il J -— z
(2.9)a Pyj; o G’” [ ax* + ox/ ox"  Oxhoxh Sos
(2.9)b G = 5 [g ¢+, GG =0:6"

: 0*x!

(2.9)c Ja(xh, %) = ar"gﬁ :

has been used to construct the covariant partial derivative of m-linearly independent
vector fields X/(x", %) with respect to x/ and is denoted by X/, (RuND [18]).
This is given by

i _ 0Xi oXi
(2.10) chz;);r FEA T [py%3+ T X;.

The connection coefficient I'f; is not in general symmetric in &, j. Therefore,
by the process corresponding to which the covariant partial derivative (2.10) has
been obtained we can also obtain a second type of covariant partial derivative of
X! with respect to x/ and denote it by X;,;. Thus

IXi  oXi .
(2.11) Xty = g — g T+ T XL

Two curvature tensors have been obtained in [18]. The first curvature tensor is
obtained from the integrability conditions associated with the transformation law
ox' | 0*xP ox' ox*

, P
(el b= oxr Ia.f* o0 T 5% o7

of the connection coefficient. The second curvature tensor is obtained from the
commutation rules satisfied by the covariant derivatives (2.10). These curvature
tensors are

orj Jri ol Br op i
(2.13) ngj=(_{h_*f_ lfh ] [ kji u ryux 4]-%-!‘,1!'{:. i, TE;

and
iy or: 3 ore ort .
(2[4) KHU — [((,‘:,-,\ — (d\-.?:‘ r'p,.\ff] _[a_xf("‘ ()‘Cﬂ r ]+r§'prgk r rﬂ;)

respectively.

5
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3. Lie derivatives of a vector field. Let us consider an infinitesimal point trans-
formation of the form

(3.1) X = xi+oi(x)dt

where dr is an infinitesimal constant and ¢' is a deformation vector of class C?
defined over the region of X,. The transformation (3.1) carries the point x of the
subspace C,,: x'=x'(1*) to the neighbouring point X' of the subspace C,:X'=
=X(*); * being fixed and v'(x)=0 gives the boundary of C,, and C,. The

corresponding variation of the components x! is represented by

o'

(3.2) X = Xy +w.’(jdl
where

o L

Xe = oo
Thus the variations of x' and X, under (3.1) is represented in the forms
(3.3) ox! =X —xt = vi(x)dr

il d i .

(34) 0X; = X;— X, = F .\.idf.

Now let us consider a vector field X/(x" x!) defined over X,. If this vector
field is transformed to X!(x", x!) by (3.1) then
OXE gy X2 2,
dt.
28 VPt 5q 3

On the other hand of we interpret (3.1) as an infinitesimal coordinate transformation,
then neglecting higher order terms with respect to dr we have

vt 3 » 3v'

l'

(3.5) dvXi = Xi(®h, ¥ — Xi(x*, xh) =

When the vector field X;(x", x*) is transformed to ¥ (%, ') by the coordinate
transformation (3.1) then we have

(3.7) dmXi = Xi(xh, xb)— Xi(xh, 24).

Since the transformation law for the vector field X[(x", ) in X, is

(3.8) xih, ) = 25 xie, 2,
we have from (3.6)b, (3.7) and (3.8)
(3.9) X = Xf—aidr

£ ox/
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The Lie derivative of X! with respect to v’ is defined as (YANo [15], RuND [16])

dr Xl' —dm Xl‘
i1 [ £
(3.10) Z.X, = al:lTu e

Hence from (3.5), (3.9) and (3.10)

XL, XL

i HX =5 AT e

The Lie derivative of covariant vector field Yf(x", %) can be obtained in a similar
manner. This is given by

oYy ,  oYF o ol
§= L - -f -
(3.12) M § prak - 9% 9w +Y; i 5
For a scalar S(x* x!) we have
i)S 3 a5 o' i
(3.13) 2,5 = +93 gl -

The theorems (3.1) and (3.2) given below are direct consequences of equations (3.11),
(3.12), (3.13) and the relation
S = Xt' Y"l.
Theorem (3.1). The Lie derivative of a constant scalar function is zero.

Theorem (3.2). The Lie derivative satisfies the Leibnitz rule i.e.
(3.14) Z,(X:YP) = XUZLYH)+H(L XYY

The Lie derivative of the partial derivative of X! with respect to X, can be
obtained from the first principle and we have

& ax‘ _ex L exi
= oot U TRk oxL oxd P

t)X,“' ov' +()X,‘ "

oxL oxh " oxh ox!

This proves the following:

(3.15)

) .
= o (£.XD.

2 0 .
Theorem (3.3). The operations ¥, and Fr are commutative.

4. Lie derivative of a vector field in terms of covariant partial derivatives. Since
the transformation vector v depends only on x' we have from (2.10) and (2.11)

ot

‘{"rfﬂ[" (b) villj dJ

@.1) (a) ¢ + ;0.

'
Ij_()J
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Substituting (2.10), (2.11), (4.1)a and (4.1)b in (3.11) we get (after some simplification)

(4.2) X = X+ (3} vl ;% — X v}
or

i
(4.3) Z.X; = X| kv‘"‘ﬂX* vl %l — Xivj;.

Generalizing this we may express the Lie derivative of an arbitrary tensor
ﬁijjj‘,ﬂ:jjjf: of X, in the following two forms

bl o g iy B
L & oo Sl Al b 50 1|k+b|;x:a 1[T;' A O

&, Jyo
44
( ) Tl iy l‘flrl fﬂl Tl . - 31 .................... By ‘k‘
‘Z ‘erl J LI“+Z @y - r.ﬂ Ju ],k-,uol J:L“Ju'
[ ﬂ', * ey | ol
LT =t oy "s [Tx‘ iy ey
(4.5)

yeecdy 1 ki, i.By...By Jy 05 e IS o i amsnnanspesinis Py
P B L .?...,,,-:...,-,l|k+ZT,‘ B S Y IR Y 7
v

In particular, the Lie derivative of the metric tensor is given by

(4.6) Z,g1 = gihok+2C30 of X0 —gth ok —gi o}
or
4.7 -?vg:";p = gf_}’”kv*+2c,ﬂfvl,pt”—ng Uk —S’kpl’
where
aty = 1 ¢!
2 0

¥

From (4.4) and (4.5) it is evident that
Theorem (4.1). The Lie derivative of a tensor is a tensor of the same order.

5. The Lie derivative of connection coefficient. The Lie derivative of I'; cannot
be found directly from (4.4) or (4.5) as this is not a tensor. We shall, however, eval-
uate it from the first principle.

By the definition we have

opi — |9Tki 1, Ok OV
@D dr”‘[ax' R e ]""
Substituting (3.6)a and (3.6)b in (2.12) we get (after some simplification)
m i Fi (ch = ; ; %' o' o'
d r'u':rkj(-\"'-x:]—rkj(-’f*,x:)=‘-[ax,,axJ 3x’r d"r”-'_ - | dt.

3.2)
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Using the definition of Lie derivative and equations (5.1), (5.2) we have

EN

To express the Lie derivative of I'}; in terms of curvature tensor of X, we consider
expression for vf; noting that ¢ is independent of x/. Therefore,

ory; o' . : 02t o' ' o'

ax! oxP e ox*ox’  ox' r i+ ox~ Fij+ L

(5.3) .‘!’F,U ()j

+

ori, or Py
vfkif = Uh _ﬁ- d Th r';'u A +r‘ rfk] Jl’d:h
e 9 P o
(] U' (]
~Thlud+ g+ T o7 ’+r"dx"

A simple calculation based on the equations (2.13), (5.3) and (5.4) vields

: : Ty 2
(5.5 &,I; = vly;+ Kij "+ t?)x:" v], X2 + Tl + T, vl
A
where
(5.6) Tj = Mu—Ti,

is the torsion tensor associated with the coefficient I'jy. From (5.5) it is evident that

Theorem (5.1). The Lie derivative of the connection coefficient T'y; is a mixed
tensor of third order.

To find the commutation formulae involving the Lie derivative and covariant
partial derivative of the type (2.10) we have from (2.10) and (3.11)

d

(5.7) (LX) = FPl — (2, X')+ (.‘Z’ XHrhxp + ri(Z,xb,
ox! aX:, o’ ot L
i elJ elJ I i

(5.8) Z(X) = > v+ PR F X — 2 ,X”-i——axj 1.

Substituting from (3.11) and (2.10) in (5.7) and (5.8) and simplifing we get
(after the rearrangement of terms)

i
(5.9) (ZXDy—2,(Xi) = - XL +550 ’9 s (2" r,

If we consider the covariant partial derivative of the type (2.11) then

XI
(5.10) (LX) —Z( X)) = Xf(_g’rj}+g )

Hence we have

(Z,I",)x5.

Theorem (5.2). The operations ¥, and covariant partial derivative are not com-
mutative and the relations (5.9) and (5.10) hold good.
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Next we consider the covariant partial derivative of %, I}, with respect to x/

0 :
(Z.Th)j = 3 a7 (< I)—- (.Q”f )0 %8 +(&, T ) Ty — (L. T ) Ty — (L, Ti) Ty

(5.11)

Substituting in this expression from (5.3), simplifying and rearranging the terms we
obtain

o |or o
(5.12) {.Sf’,,.ff.k)” ) [a\:k 85:? bjX i+rjarhk]v

d |ory ori

tog (a0 o T¥+ Tl

% o

o' . ovf|ory, ol
[_ax;k — ‘:* ri; *+r;,r§,,‘]+

ori oarL .. . o (ori, ori, . .
ox* 3.7; A (d.v':z I %3+ Ty I'f.,,]+ ox” [ ax: %k I35+ ‘ral.] +
+ o7 (owe ~om, Theti+Talla]+
([”—h &1 8."” dr bj ()b m 0* Ul 60‘ “ i)b" ' E !
o3 A [ o " T 5% oxn Pt oo ow Lt g Tt g T

— I (2, Tl + terms which are symmetric in j and h.

In this relation we interchange the indices j, # and subtract the result from (5.12).
This process gives the following commutation formulae.

(5.13)

ar;
(L) — (Ll = LK +T,,,($I‘k)+ o

()r ;k

(LT 8~ (LT ¥,

where we have used the relation (2.14), (5.6) and (5.3).
In a similar way we consider the covariant partial derivative (of %,I},) of the
type (2.11) and obtain the following commutation rule

(5.14)
i i . i 1 d kh 1 b (H—};] 1y b
(L. Tk j— (ZoTi)in = Lo Rinj + Thi(LTh) + —o pr (Z ) X; —W(—(ﬁrﬁa}n
where :

t}ri,, ()FM r:

» . o} )} ; .
(5.15) Ri’”':[}k_f‘ o ] [r ki € ”F,.,, + I Tw—TinTkj-

i i

It can be easily verified that for m=1 the space X, is a Finsler space and the
torsion tensor 7;; vanishes. In this case the connection coefficient I'}; given by
(2.8) reduces to Berwald’s connection ciefficient G{; (RUND [16] page 79), the curva-
ture tensors K”,, KW and Rj;; given by (2.13), (2.14) and (5.15) reduce to Ber-
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wald’s curvature tensor Hj,; (RUND [16] page 125) and each of the covariant partial
derivatives (2.10), (2.11) will reduce to the Berwald’s covariant partial derivative
(RUND [16] page 80). The expression (5.5) in this particular case will take the form

(5.16) Z,Gl; = Vigy iy + Hipt* + ‘Z)G” oL x?

which is the Lie derivative of Berwald’s connection coefficient already obtained
(RuUND [16] page 220).
Also in this particular case the expressions (5.13) and (5.14) will take the form

aa,,,‘ dGn
%!

which has already been obtained (Yano [15] page 189, Prasad [20], [21]).

6. Areal motion. In this section we introduce the concept of an areal motion.
When the fundamental metric funtion L(x", x') satisfies the relation

(6.1) L 2=
the transformation (3.1) does not change the area

A= [ L XDd* A ... A di™

(&, Gh) x5,

(5.17) (—q’;-Git)u)_(—(ﬁ;Gj'k)m &, Hipj+—= (&, Gy x xb—

of an m-dimensional subspace. On account of this reason we give the following
definition:

Definition (6.1): The transformation given by (3.1) is called an areal motion if
Z,L(x*, x%)=0.

Theorem (6.1). In order that the space admits an areal motion it is necessary
and sufficient that the Lie derivative of the metric tensor gif vanishes.

ProOOF. The necessary part follows from theorem (3.3) and the equations (6.1),
(2.6).

The sufficient part follows from theorems (3.1), (3.2), the equation (2.5) and the
fact that %, x.=0.

Applying the formulae (5.9) and (5.10) to the areal metric tensor gf'f we have

(6.2) (Z.81)— Z.(&if) = gif (L.Th) +gif (L. Th)+ 2 (L. ) 8
6.3) (L8 )u— L&) = &if (L) + & (L. M)+ 2 (L, Thp) %5

The expressions (6.2) and (6.3) are too complicated to make further study possible.
We, therefore, assume that the connection coefficient I'f; and the metric tensor
gif satisfies the conditions

(6.4)b Z,(8if) =0
(6.4)c M} = det | Shgil + 3 g2f + 2cifr 3| = 0.
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It should be noted that there cannot in general exist a symmetric connection
for which the covariant derivative of the metric tensor vanish (Runp [18]). However,
we can choose the vector field ¢'(x) such that %, (g¥,)=0.

In order to discuss the nature of the areal motion we give the following definition
(PrASAD [20], [21]).

Definition (6.2): The transformation given by (3.1) is called an affine motion
if £,ri;=0.

Definition (6.3): The areal space X, is said to admit a curvature collineation
if there exist a vector v'(x) satisfying the condition

(6'5) '?UK-:PU == 0

The condition (6.4)a implies that the covariant partial derivative (2.10) and
(2.11) are equivalent and

(6-6) Klfaj = k*tfj = Riu-

Hence under the conditions (6.4)a and (6.4)b the equations (6.2) and (6.3) will reduce
to

6.7) (Z. &t = (Oigif + 3} gif + 2 X (&, T

The theorem (6.1) and relation (6.7) yield

Theorem (6.2). Under the conditions (6.4)a, (6.4)b and (6.4)c every areal motion
is affine motion.

From equations (5.13) and (6.6) we have

Theorem (6.3). Every affine motion is a curvature collineation.

From theorems (6.2) and (6.3) we obtain

Theorem (6.4). Every areal motion is a curvature collineation under the conditions

(6.4)a, (6.4)b and (6.4)c.
The author is thankful to Dr. U. P. SINGH for his valuble suggestions in prepa-
ration of this paper.
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