A sine functional equation in Banach algebras

By B. NAGY (Budapest)

The functional equation f(x+y+a)—flx—y+a)=2f(x)f(y), where «£R
(the field of real numbers) was essentially first considered by E. B. vaN VLECK (cf. [1],
[11]) for the case when f: R—R is continuous. The aim of this paper is to investigate
this equation in the cases when f: R—~B, where B is a complex algebra, or Banach
algebra, or the algebra of the bounded linear operators in a complex Banach space X.
In the two latter cases measurability conditions will be imposed, which also ensure
continuity of the solutions.

If B is a complex algebra, then the general solution is given in terms of its odd
component, which on the other hand, is in connection with a type of exponential
function. In the case of a complex Banach algebra B the concept of the generator
element is defined and characterized, and the strongly measurable solutions are
given in terms of the generator.

If B=B(X) is the algebra of bounded linear operators in a complex Banach
space X, then essentially continuity of the solutions in the strong operator topology
is assumed and similar problems are investigated. Theorem 8 deals with the case
when X=H is a Hilbert space. Note that sometimes we use the terminology of [6]
without explicitly mentioning this.

1. The equation in algebras and Banach algebras

Definition. Let R be the real field, B an algebra over the complex field, S: R—~B
a map, «€R. We shall say that S< V(a), if for every (¢, n)€ RX R we have

(1) SE+n+2)—=S(E—n+a) = 25()SH)

We say that S€ ¥V, (x) if S is odd and satisfies (1).
Fundamental is in what follows the following

Theorem 1. If ScV, (a), then S(—a)=j is idempotent, and jS(&)= S(&)j=S(&)
holds for every €R. Putting C(&)=S(E—a), C(&) satisfies the equation C(E+n)+
+C(E—n)=2C(E)C(y) (d Alembert’s equation), and E(E)=S(E—a)+i S(E) satis-

fies the equations
@ E@€+n) = EQE®m
E(+a) = —iE({)
Conversely, if E: R—B satisfies (2), then S(C):% {E@)—E(—-O)}eV,().
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ProOOF. 1. S is odd, therefore S(0)=0. Setting =0 in (1), we have
(3) Sih+a) = S(—=n+a)

and hence

. | " & v
Sm)S(:)=5{S(§+n+1)—5(n—~:+z)]=S(c)S(n) for & néR.

Since S is odd, putting {=—a in (1), we obtain that S(n)=S(—2)S(y) (4€R)
and S(—x)=/ is idempotent. For the same reason (3) vields

(4) SE+a)=—S(E—a) (S€R)
and, considering (1) for ({—a, n—2)€ RX R, we conclude that
(5) SE+n—a)+S(E—n—a) =25 —a)S(n—a)

that i1s C(£)=S(¢—=z) satisfies d’Alembert’s equation. In view of the definition
of E
E(Q)E@m) = CECm)—SQQSH)+i{SECHm) +CE)Sm)-

Here we have C(&)C(n)—S(&)S(n)=C)Cn)—CE+x)Cln+a)=1/2{C(E+n)+
+C(E—n)—C(E+n+22)—C(E—n)}=C(¢+n) according to (4) and (5). Similarly,
by (1) and (4) we get

SECM+CE)Sh) = SESh—2)+S(E—2)S(n) =
= '%‘{S(~f+'f)—5(~f—'1+2-1)+S(§+n)—5(§—q)} = S(E+n)

and thus E(Z)E(q)=E(Z+n). Moreover, by (4)
E(¢+a) = C({+a)+iS(E+a) = S(E)—iC(E) = —iE(Q).
2. To prove the converse we observe that E(—ax)=iE(¢) and
SE+n+a)-=SE—n+a)=

& 5!; {EG+n+0)—E(-{—n—a)—EC—n+a)+E(-{+n—a)} =
= 2—1, {(—iE@E+n) —iE(—E—n)+iE@E —n)+iE(—E+n)} = 25(2) S(n).

Since S obviously is odd, S¢€V,(x), and the proof is complete.

Definition. The functions C, E occurring in Theorem 1 will be called the func-
tions C, E associated with S¢ V().

Remark. If B, is a subalgebra of B with unit v, S:R—~B,, S¢V(2), and for
some &,€R there exists the inverse of S(Z,) in B, (denoted by S().'), then
S€Vy(2). Indeed, by (1) we have for every n€R

S(C) S(—n) = —S(S) S(m)
and, multiplying by S(&,); ', we obtain that S is odd.
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Theorem 2. If ScV(x), S.(&)=1/2{S(E)+S(=3)}, So(&)=1/2{S(E)—S(=3)),
then S,cVy(x) and S,()=a Sy((+x)+a—aj, where a=S,(22), j=S)(—a) is
idempotent, and a*=0, ja=0. Conversely, if S,€Vy(2), j=S,(—=) and there
exists an a<B such that a*=0, ja=0, then S() defined by Sy(&)+aS,(¢+a)+
+a—aj belongs to V(z) and S, is the odd part of S.

Proor. 1. If S€V(x), then S()S(—n)=—S()S(y) for &, n<R, and hence

(6) S()S.(m) =0 (S neR).
Putting the pair (—¢, n) in (6) we get
(6a) S.()S.(m=0

g (&, nER)
(6b) 56(S)Se(n) =0
With {=—a in (1) we obtain

1 .

(7 S(=x) S = 3 {St—S(=m} = Se(n)
while (1) becomes because of (6)
(8) SE+n+a)—SE—n+a) = 25(Z) So(n)
Multiplying (8) by S(—=) from the left, we have by (7)
9 So(E+n+a)—Sp(E—n+a) = 25)(5) So(n)
and thus S,¢ V,(z). Using (8) again, we obtain
[]0) Se{é +'?+1)_Se(5 _”+z) = 250(‘:}51](")

Considering (10) for the pair ({—=, n) implies

(1) S(C=2)Se(n) = -;- {Se(G+m =S (E—m} = Se(n—20)S,(&) (£, nER)

for the middle part is symmetric. From (9) it follows that S,(—x)=j is idempotent,
and (11) for the pair (&+2 —a) gives that

(12) Se(£) -] = Se(22) Sy (S +2).
Then for every ¢.neR if follows that
(13) Se(©)So(m) = Sc()+j+ So(n) = S.(22) Sy (& +2) S ().

Putting n=<_—= in (10) and making use of (13) gives
Se(28) = S.(22)+25,(22) Sy (& +2) Sy (E —2)
and by (9) we get
S.(28) = S.(22)+ 5.(22) {Sy(2E +2) — Sy (32).

From (4) it can be seen that S, is periodic with period 4|x|, thus with the notation
of the theorem we have S.({)=a+a{S,({+a)—j}. Moreover, from (6a) and (6b).
we see that «*=0, ja=0.
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2. If Sy€Vy(x) and S() is of the asserted form, then with the notation S,({)=
=5(&)—8,(¢) we obtain that S,(¢)S.(n)=0 (&, n€R), for ja=0. Similarly,
‘since a*=0, it follows that S,(¢)-S,(n)={a+a[Sy(E+a)j—j]} {a+a[S,(n+a)—
—j]}=0. Thus, using (9), we establish that 25(&)S(n)=2{a+a[S,({+ax)—j]+
+80(8)} So(n) =2+ 5,(¢) So(m) +2aS, (& +2)Sy () +2aS,(n) — 2ajS, (n) =S, (¢ +n+ 1) —
— So(E—n+a)+a {Sy(E+n+20)—So(E—n+22)}=S(E+n+a)—S(E—n+a), hence
SeV(x). The last statement is obvious, because in view of S,€ V() So(—¢&+a)=
= 8§y(£+a) holds.

Corollary 1. If ScV(x) and S(0)=0, then S<V,(x).

ProoF. Using the notations of the preceding theorem S,€ V,y(«), and (4) implies
that Sy(x)= —j. By Theorem 2, 0=S(0)=a—2aj, thus aS,(§)=2ajS,($)=2a8,(S),
hence aS,(¢)=0 for E€R. Therefore S.({)=a—aj=a/2 for ¢€R. However,
S.(0)=0 by assumption, thus S,(£)=0 for {€R, and S=S,€ V().

Corollary 2. S€V(0) implies S(¢)=a for {€R, where a*=0. Conversely,
if S(¢)=a for €R with a*=0, then S¢V(0).

ProoOF. If S€V(0), then Theorem 2 and (4) imply S,(&)= — S,(&), S,(&)=0
for £€R. Hence j=0, and S(¢)=a with @*=0. The converse is trivial.
In view of this corollary we shall always assume that 0.

Example. Let X be a Banach space, B=B(X) the Banach algebra of the
bounded linear operators in X, J€B an idempotent (projection) operator, J=0,
J=1I. Then there exists an A€ B such that A*=0, J4=0, AJ=0.

Indeed, denoting the range of 7¢B by R(T), we have X=R(J)BR(I-J),
and there exist elements wcR(/—J), u=0 and w*€X™ such that u*(u)=0,
and u*{R(J)}£0. For x€X set Ax=u"(x)-u, then AcB, R(A)cR(I-J),
thus J4=0. On the other hand, AJx=u"(Jx)-u£0, and A*x=A{u*(x)-u}=
=u*(x)-u*(u)-u=0 for every xcX, thus A fulfils the stated requirements.

Definition. We shall say that S¢ V(x, B, j, a) if S€V(x), B isacomplex Banach
algebra, S,(—a)=j, S.(2a)=a and S is strongly measurable. We shall omit any
of the variables of V if it is not emphasized.

Theorem 3. If ScV(x, B,j..), then there exist one and only one g,cjBj and
exactly one a<B such that S({)=sin (g,)—a cos (Eg,) +a—aj, where by definition

. . N (4 il g ™
sin (£g,) -“Zu(—l) Gna DT cos (£gy) -'H-ng; (=1 G

Here a=S,(22), a®*=0, ja=0, S is strongly differentiable at each point E€R and
S’(&)=g, cos ({go) +ag, sin ({gy). Moreover, S’(0)=S;(0)=g,.

Proor. Under the conditions of the theorem S,€ V(x, B, j,.) and, by Theorem 1,
the function E associated with S, is also strongly measurable, and E(0)=j. Then
by [6], 9.4. there exists exactly one g€jBj such that

E© =i+ 38 — exp e,
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and this series converges absolutely for <R. Writing g,= —ig<jBj, we obtain
that S,(&)=sin (g,), and because of S;(0)=g, the uniqueness of g, is proved.
Taking into account (4) and Theorem 1, we get Sy (E+a)=—S5,(—2)=—C({),
where C is the function associated with S, according to Theorem 1. But then

i, . 1 & v 2
So(é+a) = —5{E(c)+E(ﬂ = s {exp (ig,) +exp (—igy)} = —cos (Egy),

and the remaining assertions are contained in Theorem 2.

Corollary (cf. [7], [2]). If B is a complex Banach-algebra, C: R—~ B is a strongly
measurable function satisfying C(S+n)+C(E—n)=2C({)C(y), and if for some
2€R (x#0) C(x)=0 holds, then C(0)=; is idempotent and there exists a (not

o n
unique) b<jBj such that C(&)=cos (¢b)=j+ > (1) gi;, g
n=1

ProoF. From the assumptions we obtain that C({+x)=—C(—a) for E<R.
Putting the pair ({+«,n+2) in d’Alembert’s equation, the preceding relation
gives

(14) C(E+n+2a)—C(E—n+2a) = 2C(E+a)C(n+a).

If we set S(&)=C(¢+2), then S(0)=0 and (14) imply that S< V,(x). and clearly,
S is strongly measurable. Thus, as in Theorem 3, for the function E associated

with § we get E({)—j+ S' (¢b )u

bejBj. From this it follows that t’(g)—l/Z{E(é)+E( &)}=cos (&b), while C(¢)=
=cos {&(—b)} is a trivial different representation.

Definition. If S<V(a, B, ., .), then j—f(O) will be called the generator element
b

of §.
A characterization of the genarator elements is given in the following

, where j=C(0)=S(—2) is idempotent and

Theorem 4. Let B be a complex Banach algebra, j<B idempotent, o€ R.
20€jBj is the generator element of some S<V(x, B,j,.) if and only if go= 2 3]s,
=1

where i,=-%—;—(4k,-l) (kg are different integers for B=1,2,....n), js€jBj are

idempotents,
n
’2; Js=Js JpJy = Op;Js
(y=1.2,...,n). In this case we have
n n
So($) =ﬂ21 Jpesin(Zg-8), Sy(S+a) = —32: Jgc0s (/g Q).

6D
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ProoF. According to the preceding theorems g,<jBj is the generator element
of some SV (x; B,j,.) if and only if E(&)=S,(¢—a)+iS,(¢)=exp (ig,), where
exp denotes the exponential function in jBj, and E(x)=exp (iag,)=—ij. The
latter is the case exactly when iag,=log (—ij), where log denotes logarithm in

JBj. A value of this is clearly log™ (—ij)= —i%j, and the spectrum of —r'%-jeij
is {—i%}, which is incongruent (mod 2zi) (see [5], p. 54.). Hence every
n

logarithm of —ij is of the following form (see loc. cit.) : log (—i-j)=—i 3 Jj+
+i2n i‘ kg+jg, where kg (B=1,2, ..., n) are different integers, j;€jBj, jy *j, =0, Js
f=1

(B, y=1,2,...,n), 3 js=j. Therefore we obtain that
=1
s { S htd Sk ‘}—- 3 (@ky—1)j
8 = b = }ﬁ Pt ﬂjﬂ' L 20 e '] _fﬁo
Because of the properties of the elements j, j; we have in this case
E(C) =exp [*'Cv ‘Z; lpg =’.q exp(i+¢+2g+Jjp) =’]Z {.f"'jp “[exp ("C'f'-p)—]}} -
=Jj+ ’Zl Jglexp (iS25)—1] =,;; Jp €xp (i2p),

and hence S,({)= 3 jj sin(4+&). For the function C associated with S, So(¢+a)=
B=1

=—S8,((—2)=—C(¢) holds and thus the remaining statement is also proved.

2. The equation in the algebra B(X).

Let X be a complex Banach space and B(X) the algebra of the bounded linear
operators in X,

Definition. We say that SeV(x, B(X),J,A) if S:R—B(X) satisfies (1),
So(—ax)=J is a projection operator, S,(2x)=A4 and S is a strongly measurable
operator function. Moreover, we say that S< V,(«, B(X), J) if, in addition, S is odd
(then necessarily A4 =0).

Clearly, if S¢V(x, B(X),J, A), then S, and the function E associated with
S, are also strongly measurable, hence E and S are continuous in the strong opera-
tor topology of B(X).
Definition. If S¢V(a, B(X), J, A), then we set S’(i)x:lin;
n-

if this limit exists in the strong topology of X, and then we write x<D{S’({)}.
We denote S’(0) by Gy=G,(S), and call it the genereator operator of S.

SE+m-S@
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Lemma 1. If S€V,(a, B(X), J) and x<D(G,), then for every {<R we have
xeD{S'(§)}, S(§)xeD(Gy) and

S'(@)x = S(E—20)Gox = GoS(E—2)x.

Proor. By (1) and the strong continuity of S, we obtain for x¢D(G,), (<R
that there exists

19 5@x=lin SED=5Q  _ iy SETDSWD _ 5c_g6,5

n~0 n/2
On the other hand, for x€D(G,)

SE+m—-SE-n)  _
2n i

Gy S(—a)x = limlS(n)S(é—x)x = lim
n—-0 n n—-0

— lim L. S€HM—S©O—{SC-n—-S©)}

n-0 2 n

= 5'()x

exists because of (15), and the proof is complete.
As a corollary we get that x€ D(G,) implies Gox=S(—2)G,x, hence R(G,)C
cR{S(—x)}=R{).

Lemma 2. If S€V(x, B(X),J, A) and S, is its odd part, then Gy(S)=G,(S,).
PrOOF. If x€D{G,(S)}, then

Go(S)x = lim &) » _ 1y SO=SCO , _
o - §~0 28

— 1im SO =SO—{S(=9)—- SO} |
0 2¢

also exists, and G,(S,) x=G,(S)x. Conversely, if x€D{G,y(S,)}. then by Lemma 1
xeD{Ss(x)} and Sg(x)x=0. Applying Theorem 2, we obtain that

im Se @ =50 . _ 4jim SoE+D %@  _ o
-0 g &~0
and thus exists
_ SO-SO) . S@  _
Go(8)x = lim === x = lim =222 x = Gy(S))x,

which ends the proof.

Suppose S€V(x, B(X), J, A), S, is its odd part and C. E are the functions
associated with S, as in Theorem 1. Introduce the following notations: G=E"(0),
G;=C’(0) and G,=C"(0), where the domains of the right sides consist of exactly
those x€X, for which the respective derivatives exist in the strong topology of X.
We define the operators C’(¢) ((€R) in a similar manner.

Lemma 3. If ScV(x, B(X),J, A), then for every €R we have D(Gy)C
cD{C’(5)), and xcD(G,) implies G,x=0. Moreover, G=iG, and G,= —Gj.

6.
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ProOOF. By Lemmas 1 and 2, x€D(G,) implies C’(&)x=S8;(¢—a)x=—S5,(¢)G,x
for £€R. Moreover, G,=C’(0)=Sy(—=) and, in view of (3) and (4), S,(n—a)=
=8,(—n—=z). Hence for xcD(G,) we get

So(=a+m)=Se(=2)  _

G,x = lim
n=0 n
 lim 1/2 {So(—a+l?)+s;1?(—-°!"’I)}—Su(—a) S
q—i-

If xéD(G,), then x€D(G,) and exists

Gx = llm {Mx.'_:so_nw.x} — fan‘

n-=0 q

while x<D(G) implies

% =t lim_—‘{E(q)-E(O) x+ i Ll x} = —l— Gx,
-0 2 n =1 i
hence G = iG,.
To prove the last assertion suppose x<D(G,), n=0. Then
C—(q")-:ﬁl-x = —-'Sl’-(%(—;ﬁ, thus D(Gj) <= D(G,).

and x€D(G}) implies Gyx=—Gjx. On the other hand, putting X,=JX, X,=
=(I-J)X, X is the direct sum of X; and X,. From Theorem 1 it follows that
G,, G and G, are identically 0 on X,, while on X; E({) is a strongly con-
tinuous group of operators and C({) a strongly continuous cosine operator
function (cf. [10]) with C(0)=J, the identical operator in X,. If G,, G, G, de-
note the restrictions of the respective operators to X,, then there exists a v=0
such that z=v implies z2€9(G,), z€0(G) N o(—G), where ¢ denotes the resolvent
set. Hence also z2€¢(G?), thus

2J—G)D(G?) = X, = (22J—G4)D(G.)

the operators on both sides being one-to- one mappings. Therefore we get D(G,) =
=D(G*, whence D(G})=D(G*=D(G,) and G,=—Gj.
Remark. In the proof we employed an idea of M. Sova [10].
Corollary. D(G,) is dense in X and G, is a closed operator. D(G,) =X, i.e.
G, is bounded if and only if S(<) is continuous in the uniform operator topology.
B
Lemma 4. If ScV(x, B(X),J).y€X and A, BER, then x,g(y)= fS(r;)ydq

A
belongs to D(G,) and Gyx, g(¥)={S(B+x)—S(4A+a)}y. Moreover, R(J)=R(G,).
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Proor. If E is the group of operators associated with S, then we have
B l B l B g -B
,.f S(n)ydn = EAf {E(m)—E(—n)}ydn = E{Af E(n)ydn+ ,,f E(n)y dn}.
But then, according to a well-known result of N. DUNFORD, there exists
. 1
Goxa,p(y) = —iGx4,5(y) = — 5 {E(B)—E(A)+ E(—B)—E(- A)}y =

= —{C(B)—C(A)}y = {S(B+u)—S(A+a)}y

where C is the function associated with S, occurring in Theorem 1. Hence with
B=-2a, A=-—o for every yeX we get S(—a)y=Gox_. -2(¥), R(J)=
=R{S(—2)}cR(G,). The converse inclusion was established after Lemma 1.

Corollary. S<V,y(a, B(X),J) is continuous in the uniform operator topology
if and only if D(G})=D(G,).

Proor. If D(G§)=D(G,), then with the notation of Lemma 3, X;=R(G,)C
< D(G,), thus D(Gy)=X and G, is bounded. The converse is evident.

Remark 1. Suppose S€ Vy(x, B(X), J). It can be seen from the proof of Lemma
3 that there is no essential restriction in assuming that J=S(—a)=/7. To simplify
the statements, this assumption will often be made in what follows.

Remark 2. ScV(x, B(X),J. A) and S(—a2)=1 hold if and only if S€ ¥;(a, B(X), 1).
Indeed, from Theorem 2 we see that I=S,(—a)+S.(—a)=J+A4—AJ implies 0=
=(A—AJ)*=1I-J, henceJ=1Iand A=JA=0. Consequently, we have S€ ¥;(, B(X), 1),
while the converse is evident.

Theorem 5. If ScVy(«, B(X),I) and 7, denotes %(4;3—1) where n is

integer, then the spectrum of G, is entirely point spectrum, and Q #o(Gy)C
c{y.sn=0, £1, £2,...}. Moreover, there exist projection operators P,
(n=0,+1,42....) in X, for which P,X={x€D(G,); Gyx=y,x}{0} if and only if y,

is an eigenvalue of G,. P, P,=0,P,. and for xé X S({)x=(C, 1)~ 2> sin(y,¢)P,x,

x=(C,1)— 3’ P,x. For x¢D(G,) we have Gyx=(C,1)— Z’m’ YuPux (here

(C, 1)— 23 denotes Cesaro sum of the first order, and > indicates that summation
is extended only for those n, for which y,60(Gy)). S is continuous in the uniform
operator topology if and only if the number of the eigenvalues of G, is finite, and

then _
S@) =2 'sin(3,8): Py, Go=2 '8Py, I=7'P,.
n n n

= — oo

Proor. If E is the group of operators associated with S, then E(a)= —il,
and the eigenvalue —i is the unique element of ¢ {E(x)}. If G is the generator
operator of E, then according to the theorems of [6], 16.7. Q #Po(G)Co(G)C
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c{B,; n=0, £1, £2, ...}, where f,=iy,, and thus Lemma 3 implies the statements
concerning ¢(G,) except P,(G,)=0a(G,). However, this will follow from Theorem
6, which implies that all the singularities of the resolvent of G, are poles, hence
eigenvalues of G,.

Modifying the ideas in the proof of [6], Theorem 16.7.2., we get that the opera-

tors U(t)=ei2_‘rE(r) (t€R) in X form a strongly continuous group with period
x . _2_!' 2

|x|. For x£X,n=0, £1, £2,... we define P,,x:% fe_‘ = U(tr)xdr. Then

0
P,cB(X), P,P,=0,P,, and P ,X={xeD(G):Gx=p,x}={xED(G,):Gyx=7,x}.
P,X={0} if and only if y, is an eigenvalue of G,, and the strong continuity
of U(&)x implies for xcX

i 2=

U@Ex=(C.1)— 3 & = P,x,

n=—eo

and thus

(16) E@x=(C 1)— 3 emiP,x,

n=—oo

hence S(&)x=(C,1)— J’ sin(p,&)P,x. (16) with =0 gives

a7 x=(C,1)- 3 P,x.

P, and U(¢) commute, hence so do P, and S(¢). Therefore x<D(G,) implies
P,xeD(G,) and P,Gyx=G,P,x=7y,P,x. Thus, by (17), we have for xcD(G,)

Gox =(C,1)= 3’ P,Gox=(C, 1)~ 3" 7,P,x.

If S is continuous in the uniform operator topology, then the spectral radius
of G,, r(Gy)=|G,l, hence the number of the eigenvalues of G, is finite. Conver-
sely, if Po(G,) is finite, then S()x reduces to a finite sum, and for every xcX
we have x=23"P,x, S({)x=_2"sin (y,¢)P,x, and

S(E)x
¢

hence D(G,)=X and S is continuous in the uniform operator topology. Thus the
proof is complete,
A characterization of the generator operator G, is given in the following

Theorem 6. Let G, be a closed operator in X with dense domain D(G,). G,
is the generator of some S€V,(x, B(X),I) (x=0) if and only if there exists a real
number M=1 such that 1° and 2° hold:

= l‘i_['n Z'SI_n(g.’.&é_)P“x = 2'}»”an,

Gox - lim
=0 =0
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1° (I+2Gy)™" is a bounded operator and |(I+:zG,)~"|=M for every purely
imaginary z and for n=1, 2, ...

2° the function F(z)=(e " —i)R(z; G,) {z€0(Gy)} has an analytical contin-
uation H(z) on the whole complex plane for which | H(z)| =Ke'*'™:! (here R denotes
the resolvent operator, K=0).

In this case the function S(&) generated by G, is determined uniquely, and
IS@OI=M for SER. :

Remark. A similar theorem has been proved in [9] (Teor. 2.). However, the proof
of the sufficiency is not complete there and, in fact, can not dispense with a bounded-
ness condition similar to that in 2°, In addition, our proof seems to be simpler.

PROOF. 1. Suppose S€V,(x, B(X), I), G, is its generator, E is the group of
operators associated with S and G=iG,.

Then 1° follows from Lemma 3 and [6], Theor. 12.3.2. Put z; = % (4k—1)

(k integer), and for z#z,, x€X U(z)x=(1+ie‘”)‘1f e ¥ E(¢)xd¢. From E(x)=

1]
= —il it follows for xé D(G) that U(z)Gx=zU(z)x—x, and by the denseness of
D(G) that R(z; G)=U(2).

For z€9(G,) we get R(z; Gy)=iR(iz; G), by Lemma 3. Hence z# —iz,,
x€X implies (e~ —i)R(z; Gy)x=(1 +ie~"™**)R(iz; G)xzf e % E(&)xd:. Putt-
o

ing H(z)x= f e %= E({)x d¢ for every complex z, H(z) is analytic and a contin-

0
uation of F(z), for R(z; G,) is holomorphic in ¢(G,). Moreover, we have

la|
IH(2)| = ei«t=sl [ | E@)|dE = Kelemsl,
]

and 2° is also verified.

2. If G, satisfies 1°, then G=iG, generates the strongly continuous group of
operators E, for which |E()|=M ((€R). We show that 2° even implies
E(¢+a)=—iE({) for E€ER.

If Q(z)=H(—iz), then |Q(z)|=Ke'*®¢:!, and for Rez=>0,xcX we get

Q(2)x

== . — -8z =
e R(z; G)x ofe E(&)xd:.

Suppose u, v=0 and E,(u)x= f f E(&)xddv, then [6], (6.3.9) gives for r=0
0 O

r+iB

E,(u)x = lim ot f e"'—-Q—(-z—)—J—r—-z"dz.

B~ 2mi Jo L gle™
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In the integrand (1+ie™*)~! is bounded, and the absolute convergence of the
integral yields with the notation g(z)=(2ai) 'e™(l+ie~*)"1z72Q(z)x that

r+iss
E,(u)x= f g(z)dz. Making use of 2°, it can be shown after some calculation
r—iece
that Eﬂu)x:.?ni{Res(g;O)-i— X Rcs{g;z,,)} for w=|x|. With the notation
p=—e=

0" = {10+ 1009}

z=0

we get for u=>|af

E()x = Q" +u(1+1)'QO)x+ 3 e%»(xz)~10(z,)x.

p= —oo

Thus for u>2 || we obtain

fusl iz ]Q(O)x

Ey(u+ ) — Ey(u)x = (f—l)g*+[u-m+m

and, differentiating twice, E(u+o)x=—iE(u)x. If {€R, then applying E(—u)
to both sides we get
ECG+a)x =—iE@)x (x€X).

If we put S(&)= —% {E()—E(—¢)}, then ScV,(x, B(X),I) by Theorem I,

and Lemma 3 gives that the generator of § is G,. The uniqueness of S follows
from the fact that G determines the group E uniquely. || S({)|=M obtains imme-
diately, and the proof is complete.

Since the generator G, uniquely determines the function S¢€V,(a, B(X), 1),
this can be denoted by S(&; G,) if we wish to emphasize the generator.

Theorem 7. If S(; Go)€V,y(a, B(X), 1) and v=0, then S(¢;vGy) €V, (%, B(X), !] :
and for every x€X we have lin‘ll S(E; vG)x='S(; Go)x.

ProOF. The first half of the theorem is clearly true by Theorem 6. If E(¢;iAd)
is the group of operators associated with S(¢; A), then according to the proof of

[6], Theorem 12.3.1.,, for x€X we obtain E(¢; ivGg)x= lim [1—%*'"Go]dx=

E.v —n
= lim [I—%;‘Gu] x=E(-v;iGy)x. Since E({:iG,) is strongly continuous,

for x€X we have lin} E(&;ivGy)x=E(E; iGy)x, and the second half of the theorem
follows by Theorem 1.

Remark. Let X be the complex plane, g,€X, S(&){=sin (go&)-{ for EER,
(eX. If S&ge U Voo, B(X), 1), then S is periodic, consequently g,
2€ RN\ {0}

is real. Therefore we can not expect that the admissible perturbations of G, are
much more general than those in Theorem 7.
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Theorem 8. Let H be a Hilbert space and S¢Vy(x, B(H), I) with generator G,.
Then there exists a bounded positive selfadjoint operator Q such that B=QG,Q!
is a (generally nonbounded) selfadjoint operator with D(B)=Q {D(G,)}. and S({)=
=Q7'sin (- B)Q. Moreover, with the notations of Theorem 5 we have for x¢H

S@)x = f’ sin (£y,) * Pox,

n=—oo

Jor xeD(Gy)

Gox= 2 7.+ P,x, and the projections R,=QP,Q~" are selfadjoint.

n=—co

Proor. If E is the group associated with S, then sup|E({)| =K implies,
(R

according to [8], that there exists a bounded selfadjoint operator Q with % J=

=Q=K-1 such that QE({)Q ! is unitary for ¢ R. Then there exists a selfadjoint
B such that E()=Q '¢“®Q, and thus S(&)=Q 'sin((B)Q. where clearly
sin ((B)<Vy(x, B(H),I) and B is its generator. If Qx€D(B), then there exists

Gox =1im l Q~'sin (:B)Ox=0Q~1BQx, thus Q- {D(B)}c D(G,). If Q-'x€D(G,).
LI

then B.r:iirrg%sin (c“B)x:!ing-;_- 0S(E) Q0 'x=0G,Q0'x, thus Q{D(Gy)}c
cD(B), hence D(B)=0Q{D(G,)} and B=QG,0" as stated.

B and G, are similar, hence ¢(B)=0(G,) and Po(B)=Po(G,) (cf. [4],
Problem 60.). The spectral representation of B gives for x¢D(B) that Bx=

= > y,-R,x, where R, is a selfadjoint projection (n=0, £1, +£2,...) with

f= — oo
o

R,R,=d, R,. From this we obtain for x<D(G,) that Gyx= 2’ 7,-OQ 'R,0Ox,
n=—oo

oo

and for x¢H that S(&)x= 2’ sin({y,)O0'R,0x. Denote OQ~'R,Q0 by O,,

n= — oo

we shall show that Q,=P,.
If x€eQ,H, then S({)x=sin({-y,)x and Gyx=7y,x, thus, by Theorem 5,
x€P,H. Conversely, xeP,H implies iG,x=iy,*x, hence E({)x=¢€'*x and

Sin (7€) +x = S(E)x = 2" sin (& 7) Q.
Applying P, to both sides, we get because of Q,HcC P.H that sin(y,{)x=
=sin (y,¢)Q,x, and hence x¢Q,H. Thus P,=Q~'R,Q for every integer n and
the proof is complete.
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