The distribution of additive functions on the set of divisors

By I. KATAI (Budapest)

1. Let t(n) denote the number of divisors of n. If » has the prime-factorization

(1.1) n=ph.. p,

then
t(n) = (q,+1) ... (o, +1).

Let f(m) be an arbitrary completely additive function, i.e. the relation

fkl) = flk)+£()

is satisfied for every pair k, / of integers.
First we give a proof for the relation

1

(1.2) <5 2 @=5 s} = 2 0o,
where |
(1.3) o %2”)

We give a probabilistical proof of (1.2).
Let (L, A, P) be a probability space and ¢&,, &, ..., £, be a sequence of inde-
pendent random variables with the distribution

(1.4) P[é,=[ﬂ—£2i]f(p1)]=; B=0,1,...05 j=1,... 7).

o;+1
Let
n==8&+..+¢.
We observe that n takes the values f(d)— % -f(n) with equal probability for

every divisor d of n:

(1.5) P(1 = £(d) 5 1(0) = g5
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We calculate the dispersion of 1 in two ways, and obtain the formula desired.
Since the mean values

ME = ——r

and for the second moments

Z [ﬁ ——]f(P;)

o:-*-l

Y TRE Jlp_% 2, 2=
My=—7 2 [ﬁ 2] 14p)) = ¢./*(p)),
therefore

Mn? = M&} = é,;cjﬁ(pj).

Furthermore, from (1.5) we get

Mi? = — 3 (fd)~ 5 ).

and this finishes the proof.

2. Let t(n, o, f) denote the number of those divisors d of n, for which
n=d<=n’;0=a<p=1.
Taking f(d)=logd, from (1.2) we get

logd 1)
[lOiﬂ ]=|§ C"s?,

(2.1)

where

r(n) i

_ o(+2) o log p;
by IE 1o laee”

Let P(n) denote the greatest prime power divisor of ». From (2.1) we imme-
diately get the following assertion, which was proved in [1].

Theorem 1. For the infinite sequence ny,<n,=... of integers the relation
1 1
(2.2) (., 76 5+3)/T("k) -1 (k- )

Jor every positive ¢ satisfies if end only if
(2.3) “log P(n)flogn, =0 (k — <.
Let now f(n) be positive for every n,and N(n;, f) the number of those
divisors d, for which
a = f(d)[f(n) < B

£+ |=n},ax.rf(p?‘)
o |

Let
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Theorem 2. Let ny<n,<... be an infinite sequence of integers. The relation

1

N(n, 5=t 5 +9[t(n) =1 (k = =)

JSor every positive &, if and only if p, —~0 (k—===).

The proof is very simple, and so we omit it.
We now consider a simple consequence of this theorem. Let us suppose that

2.4) %?=m.0§ﬂm=om.

The Turdn—Kubilius inequality gives that
2 27
qu»uzﬂﬂ}xxzigﬂ.ﬂm~m(n*@
nEX P=x p=x

except for a set of integers having zero density. Then u,—~0 on the same set, and
1 1
N(n, 5% 3'-1-8)/‘{('!) -1 (n—+<)

except a set of zero density.

3. Now we shall prove that on some assumptions the theorem of central-limit
distribution is valid too.
We need a Lemma due to Ljapunov.

Lemma. Let X,. ..., X, be independent random variables, let

MX, =0, MX:=a}, MX?=p, (i=1,..,r),

oS Bals BReiPp,
i=1 r ri=i
and
F(x) — P(X1+...+ X, - x.S'_).
Then
¢ By
IF(x)—-®x)| < —= Tk

where c¢ is an absolute constant and

P(x) = ~/3dy,

1
- [ e
V2n _'!,.
Now we use this lemma by choosing X;=¢;. Then

st = 2’, ai(a +2)

i=1

AP
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Furthermore
MG = [(am = = ulf (@I
As we can see easily that ¢,af=1,=¢,%], ¢;, ¢, are positive constants.
Therefore
B3, AL
B (Z \f(pf -)l’]

We need to estimate the right hand side of the inequality. Let

A= 3111l
S 4=(,max |f(ph)))/4,
8l'= |f(Pi")UA (i= ls---ar)°

Then
(K & Z e ? o
i [.‘3::1' If (!’i'*)lz)am 1 (é; 8?]8;‘2 -

Using elementary analysis we can see that

i K= cav?
on the conditions
0=0,=4, J30,=1L
Hence we get the following

Theorem 3. Let N,(x) denote the number of those divisors d of n for which

f(n) Z :(:x +2)

i=1

(3.2 fd) <= I*(p )]

We assume that (2.4) holds. Then

< c42.1(n),

(3.3) |N()-l”) f e~ dy

-JT -

where ¢ is an absolute constant and A is defined in (3.1).

This relation was proved for f(d)=logd, and some special integers n by
Babaev [2].
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Let us suppose that
S(p) =0(),

and that the sum

AR = 2@
p=x
tends to infinity for x— e,
Let furthermore

gn) = 2 1f(pI)l
pEin
By the Turan—Kubilius inequality we have
f’(p )

<< x+ A(x).

2 (g —AX) =< x Z'

Hence it follows that

2(n) = AR)

for all but o(x) of the integers n=x. Furthermore

max |f(p%)| = ca.
Let w(x) be an arbitrary function tending to infinity monotonically as x-ss.
As we can see easily that
max | f(p%)| = o(x)

P%ln

for all but &(x) of the integers n=x. Therefore

w(x)
w1
for almost all n(=x).
Hence we get almost immediately the following assertion.

Theorem 4. Let f(p)=0(1) and assume that
> L/ (p:‘)l

p<x P

A(x) =

tends to infinity as x—==. Then for all integer n except at most a set of zero density
the inequality
2

| 'r(n) " (n)

holds uniformly in y; w(n) is an arbitrary function which tends to infinity monotonically.

—5-—90)| =

We can prove similar assertions by using the method of characteristic functions.

4. We can prove similar theorems for the distribution of additive functions
on the set of solutions of the equation n=x,*X,... * Xx;.
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We state only a special result without proof (see [1]). Let t,(n) denote the
number of positive integer solutions of the equation n=x,...x,, and t.(n, «, f)
the number of those solutions for which

msEx<nh (i=1,..,k-1)
o= (%, ...s%-1)y B =By Bi-v)

Theorem 5. Let (1=) ny<n,<... be an infinite sequence of integers, and let

= l—z l—a 2 = i+t: l-i—s
l’— k s-")k W k ’.”,k .
Tk(”_;,_?: '_5)/71:(";) =1 L j % em)
holds for every positive ¢ if and only if

The relation

log P(n;)

logn, e M F L g,

References

[1] I. KATtA1, On the distribution of the solutions of special Diophantine equations, Matematikai
Lapok, 20 (1969), 117—I122 (In Hungarian ).

[2] G. BaBakv, Distribution of integer points on algebraic surfaces, Duschanbe, 1966.

{3] C. D. Esseen, Fourier analysis of distribution functions, Acta Math., 77 (1945), 1—125.

( Received January 1, 1975. )



