Topologically arithmetical rings of continuous functions

By ERNST-AUGUST BEHRENS (Hamilton, Ontario)*
In memoriam of Andor Kertész

The closed ideals a.b, ... in a topological ring R form a lattice ordered semi-
group V(R) with respect to their intersection (), to the closure alUb=I(a+b)
of their sum a+b and to the closure acb=rI(a-b) of their products. As in alge-
braic number theory, we call the structure of V,(R) the arithmetic of R.

R is called ropologically arithmetical if the lattice V,(R) is distributive.

An example is provided by the Banach algebra A=%-(X) of all continuous
functions on a compact Hausdorff space X with values in the field C of complex
numbers under the supremum norm:

(1 Ifllee = sup {lf(x)]: xc X} for feA.

It is well known (e.g. NAIMARK [1], Theorem 16.3) that in this case the closed
ideals a correspond one-to-one to the closed subsets 4 of X by

(2) A = {xcX; f(x) =0 for all fca}.

Here a'b and a'Ub correspond to A'UB and A B respectively and the
product acb equals aMb. The ring P=C[[w]] of formal power series in one
indeterminate « is not normable (ALLAN [1]) in such a way that it becomes a C-
Banach algebra, that means so that P is complete with respect to the norm; but
P is a complete, locally convex algebra (MiCHAEL [1]) under the sequence of semi-
norms:

3) Pat = |Go|+...+|a,] for a= 3 ae', ac€C.
i=0

They provide a neighborhood basis for the zero series 0 by the sets

4) U,(0) = {acC[[w]]: pox <&}, n=0,1,2,..., e>0.

The ideals of P are the powers of its radical wP, and they are closed.

* This research has been supported in part by Grant A 4798 of the National Research
Conncil of Canada.
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The combination of the wo examples above leads to the P-algebra %p(X)
of the continuous P-valued functions on a compact Hausdorff space, a complete
locally convex algebra R under the sequence of the seminorms

(5) 4.(f) = sup{p.(f(x)): xe X} for feR, 0=ncZ.

We will prove that R=%p(X) is topologically arithmetical and we will develop
its arithmetic: Any closed ideal in R is the intersection

(6) a =N {ms@m; me¢ ¥}

where X is the set of maximal ideals in R, a compact Hausdorff space in its hull-
kernel topology and homeomorphic to X, (NAmMArk [1], III. § 15 and § 16).
The exponents, if taken maximal, are uniquely determined by a and pu(a, —)
is an upper_semicontinuous function (e.g. BourBaki [1], IV. 6.2) on X with values
in the set N° if non-negative rational integers together with =, Here m° means
R and m™ means the intersection n,, of all powers m* of the maximal ideal m.
The lattice ordered semigroup V,(R) of the closed ideals in R=€§‘P(X_) is iso-
morphic to the lattice ordered semigroup & of upper semicontinuous N°-valued
functions z, fi, ... under

. (x+p)(m) = a(m)+B(m) and (2N f)(m) = sup {a(m), f(m)}
) and (xUpB)(m) = inf {x(m), f(m)} for me X.
(Theorem 3.1).

The sum of finitely many closed ideals in R is closed (Theorem 2.2) and the
closure acb=I(a-b) of the product a-b of the closed ideals a and b satisfies

(8) a-bSachS N{a-b+w'R); néN), N=1,2,3,...

(Theorem 2.4). The ring R is a topologically principal ideal ring, i.e. a=I(Rf)
for a<V (R), if and only if the compact Hausdorff space X is perfectly normal
(Theorem 4.1).

The Gelfand—Naimark Theorem (NAIMARK [1], Theorem III. 16.2.1) charac-
terizes, up to isometric isomorphisms, the C-algebras €+(X), X a compact Haus-
dorff space, as the commutative B*-algebras A4 with an identity element e. A char-
acterization of the R=%p(X) above as commutative, topologically arithmetical,
complete, locally convex algebras with e will be given in a forthcoming paper,
using the classical result that in the B*-algebra ¥¢(X) every closed ideal is the kernel
of its hull (NAIMARK [1]. Theorem III. 16, 3) and observing that by Corollary 2.9
the factor R-module m”/m"*! is an one-dimensional C-linear space because other-
wise the intervale [m"**, m"] in V,(R) would contain a projective root, in contra-
diction to the distributivity of V(R).

l.

The ring P of formal power series x=ZXg;' in one indeterminate ® with
non-negative exponents i and coefficients a; in the field C of complex numbers
becomes a complete, locally convex C-algebra under the sequence

(1) Pn: @ = |G|+ |ay|+...+|a,] for acP
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of seminorms p,. n=0,1,2, ..., because p,(x-f)=(p,x) (p,pf): a neighborhood
basis for the zero series is given by the sets

(2) U, .= {0€P; p,a<g), where >0 and n=0,1,2,....
The zero sets of the seminorms are the ideals
(3) {x€P; p,a = 0} = {a€P; ord « > n},
where the order of a power series is defined by
4) ordx = min {i; a; #0} in «=ZXqo
The radical of P is the ideal wP and its powers are the only ideals in P.
If X is a compact Hausdorff space then the set of all continuous P-valued

functions on X becomes a complete, locally convex P-algebra R=%p(X) under
the following sequence of supremum norms

(5) gnf = sup{p,(f(x)): xéX} for fER, n=0,1,2,....

Here g, f is a real number because p, f is a real-valued continuous function on the
compact Hausdorff space X. The inequality ¢,(f-2)=(q,f)-(g,g) is simple to
prove. The completeness of R follows from the fact that the Cauchy sequences in
R are uniformly convergent sequences of continuous functions on X.

To get a correlation in between the closed ideals in R and the descending
sequences of closed subsets in X set

(6) u(a, x) = min {ord (f(x)): f€a}

where a is a closed ideal in R and x a pointin X. It is convenient to denote the
closure of a subset M in R or X by I'M. Then

) aob =1T(a-b)

is the smallest closed ideal in R containing the product a-b of the ideals a and
b in R. The function u satisfies

(8) u(ach, x) = ula, x)+u(b, x)

for closed ideals a and b. This equation is a consequence of the equation ord (x- ff) =
=ordx+ord f in P and of the implication f=limf,, ord (f,(x))=m for n=
=1,2,3, ... =ord (f(x))=m, together with the continuity of the mapping

) f—=f(x) for fcR
from R to P for fixed xcX.

Now the continuity of the functions in R implies that the subsets
(10) A; = {x€X; f(x)Ex'*'P for all f€a}, i=-10,1,2,...,

are closed, even if a is a not necessarily closed ideal in R. Because a as an P-module
contains with f the function wf also, the A; form a descending sequence of
closed subsets of X: Let f€a and x€4;,,: then wf(x)€w'**P implies f(x)cw'**P.
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As it will be proved very soon, a closed ideal a is determined by this sequence.
Therefore we introduce the mapping

(11) ¢:a—{A4;; i=-1,0,1,..}

of the ideals a in R into the set of descending sequences of closed subsets A4,
of X beginning with 4_,=X. On the other hand, if we start with a sequence {A;;i}
as above we define by

(12) x:{4i; 1=-1,0,1,2,...} = {f€R; x€A4;= f(x)€0'*P; i}

a mapping of the sequences {Ad;: A;=TI'A;2A4;.,. i=-1,0,1,2,...} of subsets
A; of X to subsets of R. These subsets of R are ideals in R which are closed in
virtue of the continuity of the mapping (9).

The key for the ideal theory in R is the statement that y¢ and ¢y are the
identical mappings of the set of closed ideals in R and of the set of descending
chains of closed subsets of X respectively: For a given descending chain {4;;i}
asin (12) set {4;:i}=¢y{A;:i}). Then the inclusion A4,S A4; for all i is clear by a
comparison of (10) with (12). If x,& A4, then by a theorem of Urysohn (e.g.
BourBakiI [1], Proposition IX. 4.1.1) there exists a function x€%x(X) which is
equal to 0 at every point in A4, =IA,;, and satisfies x(x,)=1. Then the function
2+ @EEp(X) is contained in y ({A;:i}) but x(x))w'é @ *'P. That shows x,4 A;
and finishes the proof of

(13) or({4;; i=-1,0,1,...}={4;; i=-1,0,1,...}.

Let a be a (not necessarily closed) ideal in R and {A;;i}=¢a. Let f<ypa, i.e.
for this f the following implication is valid

(14) X€A;, = f(x)€x''P  for all i

Because 4_,=JX there exists a_,€a with f=a_, (modulo w '*'R). We want to
show that for every n€N" there exists an a,cla with ¢,(f—a, =0, because
that would imply fcI'a. Take this statement for » as an induction assumption
and set f,=f—a,. Select a point x,€X. If f,(x,)€w"**P set g,=const=0 on X.
If f,(x,)§@"**P then x,4 A,.,. Therefore there exists an g,ca with ord (g,(x,))=
=n+1. Because a is a C[w]-module we can assume g,(x,)—f,(xo)€@" 2P. In
virtue of the continuity of the functions g, and f,, there exists to ¢=0 an open
neighborhood U,, of x, such that

(15) Pu+1(80(X)—£,(x)) <& for all xeU,,.

We need only finitely many of such neighborhoods U, U,, ..., Uy, say, to cover
the compact space X. For this open covering of X there exists a continuous partition
of unity, i.e. a set of N functions o €%, 17(X) such that o (x)=0 for xe X\ U,
k=1,2,...,N, and oy+...+2y=const=1 on X (e.g. BourBaKi [1], Corollary to
Proposition IX. 4.4.3.). The functions in I'a which replace g, in (15) are denoted
by g, k=1,2,..., N. Then the following argument will prove

(16) Gn+1 [j;'_xg; “kgn] =
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Assume that the point x is contained in U, ..., U, butnot in U,,,, ..., Uy, say.
Then for this x we get

N

pu+1[f;(x)_ Z ol (-\')gk(-\')J = Pui1 [ Z 7 (x) '(ﬁ;(x)—gh(x)) =
et k=1

N
Ek;; %(X) * Py 1 (fu(X) — i (x)) = &,

because of o, (x)+...4+o (x)=1, o (x)=0. This we can observe for every x¢€X
and it implies (16) by the very definition (5) of ¢,.,. On the other side the linear
combination Zx,g, is an element @, , in the closure I'a of a. Now in virtue of
Gu+1(@""2R)=0 the seminorm ¢,,, on R induces the norm g¢,., on R'=R/w""*R,
a Banach algebra because R’ as a Banach space is isometric isomorphic to the direct
sum of n+3 copies of €¢(X). The closure of the ideal a’=a+"**R contains
a, . for every e=0. Then (16). considered modulo ®"**R, implies that f, is
contained in the closure of a” in R’. Therefore there exists an element b,.,cla
with ¢,.,(f,—b,+1)=0. Recall the definition f,=f—a, of f, above. We get
qﬂ+1(.f_an_bn+1,:QN+l(j;l-bn+1}:0 and ay =4, +b"+16r0. That proves
féra and therefore yzpaSI'a. On the other hand ypa=y(pa). is a closed ideal
in R. So we get a characterization of the closure of a by

(17) F'a = ypa
for every ideal a in R, and especially the equality

(18) 700 = a

for every closed ideal a in R.

This last result, together with (13), proves the one-to-one correspondence in
between the closed ideals in R=%p(X) and the descending chains {4;;i=—1,0, 1.
2, ...} of closed subsets 4; of X. It is clear that ¢ is an antiisomorphism of the
partial order of the closed ideals in R onto the chains {A4;;i}, partially ordered
component wise:

(19) {4;;i) S {Bi;i} = A4, S B, for i=-1,0,1,2,....

Let us collect these results in the following theorem.

Theorem 1.1. The C-algebra R=%p(X) consists of the continuous P-valued
functions on the compact Hausdorff space X, where P is the complete algebra C[[w]]
of formal power series under its sequence

(20) Pnid— |ag|+a)+...+a,| for x= JawcP

of seminorms p,,n=0,1,2,.... R is a complete, locally convex C-algebra with
respect to the sequence

(21 S = sup{p,(f(x)): x€ X} for feR
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of seminorms q,,n=0,1,2, .... If V:(R) denotes the partial order of closed ideals
in R and V (X) the set of descending chains {A;;i=—1,0,1,2, ...} of closed
subsets A; of X beginning with A_,=X and partially ordered by component wise
inclusion then

(22) ¢:a—{{xeX; a(x)€w'*'P for aca}}

is an antiisomorphism of the partial order V (R) onto V (X) with the mapping
23) y={d; i=-1,0,1,..} = {fER; x€Ai = f(x)€wi P, i =—1,0,1, ...}
as its inverse. The closure of a (not necessarily closed) ideal a in R is

(24) Ia = yea.

If {a;; A€ A} is a subset of V(R) set U{a;; A€ A}=I( 3 a;) then V (R) becomes
a complete lattice which is completely lattice anriisomo%r;;rfc to Ve(X) under ¢

where the operations in V(X) are the component wise set intersection and set union
respectively of the chains.

Definition 1.1: A topological ring R is called rtopologically arithmetical
if the lattice ¥ (R) of its closed ideals is distributive. Here the operations in V(R)
are the set theoretical intersection and the closure of a sum of ideals.

Theorem 1.2. If R=%p(X), asin theorem 1, then R is topologically arithmetical.

PROOF. ¢ is a lattice antiisomorphism of V (R) onto V,.(X). and V (X) is
distributive because the set theoretical union and the intersection of two closed subsets
of X are closed.

The distributivity of the lattice V(R), as a lattice of submodules, implies the
infinite distributive law
aNUJ{b,; teT} =Uf{aNb,; teT}

as it is well known. But the dual law is not valid in general, as the following counter
example shows:

Take X=[0, 1SR, A={1}, B,=[0, 1—¢t7"] for téN. Then U{B,; 1€N}=
=I(U{B,; teN})=X, and therefore A=ANU{B; téN}. But ANB,=0
for any 1€T implies U{4B,;1cT}=0. That means that V (%¢p(X)) is not
D*-arithmetical in the sense of the author’s theory of arithmetical semiperfect
rings in BEHRENS [4] or [5].

2.
If X is a compact HausdorfT space then the closed ideals in R=%p(X) form
a distributive lattice V(R). Under the Definition
(nH achb =I'(a-b) for a,beV (R)

Vr(R) becomes a lattice ordered semigroup. Its investigation, i.e. the *“‘arithmetic”
of R, is facilitated by the fact that for the ring R above the sum a-+b of two
closed ideals is closed and their product a-b is ““almost™ closed.

This depends on the following Lemma for %¢(X):
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Lemma 2.1. If A and B are closed subsets of the compact Hausdorff space
X and f is a complex valued continuous function on X which is equal to 0 on A B,
then there exist g and he€€c(X) with f=g+h and g being equal to 0 on A and
h being equol to O on B. If f=0 on X then, in addition, g and h can be taken in
1o, ) (X).

Proor. Because f(x)=0 if and only if Ref(x) and Im f(x) are both equal
to 0 we can assume that f is real valued. Define g" by

0 if x€A
f(x) if x€B.

g’ is continuous on AlJB because f(x)=0 for all x4 B. This function g’
defined on the closed subset 4UB of X can be extended to a continuous function
g on X (e.g. Boursaki [1], Corollary to Theorem 2 (Urysohn) in IX. 4. 2). Then
the function h=f—g€%p(X) is equal to 0 on B, the function g€ %p(X) is equal
to 0 on A and satisfies f=g-+h If f€€ . (X) then f=fT=g*+h™, where
g*=max {g, 0}¢ G, o) (X).

Theorem 2.2. The sum a+b of the closed ideals a and b in R=%p(X), X
a compact Hausdorff space, is a closed ideal in R.

g'(x) = {

PrROOF. Let feI'(a+b). We have to show fca+b. Now f as an element of
R can be written as
(2) =2 fied, where fic¥c(X) for i=0,1,2,....
i=0
By Theorem 1.1 fis contained in I'(a+Db) if and only if the following implica-
tion holds:

(3) x€A;,NB;= fi(x) =0 for x€X and all i=-1,0,1,2,...,

where {4;;i}=¢a and {B;:i}=¢b. By Lemma 2.1 there exist, for every index i,
functions g; and /; in ¥¢(X) such that fi=g,+h; and g;(4,)=0=Ah;(B;). The
P-valued functions g=J'g;»' and h=Jhw; on X are continuous because, for
xo€X, n=1,2,3, ..., e=0, the inequality

Pa(8(x)—g(xp) = =Z.. 18:(x) —gi(xo)| < &

is valid in a convenient neighborhood of x,: and similarily for 4. Then

g(x)E@' 1P for Xx€A,
and
h(x)éEw'*'P for x€B;

imply g€a, h€b and therefore f=g+hca+b.

The o-product aocb=I(a-b) of two closed ideals a and b in R=%p(X)
is uniquely determined by a and b and therefore depends from the two chains
@a and @b only, and it must be possible to express ¢(acb) by the sets 4; in
@pa and B; in ¢b. The corresponding formula becomes more understandable by
the following purely set theoretic result:

8§D
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Lemma. Let X be a set and denote by {A;; —1=icZ} a sequence of subsets
A; of X, beginning with A_,=X and satisfying A;2A;,,. These sequences form
a lattice ordered monoid M under

{4;; YN {B;; i} = {4;NB;;i} and {A;; i)U{B;; i} = {4;,UB;; i} and

4) : : .
{Ai; i}o{B: i}y = {Ci5 i}
where
i
(5) G=U {AJmBi-l-j)-

Its identity is the sequence {X:0,...}. M satisfies
(6) {4i; i}o[{Bi; i}N{C; i}] = [{4i; i}o{B:; S)]N[{4;; i}o{C; i}).

PrOOF by verification: The associativity of the o-operation follows from the
fact that C; in (5) is formed by intersections and unions of subsets of X and that
these operations are distributive with another. Similarily we get the compatibility
of the o-operations in M with both lattice operations and the formula (6).

Theorem 2.3. The lattice antiisomorphism ¢ of Theorem 1. 1 is a lattice-ordered
semigroup-isomorphism of V (R) under acb=I (a-b) onto the submonoid @V (R)
of M in the lemma, consisting of all descending chains {A;;i=—1,0,1, ...} of
closed subsets A; of the compact Hausdorff space X which begin with A_;=X.

PRrooF. Because the union and the intersection of finitely many closed subsets
of X are closed and the c-product in M is defined by (5) we need only to show
the equality

(7 ¢(acb) = (pa)o(epb)

for a and b in V(R). Recall the Definition 1. (6) u(a, x)=min {ord (f(x)): f€a}
for x€¢X and a€ ¥V (R) and the regula 1, (8),

() pu(aob, x) = u(a, x)+u(b, x).
Then A; in @a can be expressed by

) A; = {x€X; pla, x) = i},

and similarily B;={x¢X; u(b, x)>i}in @b and

(10) C; = {x€ X; p(ach,x) =i} in ¢(ach).

Then we have the following equivalences for x€X and i=-1,0,1, ...
(11) XEC; <> p(ach, x) = i< u(a, x)+u(b, x) = 1.
<> There exists an indexpair (i, j) such that
i—1=j+k and x€A;NB,

i
= x€ U (4;NB;-;-)) = (pa)o(¢b),

j==1
where the last product is formed in M.
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The last Theorem provides a managable formula for the calculation of the
o-product acbhb in V (R) if @a and ¢b are known. That helps in proving the
statement that the product a-b of two closed ideals a and b in R is ‘“almost”
closed. More precisely, we have the following result:

Theorem 2.4. The seminorm gq,_, of R=%p(X), Xa compact Hausdorff
space, has the value 0 for all fE»"R and defines a norm on the factor algebra R,=
=R|w"R, Denote by a’ and b the images of the closed ideals a and b under the
natural epimorphism n of R onto the Banach algebra R,. Then o’ -b’ is a closed
ideal in R". Even more is valid: If f=2f,w'€acb=TI(a+b) then

(12) fiw'€ab for every i=0,1,2,...
and
(13) abS acb S Nfa-b+0"'R; n=1,2,...}

Proor. It is sufficient to show that the statement (12) is true. Here we can assume
Ju€ %€, 1(X) because for n=0,1,2, ..., the equality f,(x)=0 is equivalent to
(Ref) (x)=0, (Imf,) (x)=0; and (Ref,) (x)=0 if and only if (Ref)* (x)=0,
(Ref,)” (x)=0; and similarly for the imaginary part Imjf, in f,=(Ref)"—
—~(Re )" +i[UImf)*—(Imf,)"]. Now f€aob implies by the Theorem 2.3 that
J,(C,)=0 where C, is given by (5).

n=0: C,=A,B,. Because f €%, ..;(X) denote by Vf;(x), the non-negative

square root of fy(x) and set go=/hy= Vf;. Then fy=g,-hy With go(A4)=0="hy(B,).
Therefore fyw®=g,w°-h," with the first factor on the right side being contained
in a and the second in b. That settles the case n=0.

n=1:C;=A4,UB,U(4,MN B,) implies f,(4,NBy)=0. By Lemma 2.1 there

exist g, and hy€ € 1(X) with Vfi=go+he and go(A4,)=0=h,(B,). Then the
functions g, and /,, defined by

()*{o if x€A,
SRR o el
and
e )_{0 if x€B,
il 7 7 A O

are continuous because f,=0 on A4, and f,=0 on B, respectively. Because 4, A4,

and B,C B, the function g,-/h,+g,+h, isequalto 0 on 4, and on B,. The func-
tion f; equals 0 on A4,UB; in virtue of f;(C;)=0. But on (X\ A4,)N(X\B,)

we have the equalities gyl +g,h=g," l/j?l+ ]-'z-hu=(gn+hn) . I/j—'1= ]/E ]/E:fl.
That proves

10 = (g+810) - (hy+ hyw) — g0° - hyo —g 0+ hywEa+b
and settles the case n=1.

8*
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n=2: Because A_,=X=B_, we have

Cn = BHU(AOOBH—I)U(AIHBH—2) 'V’I .V:An = [ ]lﬂ[ ]2"

where

(14) [ L= A4,UB,U(4, By

and

(IS) [ ]2 — An—IUBn-IU(AlﬂBu—E)U"' U{Arr—‘.’ﬁ Bl)

are closed subsets of X. This representation of C, as the intersection of [ ], and
[ ]o implies for the function f, a representation f,=wu-+v where wu, vE%, ..;(X)
and u=0 on [ ]; and v=0 on [ ], by Lemma 2.1, observing f,(C,)=0. If we
replace 4, by A4, and B; by B, in the discussion of the case n=1 above we get
four functions g, Ay, g, h, In G (X)) satisfying  gy(4,)=0=hy(B,) and
g,(4,)=0=h,(B,) and g,-h,+h,-g,=u. These equalities prove that g,+g,w",
g,®" and g,o" are functions in the ideal a and that h,+h,0", hyo" and h,o"
are contained in the ideal b. Therefore the function ww"=(g,+g,®") (h,+h,w")—
—g, " hy"—g, "« h,o" is contained in a-b. Similarily we deal with the second
sum and v in f,=w+v, recalling v equals 0 on [ ], and using an induction
argument. More precisely, we omit 4, and B, in the chains ¢a and @b respec-
tively and get the chains {X, 4,, 4,, ...}=0a, and {X, B,, B, ...}=¢b, of two
closed ideals a, and b, respectively. An element f€R belongs to a, if and only
if @f€a, in virtue of the definitions for ¢ and y in Theorem 2.1, and similarily
for b,. Then by the induction assumption, that the satement (12) is true for 0=i=
=n—1 and all ideals a and b in V (R), and by considering the definition (15)
of [ ], we get v@w" *€a,-b, and therefore vw"ca-b. Because the cases #»=0 and
n=1 are settled already, that proves f,w"=uw"+vw"ca-b.

Corollary 2.5: The n-th power m" of a maximal ideal m is closed and ¢ (m")=
={X, X, ... x, 0, ...} is valid, where the chain contains n copies of the point x¢JX.
The powers m" form a strictly descending chain.

PROOF. m as a maximal element in V-(R) has gm= {X, x, 0, ...} as its associated
chain with an uniquely determined point x€X. On the other hand ¢@(wR)=
={X, X, 0, ...} shows oRSm and therefore w"REmM".

Corollary 2.6: The (Jacobson) radical of R is j=wR=x({X, X,..)="0
M {m; meX} where X is the set of the maximal ideals in R. {"={m"; meX} if
=] 2.8 0

Remark: Rl is isometric isomorphic to the commutative B*-algebra €c(X).

PRrOOF of the Corollary: i is the intersection of the maximal ideals in the commu-
tative algebra R with identity element by definition.

Corollary 2.7: If m is a maximal ideal in R then

(16) n,=N{m";n=123,..}
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is a closed ideal in R and
(17) N {n,,; mex} = (0).

The ideal n,, replaces the maximal ideal m in the Gelfand—Mazur setting
in €c(X):

Theorem 2.8. Let R=%p(X), X a compact Hausdorff space, and m,=
=1({X, x,, 0, ...}) a maximal ideal in R. Then

(18) 0o: f=f+n,, ~flx) for feR

is an isomorphism of R|n,, onto P as an_C-algebra. The n-th seminorm g, of R
induces on R=Rn,, the seminorm §,:f—inf {q,(f+k); ken,} for feR. Then

(19) @ f)=d(f) for feR andall n=1,0,2,....

In this sense o, is an “‘isometric” isomorphism of R|n,, onto P.

PrOOF. In virtue of ¢n,, ={X, Xy, Xy, X, ...} a function gc¢R belongs to
n,,, if and only if g(x,)=0, the zero element in P. Therefore

Mg - [~ Sf(xo) for fER

is an C-algebra epimorphism of R to P with ker #,,,=n,, and ¢, is an algebraic
isomorphism. Because n,, is a closed ideal in R the seminorm ¢, induced by g,

is given by
3. (f) = inf {g,(f+k); ken,},
¢ (f+k) = sup{p,(f(x)+k(x)); x€ X}.

Now f=f(x,)e+g, where e is the identity element in R and gén,,, implies
g,(f+k)=sup {p,(f(x,)+g(x)+k(x)): x€X}. Because g and k are continuous
on the compact Hausdorff space X there exists an yeX with g,(f+k)=p,(f(x,)+
+2(1)+k (1) =pa(f(x,)). On the other hand we get g,(f)=inf p,(f(x,)+g(y)+
+k(); ken,}=p,(f(x,)) because with k the sum g-+k is running through n,,.
That proves (19).

where

Corollary 2.9: The sequence {m";neN} of closed ideals in R, joining R
and n,,, is a maximal chain of C-subspaces of he C-linear space R/n,,.

PrOOF. m"|m"*! is an R|m-module and R/m=C.

3.

In the classical number theory it is shown that every ideal is the intersection of
finitely many powers of maximal ideals and then that this intersection can be replaced
by the product of these finitely many powers. In R=%p(X), X a compact Hausdorff
space, the ideals a possess infinitely many components, m*®™ in general. That
inhibits a product representation.
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Take a in V(R), the lattice ordered semigroup of the closed ideals in R=
=%p(X), asin Theorem 2.3. Then the points x in the subset 4; of X correspond
to the maximal ideals m,=y({X,x,9,...}) in R and, by Corollary 2.5, mi=
=x({X, x, ..., x, 0, ...}) with o copies of the point x<X. Considering 1, (22),
and 1, (6), we have

(1) A;={x€X; u(a,x)>i} for i=-1,0,1,... and a€V (R).

So we get by the theorems 1.1, 2.3, 2.4 and the Corollaries 2.5, 2.7 for the closed
ideals in R the representation

(2) a ={ms=m; me X}

where X is the set of the maximal ideals in X and

(3) gt ) =yl x) for m=y2X. %0 ..
Here we set m"=R and m*==n,,. The range of the functions
4) pla, =) :m — pu(a,m) for mexX

consists of non-negative rational integers and <=, i.c. it is contained in N°. These
functions are not quite arbitrary because the subsets 4; of X in the chain ¢a

are closed. In fact, if we begin with an arbitrary N°valued function x on X then
(5) a={m>; xeX}

is as an intersection of closed ideals a closed ideal in R and therefore

(6) a = N{mrex; xeX}

with u(a, x)=pu(a, m,) for xeX also. We derive u(a, —) from « by the upper

semi-continuous regularization of the N°-valued function « (Bourbaki [1], 1V.6.2)
using the following argument: For b€V (R) define A4,(b) by

@b = {4;(b); i =—1,0,1,...}.
Then for a, given by (5), we calculate by Theorem 1.1

Ai(a) = I (U{4,(m5™); x€ X)
where by Corollary 2.5
i {x if —-1=i<a(x)
(I = 10 £ 12a0).
That shows
Ai(a) = I'{x€ X; a(x) > i}.

Therefore a point x,© X belongs to 4;(a) if and only if every neighborhood U of x,

contains a point xy with a(xy) =17, with other word, if and only if sup {x(y); yeU}=i
for all neighborhoods U of x,. That is equivalent to

@) i < inf{sup {x(y); ¥y U}; x0€ U, U open}.
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The right side of (7) is called the limit superior of « for y--x. Recalling A4;(a)=
={x€X; u(a, x)>i} we get

(8) ula, xo) = limsup a(y), for x€X,

y—=xg

i.e. the function p(a, —) is the upper semi-continuous regularization of the N°-
valued function o on X. The function = is called upper semicontinuous if
equals its upper semicontinuous regularization. The upper continuous functions

on X with values in N’ form a lattice ordered monoid & wunder the following
operations for «, fcS:
(@+B)(x) = a(x)+B(x)

(@M ) (x) = sup {z(x), B(x)}, (xUB)(x) = inf {x(x), B(x)}.

(BirkHOFF [1], § XIII. 4).

These considerations together with formula 1, (8) for u(acbhb, x) and Theorem
1.1 describe the arithmetic of R, i.e. the lattice ordered semigroup of its closed
idelas. They are collected in the following Main Theorem:

Theorem 3.1. Let X be a compact Hausdorff space and set R=%p(X) where
P=C[[w]], ® an indeterminate. The maximal ideals m in R correspond one-to-one

to the points in X under
m =m, = {f¢R; f(x)cwP)}.

The powers m",n=1,2, ..., of m are closed and n,=N{m"} is closed also. The
closed ideals in R form a lattice ordered semigroup Vi (R) under the following
operations acb=I(a-b),aNb=alb,alUb=a+b. Let S be the lattice ordered

semigroup of the upper semicontinuous N°-valued functions on X with the operations
&) (@+P)(x) = 2(x)+B(x)

and

(10) (xMP)(x) = sup {x(x), B(x)} and (xMNp)(x) = inf {x(x), B(x)}.

Set m"=R and wm>==n,,. Then the mapping

(11) Yia - N{mi®, xe X}

for ac€ S is an isomorphism of lattice ordered semigroups from S onto V (R).
The isomorphism  is complete if U{a;;i€l} is defined as I'(> «a;) for a subset
i

{a;: €1} of Vi(R).
4.

If R is a commutative semiperfect ring with identity element and if its lattice
V(R) is distributive then every ideal in R is principal by Behrens [4], IX. 2 and
Theorem 5 in IX. 1. So we ask whether every closed ideal a in the ring R=%p(X),
is the closure of a principal ideal. We will show that this is the case if and only if
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the compact Hausdorff space X is perfectly normal. A normal topological space X
is called perfectly normal (Boursaki [1], Exercise 7 to IX. 4) if every closed subset
A of X is a countable intersection of open subsets of X or, equivalently, if and
only if there exists a function f€%p(X) such that f(x)=0 for x€4 and f(x)#0
for x4 A.

Theorem 4.1. Let X be a compact Hausdorff space. The ring R=%g(X) is
a topological principal ideal ring, i.e. every closed ideal a in R is the closure I'(Rf)
of a principal ideal Rf in R, if and only if X is perfectly normal.

Proor. 1) Let a€ ¥V (R) and qoa={AI;1'=—l,0, 1, ...} beits associated de-
scending chain of closed subsets 4; of X. If X is perfectly normal there exist
fi€%€0,11(X) with 4;=f;72(0) for i. The function J= wa €%€p(X) generates

an ideal Rf. Its closure I'(Rf) has as its associated chain tp(!‘ (Rf)) the chain ¢a

because a point x€X satisfies g(x)cw"*P, for all g€I'(Rf) if and only if f(x)€
£w"TP, in virtue of the continuity of the functions in R. That proves a=I"(Rf),

— Conversely, take a closed subset 4 of the compact Hausdorff space X and

assume that the ideal (0)=a=y({X, 4,0, ...}) in V (R) is topologically principal,
=I'(Rf), say; f=fo+fio+.... Then

g = lfl=*- 1/l

1s a function in €y 4;(X) such that g=1(0)=A.
The ring R=%p(X) contains very few closed principal ideals:

Theorem 4.2. Let X be a compact Hausdorf] space. Then the powers "R of
the radical wR of R=%p(X) are the only closed ideals in R which are principal
ideals.

Proor. By Corollary 2.6 the ideals "R are closed and generated by w"e,
e the function constantly equal to 1 on X. Assume that a€ V(R) is different from all
powers ®"R. Then there exists a smallest index m such that 4,,_,=X but X>O
DA,D>0, where gpa={4;;i=-1,0,1,...}. Assume a=Rf already. Then f=
=fot+fiw+... with fo=...=f,-,=const.=0 and f,(x)=0 if and only if x€A4,,.
the function V|f,|-@™ belongs to ypa=a=Rf. That implies the existence of
a function g=g,+g,w+... in €p(X) satisfying

Viful - 0™ = g-f.

Then V|[f,|=f, -2 and therefore

BIR] 0 if xcd,,
'II rfm(x” & gﬂ(x)| — { l lf x& A

is valid in contradiction to the continuity of |f,|-|g,/ on X.
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