On products of full linear rings

By J. LAMBEK (Montreal) and G. O. MICHLER (Giessen)

To the memory of Andor Kertész

Recently Goldman [2] showed that a ring (with unity element) is a product of full linear rings (of left vector spaces over division rings) if and only if R is Hausdorff and complete in the right *intrinsic* topology, which has a fundamental system of open neighborhoods of zero consisting of all right ideals K such that R/K is a completely reducible projective right R-module.

Ring theoretic characterizations of products of full linear rings were given by Chase and Faith [1]. It is the purpose of this note to show that both characterizations follow easily from Jacobson's density theorem as formulated in [6] and some easy results on bicommutators proved here. It is also shown that the intrinsic topology on R coincides with the I-adic topology. In general, the I-adic topology on a right R-module A has a fundamental system of open neighborhoods of zero consisting of all kernels of homomorphisms $A \rightarrow I^n$, where n is any natural number.

Given right R-modules I and A, we adopt the notation from [6]:

$$S_I(A) = \operatorname{Hom}_{\operatorname{End}(I)}(\operatorname{Hom}_R(A, I), I)$$

where I is regarded as a left module over its ring of endomorphisms End (I). In particular,

$$S_I(R) \cong \operatorname{Hom}_{\operatorname{End}(I)}(I, I) = \operatorname{Bic}(I)$$

is the *bicommutator* of I, which is regarded as a right $S_I(R)$ -module. We recall the following from [6, Remark 5, 3]:

Lemma 0. If I is a completely reducible right R-module, the canonical module homomorphism $A \rightarrow S_I(A)$ is the Hausdorff completion of A in the I-adic topology. In particular, the canonical ring homomorphism $R \rightarrow \text{Bic }(I)$ is the Hausdorff completion of R.

Given a right R-module V and a set X, we write

$$XV = \sum_{\alpha \in X}^{\oplus} V_{\alpha}.$$

where $V_{\alpha} = V$ for all $\alpha \in X$. We denote by $p_{\alpha}: XV \to V$ and $k_{\alpha}: V \to XV$ the canonical projection and injection corresponding to $\alpha \in X$.

Lemma 1. Let V and A be right R-modules, X any set. If X is finite or A is finitely generated, then

 $S_{XV}(A) \cong S_V(A)$.

In particular,

$$\operatorname{Bic}(XV) \cong \operatorname{Bic}(V)$$
.

PROOF. Let $\beta \in X$ be fixed. For any $s \in S_{XV}(A)$ any $g \in \operatorname{Hom}_R(A, V)$ we write

$$(g)s^* = p_{\beta}((k_{\beta}g)s).$$

(According to the usual convention, homomorphisms of left modules act from the right.) Then * is an R-homomorphism $S_{XV}(A) \rightarrow S_V(A)$.

For any $t \in S_V(A)$ and $f \in \operatorname{Hom}_R(A, XV)$, we write

$$t^+(f) = \sum_{\alpha \in X} k_{\alpha}((p_{\alpha}f)t).$$

For this formula to make sense, we require that $p_{\alpha} f=0$ for all but a finite number of α . This will be so if X is finite or if A is finitely generated. A straight forward calculation shows that $^+$ is the inverse of * .

Lemma 2. Let A and I be right R-modules and $I = \sum_{\alpha \in X}^{\oplus} I_{\alpha}$, where $Hom_{R}(I_{\alpha}, I_{\beta}) = 0$ if $\alpha \neq \beta$. If X is finite or A is finitely generated, then $S_{I}(A) \cong \prod_{\alpha \in X} S_{I_{\alpha}}(A)$.

In particular,

$$\operatorname{Bic}(I) \cong \prod_{\alpha \in X} \operatorname{Bic}(I_{\alpha}).$$

PROOF. We denote by $p_{\alpha}:I \to I_{\alpha}$ and $k_{\alpha}:I_{\alpha} \to I$ the canonical projection and injection corresponding to $\alpha \in X$.

To each $s \in S_I(A)$ we assign $s^* \in \prod_{\alpha \in X} S_{I_\alpha}(A)$ by defining, for any $f_\alpha \in \operatorname{Hom}_R(A, I_\alpha)$, the component $s^* \in S_{I_\alpha}(A)$ by

$$(f_{\alpha})s_{\alpha}^* = p_{\alpha}((k_{\alpha}f_{\alpha})s).$$

To each $t \in \sum_{\alpha \in X} S_{I_{\alpha}}(A)$, with components $t_{\alpha} \in S_{I_{\alpha}}(A)$, we assign $t^+ \in S_I(A)$ by defining, for any $f \in \text{Hom}_R(A, I)$,

$$(f)t^{+} = \sum_{\alpha \in X} k_{\alpha} ((p_{\alpha}f)t_{\alpha}).$$

This formula makes sense if $p_{\alpha}f=0$ for all but a finite number of $\alpha \in X$, and this is so if X is finite or A is finitely generated.

Under the assumption that $\operatorname{Hom}_R(I_\alpha, I_\beta) = 0$ for $\alpha \neq \beta$, one easily computes that $^+$ is the inverse of * .

We recall that the left socle and right socle of a semiprime ring coincide [5, § 3.4, Proposition 4].

Lemma 3. Let R be a semiprime ring and suppose that its socle S is essential as a left ideal. Then S is also essential as a right ideal, and the bicommutator of the right R-module S_R is an essential extension of the left R-module R.

PROOF. Suppose $0 \neq r \in R$. Since ${}_RS$ is essential, Rr contains a nonzero idempotent e=r'r. Then $r'rer'r=e^3=e\neq 0$, hence $0 \neq rer' \in S$. Therefore, S_R is essential.

Since R is semiprime, the right annihilator of S is zero. It follows that the canonical mapping $R \to \text{Bic}(S_R)$ is a monomorphism. Let $0 \neq q \in \text{Bic}(S_R)$, then we can find an idempotent e such that $0 \neq eq \in S \subseteq R$. Therefore, $\text{Bic}(S_R)$ is an essential extension of R.

Lemma 4. For a semiprime ring with socle S, the S-adic topology coincides with the intrinsic topology.

PROOF. Let K be a fundamental open neighborhood of zero in the S-adic topology of R_R , that is, the kernel of a homomorphism $f:R \to S^n$. Then $R/K \cong \lim f \subseteq S^n \subseteq S$ is a direct sum of minimal right ideals of the form eR, where $e^2 = e$, hence completely reducible and projective. Therefore, K is a fundamental open neighborhood of zero in the intrinsic topology.

Conversely, suppose R/K is completely reducible and projective. Then K=eR, for some idempotent $e \in R$, and $R/K \cong (1-e)R \subseteq S$. Therefore, K is the kernel of

a homomorphism $R \rightarrow S$.

For completeness, we shall also record the following wellknown facts.

Lemma 5. Let $_DV$ be a left vector space over a division ring D and $R = \operatorname{Hom}_D(V, V)$. Then R is von Neumann regular, self-injective and its socle is essential as a left ideal.

PROOF. It is well-known that R is regular [see e.g. 5, § 4.4, Proposition 1]. Thus V_R is flat, and since ${}_DV$ is injective, it follows that ${}_RR$ is injective [5, § 5.3, Proposition 3]. To see that the socle S is essential as a left ideal, let $0 \neq r \in R$, then $vr \neq 0$ for some $v \in V$. Let $V = Dv \oplus W$ and define $e \in R$ by ve = 1, We = 0. Then $ver = vr \neq 0$ hence $er \neq 0$. But $er \in Rer \subseteq S$, since Re is a minimal left ideal of R, as is easily checked.

Theorem. The following properties of a ring R are equivalent:

(1) R is Hausdorff and complete in the right intrinsic topology.

(2) R is Hausdorff and complete in the S-adic topology, where S is the socle of R regarded as a right R-module.

(3) R is Hausdorff and complete in the I-adic topology, where I is some comple-

tely reducible right R-module.

(4) R is isomorphic to the bicommutator of some completely reducible right R-module.

(5) R is a direct product of full linear rings of left vector spaces.

(6) R is von Neumann regular, left self-injective and its socle is essential as a left ideal.

(7) R is semiprime left self-injective and its socle is essential as a left ideal.

(8) The canonical homomorphism $R \rightarrow Bic(S)$, where S is the right socle of R, is an isomorphism.

PROOF. We shall establish the following implications:

 $(1)\Leftrightarrow(2)\Rightarrow(3)\Rightarrow(4)\Rightarrow(5)\Rightarrow(6)\Rightarrow(7)\Rightarrow(8)\Rightarrow(2).$

(1) \Leftrightarrow (2) by Lemma 4, because R is semiprime under either hypothesis.

 $(2) \Rightarrow (3)$ is trivial.

- $(3) \Rightarrow (4)$ follows from Lemma 0.
- $(4)\Rightarrow (5)$: Suppose R is isomorphic to the bicommutator of a completely reducible module I. We may write $I=\sum_{\alpha\in X}^{\oplus}I_{\alpha}$, where the I_{α} are the homogeneous components of I, and $I_{\alpha}=X_{\alpha}V_{\alpha}$, X_{α} being a set and V_{α} a fixed minimal submodule of I_{α} . By lemmas (2) and (1), we have

$$R \cong \operatorname{Bic}(I) \cong \prod_{\alpha \in X} \operatorname{Bic}(I_{\alpha}) \cong \prod_{\alpha \in X} \operatorname{Bic}(V_{\alpha}) = \prod \operatorname{End}_{D_{\alpha}}(V_{\alpha}),$$

where $D_{\alpha} = \operatorname{End}_{R}(I_{\alpha})$.

- $(5) \Rightarrow (6)$: Each $R_{\alpha} = \operatorname{End}_{D_{\alpha}}(V_{\alpha})$ is regular, self-injective and its scole is essential as a left ideal, by Lemma 5. Therefore, R is left self-injective [5, § 4.3, Proposition 9] and von Neumann regular (obvious), and it is easily seen that the socle of R is left essential.
 - $(6) \Rightarrow (7)$ is trivial.
- $(7)\Rightarrow (8)$: By Lemma 3, the bicommutator of S_R is an essential extension of R. Since R is injective, $R\cong \mathrm{Bic}(S_R)$ canonically.

(8)⇒(2) follows from Lemma 0.

COROLLARY 1. The complete ring of left quotients Q of a ring R is a product of full linear rings of left vector spaces if and only if the following conditions hold:

- (1) The left singular ideal Z of R is zero.
- (2) Every nonzero left ideal of R contains a nonzero uniform left ideal.

PROOF. Assume the conditions. By (1), Q is von Neumann regular and left self-injective [5, § 4.5]. It will follow from the theorem that Q is a full linear ring if we show that its socle is left essential. So, let L be a nonzero left ideal of Q, we want to show that L contains a minimal left ideal. Now $L \cap R \neq 0$; hence, by (2), it contains a uniform left ideal $U \neq 0$ of R, and $QU \subseteq L$. We claim that QU is a minimal left ideal of Q. Since Q is regular, it suffices to check that QU is uniform. (Let $0 \neq a, b \in QU$. Since Q is a left ring of quotients of R, we can find $r, s \in R$ such that $0 \neq ra, sb \in U$. Therefore $Rra \cap Rrb \neq 0$, hence $Qa \cap Qb \neq 0$. Thus QU is uniform.)

Conversely, suppose Q is a product of full linear rings. Then, by the theorem, Q is von Neumann regular, left self-injective, and its socle S is left essential. By By $[5, \S 4.5]$, Z=0. Let L be a nonzero left ideal of R, then $QL \cap S \neq 0$, and so QL contains a minimal left ideal V of Q. Since Q is a ring of left quotients of R, $R \cap V$ is a nonzero uniform left ideal of R. (For, if $0 \neq a, b \in R \cap V$, we can find $q, q' \in Q$ such that $0 \neq qa = q'b \in V$, then find $r \in R$ such that $rq \in R$, $rq' \in R$ and $0 \neq rqa = rq'b \in V$.) Let $0 \neq v \in V \subseteq QL$, we can find $r \in R$ such that $0 \neq rv \in L$. Hence Rrv will be a nonzero left ideal contained in $V \cap L$, hence a uniform left ideal contained in L.

The sufficiency of conditions (1) and (2) is due to JOHNSON [4, Theorem 3.1], see also [3, Theorem 3.8].

COROLLARY 2. Let R be a semiprime ring whose socle is an essential left ideal. Then its complete ring of left quotients is a product of full linear rings of left vector spaces.

PROOF. In view of Corollary 1, we need only verify the two conditions.

- (1) Since every essential left ideal contains the socle S, $(S \cap Z)^2 \subseteq SZ = 0$, hence $S \cap Z = 0$, and so Z = 0.
- (2) Every nonzero left ideal has nonzero intersection with S, hence contains a minimal left ideal.

This corollary is a generalization of a theorem by UTUMI [5, § 4.3, Proposition 7] also found in [1]. One could use it for obtaining yet another proof of Goldie's theorem on semiprime rings.

References

- [1] S. U. Chase and C. Faith, Quotient rings and direct products of full linear rings, Math. Z. 88 (1965), 250—264.
- [2] O. GOLDMAN, A Wedderburn-Artin-Jacobson structure theorem, to appear.
- [3] R. GORDON and J. C. ROBSON, Krull dimension, Memoirs Amer. Math. Soc. 133 (1973), Providence, R. I.
- [4] R. E. Johnson, Quotient rings of rings with zero singular ideal, Pacific J. Math. 11 (1961), 1385—1392.
- [5] J. LAMBEK, Lectures on rings and modules, Blaisdell, Waltham Mass. 1966.
- [6] J. LAMBEK, Localization at epimorphisms and quasi-injectives, J. Algebra 38 (1976), 163-182.

MCGILL UNIVERSITY MONTREAL JUSTUS LIEBIG-UNIVERSITÄT GIESSEN

(Received April 26, 1975.)