Subproducts and subdirect products

By F. LOONSTRA. (Delft)
To the memory of Prof. A. Kertész

§ 1. Introduction

In the following R is a commutative ring (1€R), {M;};-; a (non-empty) set
of R-modules M;=0, F an R-module, and o;:M,—~F(icI) a set of R-epimor-
phism. We consider the set Mc J] M, of those elements m=(m;);-;< [] M; such

icl

il
that the following relations are satisfied:
(D 2; rjiai(mi) =0 (jeJ),
i€

where 7/ and J are index sets, and where every sum in (1) contains only a finite

number of terms=0. M is a submodule of [] M;, called a subproduct M of the M,
icrl

denoted by

2 M ={M;; a; F; %’ rpo(m) = 0; jeJ}.

A well known example of (2) is the special subdirect product

M = X M(x; F),
icl
with relations

3) a;(m;) —o (my) = 0(v i, k<1).

The relations (1) are related with a system of linear equations
4) jZf'rjfxi =0, jeJ,

where x;=o;(m;), icl. This system is a system of homogeneous linear equations
over F, so we have always the zero solution of (4). If K;=Ker (%), €I, then M

contains the direct product K= [] K; as a submodule. If therefore the number of
icr
K;=0 is infinite, M cannot be thte direct sum of the M;.

9D
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Therefore that M is the direct sum @ M;, it is necessary that rjo(m;)=0
i€l
for all 7,j, and all m;. With this condition only, M is still J][ M;, so I must

!:I
be finite: according to our assumptions about the terms r;a;(m;) in (1), we can in
this case omit the relations (]) Concerning the solutions of the equations (4): If
X=(.... Xiy o ier» 8j= 2 rjiXi, and Y=(..., g;, ...)jes, then the solutions of (4)
icr

correspond in a one to one way with the elements of the R-module Homg(X/Y, F).
Indeed, if (..., f;....) satisfies (4), then there is an R-homomorphism ¢:X/Y—~F,
determined by ¢(X))=e¢(x;+ Y)=f;(icI). Conversely, if y ¢ Homg (X/ Y, F), such that
V(X)) =y (x;+Y)=f(icI), then x;=f;(i€I) is a solution of (4). If ¢<Homg(X/Y, F)
determines the solution x;=f;(i€I) of (4), then r¢ determines the solution
rx;=rf;(icl).

A subproduct has the following universal property:

Theorem 1.1. Let the subproduct M be defined by (2) and let n; be the canon-
ical projection m;:M—M(icl), then Z'rﬁnt,rri=0(vj€.!). Conversely, if M’ is an
i€

R-module, ¢;: M"—~M,(Vicl) an R-homomorph:sm, with 2’ %0, =0(vjeJ),
then there exists a unique 0: M'—M, satisfying n,®=p0,(Vic I)

M B M R op
N P

Proor. If g;,(m")=my;(icl), Z'rﬂxf(m‘) 0, then the element m=(m),;c€M

and we define 0 by 0(m")=m; lhen n0=0;. If 7,0=m0" then n;(0—0)m’ =
=0(viel), or O(m")=0"(m"). The solutions of the equations (4) form an R-module

S=1t..5 ...);g rifi=0; jeJ};

with (f) and (f). we know that (f,+f;") and (rf;) are also solutions of (4).
For fixed icI the components f; of the solutions form a submodule F; of F.
Therefore S is a subdirect product
S=xF,

iel
uniquely determined by the subproduct (2).
If N;=a;'F(icI), then we see that the subproduct M is a subdirect product
of the R-modules N,;(i€[l):

(5) M= XN(KH‘F Z‘rJII(”f)_O .J J)

icl
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If we have a set of subproducts M) with the same set {M;; «;; F}, but evt. with
different relation systems, then it is clear that the systems of relations rogether define

a subproduct
M=NMIc]] M,.
i

i€l
This means that the subproduct, defined by (2) can be considered as the intersec-
tion of the one-relation subproducts

(6) MO ={M;; a; F; 3 rua(m) =0, fixed jeJ}, M =M.
i i

The solutions of (4) correspond in a one to one way with the elements of
Homg(X/Y, F); now M= M, where M'7 is defined by only one relation

2 riio(m)=0 (j fixed).
7

The clements ¢; of Homg(X/Y,;, F), where Y;=(g;), correspond in a one
to one way with the solutions (....7”,...) of g;=0 by ¢;(X)=£. It is clear
that the set (..., ;. ...);c; defines a solution of (4) (i.e. defines an element of
Homg (X/Y, F)) if for any two indices j;.j,€J we have

Cpoees Xy ) = @ (e Xy 02):
If we denote by H=Homg(X/Y, F) and by HY=Homg(X/Y;, F), j¢J, then H
is a special subdirect product of the HY(jcJ), determined by the homomorphisms

ﬁ(f) : (pj e (-")J‘;U)! ---aﬁ[ns ---)-

§ 2. Special cases of subproducts

A. Let us consider the subproduct (2) of § 1 as the intersection of the one-relation
subproducts M/ (see § 1, (6)). Let

(7 Py % (M )+ ooy 2, (my ) =0
be the corresponding relation of M, with corresponding equation

rﬂlxl-i-...-l-fj,-kxk - 0.
Then we have

Theorem 2.1. MV is a subdirect product of the M(icl), exactly if ry, FC

< JrF(viy:rj=0). Indeed, this follows from the fact that for any f€F the
i=1,
element ryi,/ can be written as > r;; f; for suitable f< F.
“fc

Corollary 2.2. Let the subproduct M be given by (2) with coefficients r; =0, then
M can be considered as the intersection of R-modules M(jcJ) — where each
M) is a subdirect product of the M; — if and only if rj, FC 3 ry F(Viy€l, Vj€J).

i%1

B. In the special case that we have two R-modules M,, M:, a:M;—~F(i=1, 2),
the two R-epimorphisms and the only relation ryu, (m,)+r,ay(m,)=0, together
with the conditions that r, F=r, F, then M is a subdirect product of M; and M,.

g
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But this subdirect product must be a special subdirect product of M, and M,.
If we define

Nl. == {m,ﬁMﬂ(m;,O)EM}, N2 -_— {m2EM2|(0, m2)EM}!

then N,={m,<M,|r,a,(m,)=0}, etc.
This implies that thereisamodule F,C F consisting of those f,€ F with r, f;=0.
In the same way there exists a submodule F,c F with Fy={f,cFlr, £,=0} and

uN, = Fy, aN, = F,.
We prove that
M,/N; = M,/N,.

Indeed, define a map ¢:M,/N,—~M,/N, in the following way: if m=(m,, my)cM,
then define
@ :my+N,— my+ N,;

if m"=(m,, m3)eM, then my,—mieN, and my+Ny=my+ N,.

Since M is a subdirect product of M, and M,, every m, occurs, SO ¢ is
wonto”. Ker (@)={(my, my)e M|mycN,}. Then it follows that m,cN,, hence
Ker (¢) is the zero element of M,/N,; this proves that M,/N,= M,/N,. Since

M,/N, =~ M,/K,/N,/K, = F|F,, and M,/N, = F|F,,
we have
F|F, = F|F,.

Moreover M consists of all pairs (m,, m,) for which the natural homomorphisms
M,—~M,/N,, My—~M,/N, map m, and m, upon corresponding cosets.

C. Theorem 2.3. Suppose that we have represented the subproduct M(of § 1,(2))
in the form (5) as a subdirect product of the N;; then the following statement holds:
if the N;(icI) are injective and F is torsionfree, then M is an injective R-module.

PrROOF. Let L(#0) be an ideal of the ring R, and ¢:L—-M, n;: M—N,(icl)
R-homomorphisms, where #; is the canonical projection, then there exists a ¢;:R—~
—-N;(i€l), such that ¢,t=m. Suppose ¢;(1)=n;, then for icL, we have
@i(A)=in;. If @(A)=meM, then @(i)=(..., in;, ..., in, ...), and this element
belongs to M= X N;, such that the images a«(4n;) satisfy the relation

il

D ———= | - _1’.,_._.._;9

')" ,"
T %
5

B

Ni

2 rjixi(‘;-"f) =0 (jeJ),
icl



Subproducts and subdirect products 133

hence
i~(_§ rpo(n)) =0 (YAEL; jeJ).

Since F is torsionfree, L=0, we find
i_z; rji“s("s) =0 (jeJ),

and that implies that the element m,=(..., m;, ...)€ M, and moreover, that ¢ (1) =/im,
proving that M is injective.

Remark 1. If — in particular — N;=M,;, and therefore F,=F(vicI), then
the injectivity of the M; and the torsionfreeness of F implies the injectivity of M.

Remark 2. In the same way one proves:
Corollary. If M, is injective (Yi€l) and F is torsionfree, then M is injective.
D. The case of a subdirect product.

In general, the subproduct M (see § 1, (2)) is not a subdirect product of the
M (i€l). From § 1 we know that the solutions of the corresponding equations (4)
over the module F form an R-module S={(....f;,...)| 3 r;; fi=0; jeJ}, and

i€l
moreover S= X F;. A necessary and sufficient condition therefore that M is
icr

a subdirect product of the M, is, that F;=F(Yi€l). One can express this (neces-
sary and sufficient) condition in another way:

(i) M is a subdirect product of the M;, if and only if — for every k€7 and
for every f¢ F — the equations
9) iz::rjixi=_"rjkf (jed)

]

are solvable in F. Equivalent with this condition (i) is the condition

(i1) For every k<[l and for every f€ F, there exists an element ¢ < Homg(X/Y, F)
such that

0(X) = o(x,+Y) = f.

From the theory of linear equations over an R-module we know that a neces-
sary condition for the solvability of the system (9) is the compatibility of the system
(9) for every k<l and every f€F.

Theorem 2.4. If the systems (9) are compatible for every kel and every f€F,
and F is injective, then M is a subdirect product of the M.

§ 3. Other subproducts

1. Wich subproducts (2) describe the cartesian product M= [J M;? In that
icl
case all elements m=(m);c;€ J[[ M; have to satisfy the relations (1). Taking for
icl
m=(..., 0, m;, 0, ...) we find as necessary conditions

(10) rioe(m) =0
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and we have to take care of the fact that «;(m;) runs through all elements of F, i.e.
ri f=0(vicl, jcJ). The relations (10) can be satisfied if either

(11) (i) F=0;
(11%) (ii) ru€Anng(F) (for all i<l j<J).

The conditions (11), resp. (11*) guarantee also that M is the cartesian product.
2.If M and M’ are two subproducts with the same {M,,, F}.,, can
they describe the same subproduct M =M"? The corresponding systems of equations

are
() Zrux;=0 (jeJ), resp. Jripx;=0 (j'eJ’) (ii).
icl iel

If m=(m);c;<M, then the {x(m)};:; have to satisfy (i) and (ii) and conversely.
That means that the systems (|) and (u) must have the same solutlons x=(Xies-
Denoting by Y=(...,g;,...), er,x,, Y =(oiy 8js ooe s 8= Z'rj,xi, we

have: if Y=Y’, then the solutlons of lt:he corresponding systems Zrﬂ x;=0(j€eJ),
resp. > rj;x;=0 (j’€J’) coincide and that implies M=M". Conversely. if M
i

and M’ coincide, then the corresponding equations of any of the two systems are
consequences of the equations of the other, i.e. ¥=Y’. This means: Y=Y’ is the
necessary and sufficient condition therefore that M=M".

§ 4. The case of the special subproduct

Suppose that M={M;;«; F; > rjo(m)=0},-, is a given subproduct; we
el

define
Ci=MNM;= {mcM|r,m =0, k # i};

C; is the submodule of M with elements m=(...,0, m;, 0, ...). Using the given
relations, we find for the components m; of m<C;:

(12) rjiai(mi) = 0(vjeJ).

These relations can be satisfied in the following way:
(i) F=0; in that case M= [IM,, Ci=M;(Viel);

(i) we denote — for every ﬁxed icl — by §S; the subset of R defined by
S;={..., 'ji, ... }jes: then there is a submodule V;c F, defined by

(13) Vi=(0:S) = {feF|S,f=0}.

V, consists of the elements v=a;(m,), satisfying the condition (12), and that means
that there is a submodule C;=MM;, with o, C;=V,(icI); we have

K, =Keraq;cC,C M,.
Let C be the submodule of M, defined by

(14) C =l_g C
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we remind that each equation Z'rﬂ:z (m;)=0 is a finite sum of expressions r;;x;(m;)
and for every m;<C;, we have r_,,a:i(m,) =0. Furthermore we define the submodules
(15) DicM (icl),
consisting of the elements d=(d;);c;€M with d;=0. Let N;=nm,MCM,;, then
M|D; = N,
We now suppose that M satisfies the relations
(16) D;,cC(viel).

This implies
M|C = M|D,/C|D; = N/C;;

using the property that F;=o;(N;), we have
(17) N/C; = N/K[C/K; = FV; (icl).

This means that every M, contains a submodule N; such that the quotients N;/C
are ,,invariant”; i.c. if we denote M/C by F, then we have, for all i<1,

N,/C; = F.
If m=(..., m, ...) 5 M, m;(m)=m;EN,, then we define f;:N,—~F by
(18) ﬁi(m‘-) = m+C, if E‘(m) = m,-.

Then p does not depend upon the choice of meM; for if n;(m)=mn;(m’), then
m—m’€D;cC, hence m+C=m’"+C. If therefore m=(m;);c;€M, it follows from
(18), that

(19) ...=ﬁ,-(m,-) =...=ﬁj(mj)=...=m+c;

this means that there is an R-module F and epimorphisms p;:N;—~F(i€I), such
that al/l elements m< M satisfy the property of a special subdirect product. If, con-
versely, n=(n; ),E,\[IN has the property, that ...=fn;=...=f;n;=..., then

ncM. Indeed, B;n; —n "4 C for some n’é M, only if mn’=n;; but then n=n"¢ M.
Using the notations we have defined here we have proved the

Theorem 4.1. Under the conditions D;—C(i€l), the subproducr M= {M;. a; F
Z’ rio(m))=0} is a special subdirect product M= >< Ni( Bi; F

If for at least one i€l we have Ci=MﬂMj= ;» then N;=M,; for all
icl, and F=M/C=0; in that case M =[] M;. If however for at least one i</

i€l
we have C;S N;, then this relation holds for all i€ 1.

Conversely, suppose that the subproduct M (see (2)) has the property that M is
a special subdirect product of the submodules N;C M; (where N;==; M) with respect
to epimorphisms f;:N;—~F, then M= {m=(m,);c;, m€N;|pm;=pm,(i, keI)}. For
the elements deD;, d (d)ie; €M, we have then pB;m=p.n=0 for all k€l
Since C={c=(c))ic1|Pic;i=0, Vi€I}, we have D,cC(Vi€l).
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§ 5. The strukture of Homg(A4, M), if M is a subproduct

Let M={M,; a;; F; Zr io;(m;)=0; jeJ} be any subproduct, then we want
to study the structure of HomR(A M) for any R-module A.

y My =52 MJI
r, P

Ai ; s N xJ
\

'\

-~ ﬁ A
A : 2 F

77

If fc Homg(A4, M),ac A, then B(a)=(....,m;,...,m;,...) M, and 3 rj;o;(m;)=0;
el
f induces a system of R-homomorphisms

ﬁi:A _"Mi'l ﬁf=niﬂ (V"EIL

where 7; is the canonical projection mn;:M—-M(icl). Hence p(a)=m;(i€l).
Substitution in 3 rj;(m;)=0 gives
il

(2) Z rpupi(a) =0 (jeJ, vacA).

Defining ;f;=7;, we see that

3) ‘Z; rivi(@) =0 (jeJ, YacA).
§

This implies that if we have a subproduct M and fcHomg(A4, M), then f induces
a set of R-homomorphisms f,:4—~M,, such that (2) holds. Moreover f induces
a system (..., 7, ...), Yi€Homg(A4, F), y;=o;p;,i€l, such that the relations

4) %’ rpvi(@) =0 (jeJ)

hold for all a<A. Conversely: suppose we have a set of R-homomorphisms f;€
€Homg (A, M;), i€l, such that for allac¢ A we have the identities > rja;;(a)=0;
i€l

then the system (..., f;, ...) determines in a unique way a homomorphism f:4—~M
by p(a)=(..., Bi(a),...) and this element belongs to M, since (2) is satisfied.
Moreover we learn from (4), that — for a certain j€J — we have

: rnti(@+rpya(@)+...+ry, 1, (@) =0 (Vacd),
ie.
ratitrjyet . +rpn, =0,
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(using the fact that R is commuative!): that means — for all j<J — we have the
identities

(3) 2 =0 (jeJ).
il

The result can be expressed as follows:

Theorem S.1. If M is a subproduct, defined by (1), and A is any R-module,
then Hompg(A, M) is a subproduct of the Homg(A, M;), determined by

Hompg (4, M) = {Homg(4, M); (z),: Homg(4, F); 3 ry(x), = 0;: jEJ},
icl
where (o), =o;p;.

The result is an exchange of the operation Hom with the operation of taking
subproducts; in fact, it means that any pf€Homg(A4, M) is determined by a set
(Biicr» fi€Homg (A, M;), such that the relations > r;u; f;=0(j€J) are satisfied.

i€l

Remark. We know that the structure of a subdirect product of » modules
M;(n=2) is rather complicated. Prof. L. FucHs sent me the following remark,
proving that a subdirect product of finitely many modules can be described by a sub-
product.

Let M be a subdirect product M= X M; of the finitely many modules

i=1

M,, ..., M,. Then define F= é M /M and let o;;M;—~F be the maps defined by
i=1

o;:m;—m;+ M. Then M can be recaptured by using the single equation iz; o m;=0.

I am very grateful to Professor L. Fuchs for his kind help in reading the manu-
script and for his useful remarks.
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