On polynomial regression of polynomial and linear statistics

By BELA GLEVITZKY (Debrecen)

1. Introduction

In [3], Yu. V. LiNnNIK and A. A. ZINGER proved the following theorem:
Let &,,...,&, be a sample from random variable ¢ and assume that ¢ has
moments up to order m. Let the adjoint polynomial of the polynomial statistic

P= A, wiit. Gr

be a regular polynomial statistic of degree p, and order m|m=p,|. Here and in the
sequel the summation is extended over all nonnegative integers v, ..., v, which
satisfy the relation

(1.1) i+..4+v, = py.

If P has constant regression on A=¢;+...+¢&, and m=n—1 then the charac-
teristic function f(¢) of ¢ is an entire function.

In [2], B. GyIres generalized this theorem in two direction. First he supposed
only that &, ..., ¢, are independent random variables instead of being a sample,
consisting of independently and identically distributed random variables. Secondly
he avoided the condition m=n—1. It is well known that this condition strongly
narrows down the applicability of the theorem of Linnik and Zinger.

In this paper we also avoid the condition m=n—1. We suppose that ¢&,, ..., &,
are independent but not necessarily identically distributed random variables and
that they have moments of all orders. We give an extension the theorem of Linnik
and Zinger in the case, when P has regression of order r(0=r=m-—1) on A=

= ;¢ a;#0, ;R j=1.2,....,n. We shall use the following notations,
j=1

definitions and results.

Let R, be the n-dimensional space with row vectors as elements. If vER,
then v* stands for the transpose of the vector v.

ac R, is the vector with all components equal to 1.
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Let the components of the random vector-variable {=({;)<R, be independent
random variables. Denote the distribution function of &; by F;(x) (j=1,2,...,n)
and assume that F;(x) has moments up to order m. Let

P = ZA\‘I «Vn ;l g"u
be a polynomial statistic of degree p,.

Definition 1.1. The statistic P is said to be a common polynomial statistic of
degree p, and order mim=p,| if the following conditions are satisfied:

a) The statistic P is a nonnegative polynomial;

b) No exponent in P exceeds m;

¢) P contains the m-th power of each variable. (If the random variables ¢, ...,5,
are identically distributed then it is sufficient to assume that the polynomial P of
degree p;, and order m=p, contains the m-th power of at least one variable. In
this case P is a regular polynomial statistic of degree p, and order m.)

Definition 1.2. A characteristic function f(¢) is said to be an analytic charac-
teristic function if there exists a function A(z) of the complex variable z which is
regular in the circle |Z|<g (¢=0) and a constant 4=0 such that A(t)=f(z) for
[t|<4.

Lemma 1.1. ([1], p. 89, lemma 5.3.4.) If a characteristic function f(z) is regular
in a neighbourhood of the origin then it is also regular in a honzonta! strip and it can be

represented in this strip by the Fourier integral f(z)= f e“*dF(x) where F(x) is

the distribution function corresponding to f(z). This stnp is either the whole plane,
or it has one, or two, horizontal boundary lines.

Definition 1.3. If the strip is the whole plane then f(z) is called an entire charac-
teristic function.

Definition 1.4. Consider two random variables ¢ and n and assume that the
conditional expectation E(n|¢) exists. We say that n has polynomial regression of
order r on ¢ if the relation

EM|Q) = Bo+BrS+...+B,&

holds almost everywhere.
Assume that the first moments of » and the r-th moment of ¢ exist. Then

E() = o+ BrLEQ)+ ...+ B, E().

Theorem 1.1. ([1], p. 103, Theorem 6.1.1.) Let & and n be two random variables
and assume that the expectations E(n) and E(") exist where r is a nonnegame
integer. The random variable n has polynomial regression of order r on & if and
only if the relation

Ere) = 3 pEe")

holds for all real t. Here the P; are real constants.
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2. A new version of Linnik—Zinger's theorem

First we prove the following theorem.

Theorem 2.1. Let the components of the random vector-variable (=(;)<R,
be independent but not necessarily identically distributed random variables. Let the
distribution function of &; be denoted by F;(x) and assume that <; has moments of
all orders, j=1,2, ...,n. Let A={a™ and let

— 4 =V,
P = ZAv;...v,,bll —alp”

be a common polynomial statistic of degree p, and order m (m=p,). If P has
polynomial regression of order r|0=r=m—1| on A then the characteristic function
Ji(t) of F;(x)is an entire characteristic function.

To prove theorem 2.1, the following lemma is needed.

Lemma 2.1. ([2], lemma 3.1.) Let » be a positive constant. Let s and k be posi-
tive integers, s=k. Put

s
Sk:(s) — Z
J1
where the summation is extended over all positive integers j,, ..., Jj. which satisfy the
relation j,+...+jy=s. Then
Sk.x(s) — (22+“ 4 Sa)k_l

where s, is the sum of the series
1 142 1 142z
PR

Since P has polynomial regression of order r 0=r=m—1| on A it is easily
seen that the characteristic functions f;(¢) of ¢; |j=1, 2. ..., n| satisfy the follo-
wing equation :

PROOF of theorem 2.1.

@1 f P(x)e"*" dFy(x,) ... dF,(x) = 0?,, f (xa"y " dFy (x,) ... dF,(x,).
p-

Since ¢; |j=1,2, ....n| has moments of all orders we may differentiate (2.1) any
number of times. By dlﬂ'erentlalmg both sides of (2.1) N-times then putting =0 we
obtain

(2.2) fP(x)(xa‘)HdFJ.(xl) .dF,(x,) = Z ip f(xa“)\”dFl("x) . dF,(x,).
R p=0

Denote the k-th absolut moment of F;(x) by

(2.3) = [ |xFdFi(x) li=1,..,n
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First we show that the inequality

!
@4 B = o

holds for any positive integer k where x and M are positive constants which will
be chosen later. We prove (2.4) by induction.
Since P is a common polynomial statistic it is nonnegative and so its order m

is necessarily an even integer. Therefore we can write |[m=2|

{2'5) P=P0(629°°°sén)ér+"°+Pm(§2$ "-aéu)

where P,(&;, ..., ¢,) is also a nonnegative polynomial in the n—1 variables
£ay ...y &y First let N (and thus k) be an even integer. We use the inequalities

(2.6) [|xa] = [xe+ ... +%,]| = |xa™| = x|+ ...+ x|
and obtain from (2.2) that
[ PO (x| =t + %)V dFy(x) ... dF,(x,) =
Rl‘
2.7) g . N+p
=3l [ [_z |x,r] dF(x) ... dF,(x,)
p=0 R, Jj=1

Theorem 2.1. is trivial if the ¢;’s are bounded random variables. So assume, from
now on, that at least one of the random variables ¢,, ..., &, is not bounded. Let

(2.8) 1 =F(x=0)+F,(—x)=0.
It is always possible to find a bounded region QCR,_; such that
(2.9) [ dFu(xy) ... dF,(x,) = ¢, = 0
[
(2.10) n}?in Po(Xgs ooy X) =y >0

We can find positive constants C,, C,, C; such that the relations
(2.11) P(x) = c4|xy ™
(2.12) |xa®™| = c;5)x,|

are satisfied, provided that |x,/=c; and (x,, ..., x,)¢ Q. The integrand on the left
hand side of (2.7) is nonnegative, so that

f fxi"(lxll—|xe+--- +x,)VdFy(xy) ... dF,(x,) =

Ixl=¢c3 02

(2.13) r .
=34 [ [jz .fxff] dF,(x) ... dF,(x,).
p= B, =1
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Let
(2.14) b= [|xe+...+ x| dFy(xy) ... dF,(x,),
n
215) h= [ [*(xl=lxet. . +x)¥dF@) .. dE(x),
EAET Y
(2.16) Q, = {x||x:] = ¢35, (x5, ..., X,)EQ, XER,},
(2.17) ¢ = max {Ixal, [Ix1] =[x+ ... + x| }-

Now we see that
(2.18) L& B,
It follows from (2.13)—(2.18) that

[ [ ul=lx+. +x) dE(x) ... dF,(x) =
Q

= ZN[N] [ b emidbe) [ vt dEG) . dF ) =
i=o\J —o0 o

(2.19)
- s |V PV T Ny s | AN
= 3| | Bm-jbj(—1) = b,CP*N +
i=0J
’ (N+p)!
3 1L F oW R
Y20 v Gioronis TPV ST P P
Therefore
(1) > [V g m+N
N+nbo Ejz: j ﬁN+m-jbj+ans -
(2.20) "
; (N+p)!  .q ;
+’§qui’]?-..+§"’]-h'+p VR N i - Bl

It follows from (2.14) that there exists a positive constant b such that
(2.21) b; = byb’.

Thus there exists a positive constant M, such that

(2.22) P S s My
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where k=1,2,....,m—1;j=1,...,n and x>0. Assume now that (2.4) holds for
k=1,2,...., N+m—1 and for some M=M, which will be selected later. Then we
have to show that (2.4) is valid for k=N+m. Using the inequality (2.4) for k=
=12, ..., N+m—1, we obtain from (2.20) and (2.21) that

MN+m=ip,bl +

[N (N+m—j)!
(N‘f'f" __j)1+:

» : (N+p)! "
+b, PN+ 3 g, 2 T e E‘}" }.‘,"’"

P=0 = j{P+ . +)iP=N+p

’\+mb0— 2

Jj=1

(2.23)

Note first that

N , (m+ N)!
(2.24) [J.](m-{-N—-—_])!-:—.—r—
so that
_ & (N+m)! SO
51?3-’"21.‘:2; j!(N+m—j)1+= MN I bl +
(2.25)
: £ 3 (N+p)!
+CF N+p§|qupi+ +§P] e PRI _:;:,) ﬁ‘:p)

where ¢,=q,)b, IP=0,1,...,7|.
31g2

Ig3
quality, we obtain

Let 0<a< —1 then j'**=2/ and if we apply lemma 2.1. and Schwartz’s ine-

4 (N+m)!

M.\f+m—j 'E_—
=1 N(N+m—ji+= >

(N+m)! o vem 2[ ]’l}lﬂ[ N&m 170
= (N+m)rt= fat j! J(N+m—j) o

_ _(N+m)! M””‘Z" "b] [ N+m ]l"
— (N+m)rte M J(N+m—j)

= (—f\r{% M.\r+mV' é; [1_11 [%]T.

N+m 2“*“')5 (N+m)!
] 2[;(N+m—;)] T (N+m)t+=

(2.26)

[IA

MN+m }.."elzb-.\n‘s —1-S,(N+m) =

(N+m)!

N+m /,(2b/M)2 _ 1, 92+2, ¢
L'—(N+m)1+= M } et ) 1.2 Sas
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and

(N+p)! :
P (p)r ﬁj}m ﬁ({;: =

.“-F’_J_ +prl N+p _"
: (N+P)! B - B,
b Z j{?)! j(P] !

k=1 1=1{P ) =<..<i{P’=n j{P 4. +jP)=N+p

[IA

L (NEp)L e [ ] (N+pyts
(N+p)i+® k=1 i+ H:.”_qu (Jl:’))lu U:p))uz =

N+p)! M¥+p =
o (Nip)”’ kg [z] S (N+p) =

(2.27) = (_TV%% MN+p Z"' [:] (22*a.5 k-1 =

k=1

N+p)!

 (N+m)! [N+m] [ ] 1
~ (N+m)t*e N+p M (N+p+1)... (N+m)

1
22+, F

N+m)! o —p|"**
< o M m[ﬁ] [1+';+ﬁ] s (4205 -1 =

[(A+22*%.5 ) —1] <

N+m)! 1" ”
= -(%IW%MN"-M [-ﬁ] (l+m)1".

Therefore from (2.25), (2.26) and (2.27) it follows that

_ (N+m)!

ﬂh]im = W MN+m [}QWM)—'___] .22+¢,Sa+

(2.28) -
+[% +24,[M] (1+m)=+=]

Since the quantities b, a, s,, cg, m, ¢,, p are indenpedent of N, we can find a suffi-
ciently large M=c¢; such that

@29) Ve -zz+«-s,+[%]m [__].- wmpee<t
p=n
Then

(N+m)!
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If N (and thus k) is an odd number then we use instead of (2.7) the inequality

[ P (xy] = [xa+ o+ XY Uy o | dF () .. dF(x,) =
(2.30) " r N+p
= 2 bl f [ > wa) dFy(x,) ... dF,(x,)

and we see easily that inequality (2.4) is valid for odd k. This completes the proof
of the inequality (2.4).
Hence from (2.4)

(2.31) lim

k-—=eo

[B“' lr‘k

therefore the characteristic function f;(¢) is regular in the circle of radius —;?-
It follows that the characteristic function f;(z) |z=¢+iv, t€ R,. v€ R,| is regular at
least in the strip [Im z]-*:TI/!-.

Next we show that the regularity of fi(z) in a strip |Im z|<V |V'=0| implies
that fi(z) is also regular in the strip [Im z|< V+_]tl_f . The statement of theorem 2.1.

then follows by induction.
Assume that f;(z) is regular in the strip |[Im z|<¥V and observe that equation
(2.1) holds for all complex z in this strip, so that |x=(x;)€R,]

[ PO dE () . dFy5) =

(2.32) g
= 37, [(xa*yesdF,(x) ... dF,(x).
Lo R

By differentiating (2.32) N-times with respect to z and then putting z= —iv, we
obtain
[ P(x)(xa*)¥ e dFy(xy) ... dF,(x,) =

(2.33) o
= 3 [ @V rewn dR () . dF ()

p=0

for |ve|=V. Introduce now the functions

(2.34) Gi(x) =47 [ e”dFy(») |j=1,2,...,n|
where -

(239) 4= [ ewdF(y)
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Clearly G;(x) is a distribution function. We denote its characteristic function by
g;(r). We divide both sides of the equation (2.33) by the product A,... 4, and we
see that

[ P(x)(xa*)¥ dGy(xy) ... dG,y(x,) =

R’l

(2.36) :
= 37, [(a)*7dGy(x) ... dGy(x,).
Rll

p=0

This relation is identical to (2.2). We proceed in the same way as in the first part of
the proof of theorem 2.1., to show that g,(z) is also an analytic characteristic func-

tion which is regular in the strip |[Im z]«:%, Since

21(2) = A7 [ e=+nxdFy(x),

]

it follows immediately that the characteristic function f;(z) is regular in the strip

: 1 3
(Im z|=V +ﬁ, and so our theorem 2.1. is completely proved.

As extension of theorem 2.1. it is not difficult to prove:

Theorem 2.2. Let the componenis of the random vector-variable {=(¢;)€R,
be independent but not necessarily identically distributed random variables. Let the
distribution function of ; be denoted by F;(x) and assume that £; has moments of
all orders |j=1,2,...,n|. Let

A={a", a=(x)€ER,, ;%0 [j=1,...,n|

P=2 A s O O

be a common polynomial statistic of degree p, and order m |m=p,|. If P has
polynomial regression of order r |0=r=m—1| on A then the characteristic function
fi(t) of F;(x) is an entire characteristic function |j=1, ..., n|.

and let

Proor. By the assumption we see, similarly to (2.1), that

it Y oa;x;
[P(x)e =" dFy(x) ... dF,(x,) =
R!l

(2.37)
= 39, [(a'yec1dF(xy) ... dF,(x,).
' il A

The transformation y;=o;x; |j=1,....n| yields

[ Pi(»)€"0dG,(3y) ... dG,(y,) =
(2.38) o

= 3 [ (aPeondG,(y,) ... dG, ().

p=0 R,
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Here G;(x) is the distribution function of »;=«;¢; |j=1,...,n| and

1 Yn
P(y)=P|=—,..., =—
1(») [_11 %,
is also a common polynomial statistic. We conclude in the same way as in the proof
of the theorem 2.1., that the characteristic function of G;(x) and also the charac-
teristic function of F;(x) are entire functions (j=1, ..., n).

Let
P= A o

be a polynomial statistic of degree p,. Suppose that no exponent in P exceeds m
while at least one variable has exponent m |m=p,|. We form the polynomial statistic

) : " 3 =
P = "—l Z ZA\'I-..\'"‘;L': ék:

where the first summation runs over all permutations k, ..., k, of the first n integ-
ers, while the second summation is taken over all subscripts satisfying (1.1). The
statistic P* is said to be the adjoint polynomial statistic of P.

Theorem 2.3. Let the components of the random vector variable [=(;)ER,
be independent and identically distributed with F(x). Assume that F(x) has moments
of all orders. Let A=([a", x=(;)€R,, a;=0 and let

P e O

be a regular polynomial statistic of degree p, and order m \m=p,|. If P has poly-
nomial regression of order r |0=r=m-—1| on A then P* (the adjoint polynomial
statistic of P) has polynomial regression of order r 0=r=m—1| on A.

ProOOF. Since P has polynomial regression of order r |[0=r=m-—1| on A4,
therefore
[ P(x)e== dF,(xy) ... dF,(x,) =
RH

(2.39)

= 3y, [ (P dEy(x)) .. dF,(x,).
R

p=0
(.}

By the transformation

1 .
A= j=1...,nl

we get the expression (2.38) and then by the transformation y;=y, [j=1, ..., n|

the formula
fP(J’.t,- T )'t,.)e“{"" dG‘l.(yh) dGu(yk,.) =
(2.40) -

p=0

= 39, [ (a0 dG,(3,) ... dGy(3,),
Rﬂ
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follows, where k,, ..., k, is a permutation of the first » integers. Now the trans-
formation y;=a;x; |j=1,...,n| yields

[ P(xy,s ..., )€ dF (x)) ... dF(x,) =
2.41) £

= 3y, [ (2 dF(x) ... dF(x,
p=a" "0

ie. P(,,...,&,) and thus P* has also polynomial regression of order r |0=r=
=m—1| on A.

Theorem 2.4. Let the components of (=(E;)ER, be independently and iden-
tically distributed random variables with distribution function F(x). Assume that
F(x) has moments of all orders. Let A={a™ where a=(%)<R,.%;=0 and let

P Ty B

be a polynomial statistic of degree p, and order m |m=p,|. Suppose that no exponent
in P exceeds m while at least one variable has exponent m. Let the adjoint poly-
nomial of P be a nonnegative polynomial. If P has polynomial regression of order
rl0=r=m—1 on A then the characteristic function of F(x) is an entire function.

Proor. The adjoint polynomial P* of P is nonnegative therefore P* is
a regular polynomial statistic. On the basis of theorem 2.3. we obtain that our theorem
2.4. is a consequence of theorem 2.2.
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