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Absrract

In this paper we consider the asymptotic behaviour in weak sence of the generalized multino-
mial and marginal multinomial distributions. As special cases we obtain from our results the limit
theorems of the wellknown multinomial and marginal multinomial distributions. One of them give
a possibility to apply the Chisquare method for more general hypothesis as usual.

1. Let R, be the p=2-dimensional vector space with column vector as its
elements. Let

oooooooo

Let A, be a finite matrix built from the first m rows of 4. Let (4}, ... ‘”)
bc the matrix, which is built from the columns of A4, namely the k-th column of

A, appears f-times. If f,=0, then the k-th column of A, 1s missing from the
matrix (4g), ..., A).

Definition 1. The random vector-variable n,, —(q”")ERP defined on the probability
space (Q, o, P) is called a generalized multinomial distributed random vector-variable
generated by the matrix A,,, if

(1) PP =pk=1,..,p) = Per (4f) ... AP),

JARY A) ﬁp
where Py, ..., B, are non-negative integers which satisfy the condition p,+...+p,=

Definition 2. The random vector-variable ny' =(nw')€R,_, built from the first
p—1 components of n,, is called generalized margmal multinomial distributed random
vector-variable generated by the matrix A,,.
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If all rows of A,, are equal, then 7, and 7" are the well-known multinomial
and marginal multinomial distribution respectively ([2], 31—32).

The aim of this paper is an investigation of the asymptotic behaviour of the
sequences {N.}m-1 and {nw’}m-1 respectively. In the part 2 we give sufficient
conditions for the sequence {1, }m-; to converge weakly to a p-dimensional normal
distributed random vector-variable. As an application of this theorems in part 3 is
proved a theorem, which is suitable for the Chi-square method to apply for more
general hypothesis as usual. In part 4 is given a necessary and sufficient condition for
the sequence {nY’}m-; to converge weakly to a p— l-variate distribution with
independent Poissonian components.

2. We adjoint now to the j-th row of the matrix 4 the random vector-variable
&;=(")eR, defined on the probability space (L, o/, P). Let the conditions

{."f,-”-i-...+§j-” =1,
PUP =L P =00=) .0 e ) =ny k=1..:p0)

be satisfied by the components of ¢;. It is obviously that the characteristic function
of &; is equal to _
apei+...+a;et, t=(t)ER,.

Suppose that the elements of the sequence {¢;};2, are independent random vector-
variables. Thus the characteristic function of the random vector-variable &, +...+¢,,
is equal to

) Ou(t) = IT (ane'st ...+ a;pe"s).
j=

On the other hand it was proved by the author ([1], Corollary 1) that (2) is
also the characteristic function of the generalized multinomial random vector-

variable #,,. Thus

(3) M =‘51+“'+5m'

We obtain easily from (2) that ([1], Corollary 1)

E(’Ilgll)) A zm; ajk (k T 11 sevy P)
Jj=

and
E@S)... 0

(4) COVNp = [t vevemisnniasass “A;Am i

One can give the following interpretation of the result (3). Let the independent
experiments with mutually exclusive and exhaustive events E,, ..., E, of the proba-
bility space (@, <7, P) be given. In the j-th experiment let P(E)=a, (k=1, ..., p).
Then the probability that the event E; (k=1,...,p) occurs f,-times in the first
m experiments is given by (1), where f,+...+8,=m.
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Let r=p be the rank of the matrix
oy ... by

b(m) b(m)
& R S s Sy
with real elements. Let

(= (D) = Bu(ha—EMm))ER, (m=1,2,..),

where 5, =(n4')€R, is the generalized multinomial random vector-variable gen-
erated by the matrix A4,,. It is obviously that

E((,) = 0€R,,
(5 I, = cov{, = B,(covn,)B,,
rank I',, = min {r, rank cov n,,}.

Let g, (u), u=(uz)€R, be the characteristic function of {,, and let

S(B,) = J_=2": { [kz’l ah, (B,..)] [g’ a i (Bm)] ﬂé a; hi(s,..)}

where
B =| ZGRy k=1,...p).
F=1
Theorem 1. If
(6) ,,!’_“ﬂ, S(B,) = 0,
then

1
= 3*T
lim g, (w)e: ™ =1, ucR,.

Proor. By the application of the notation

r

b™ = Fbu, (k=1,...,p)

f=1
in the characteristic function

gm(“) = €xp {_ iu” BME('L!I)} n E(exp {f“‘ Bm‘qm})s

we get
m r P
(7) “*BmE(”m) = Z Z ajkbk(’u’ u milm = Zbéi")ql(:)'
j=1 k=1 k=1
Therefore

gm(1) = exp {—iu*B,E(,)}+ ¢n(bi™, ..., bI™),

where the function ¢, (t) is defined by (2). From the last expression

log g,,(4) = —iu*B,,(n,,) + > log (ane""i'")-i- ...+aj,,e"’5=”").
i=1
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By application of the Taylor formula we get
lOg 8m (“) = I.H*Bm E(qm) -+
m p 1 2 P
+ 2 log [H'f 2 apb™ i ﬂjk(bﬁ"")z'i'o[z “;‘k(b{”")”]] .
Jj=1 k=1 k=1 k=1

We expend the logarithm and use (7) to obtain

m P p ™ m
log gm(“)+'l‘ Z{Z aja(b{"")z—[Z' ajkbf"}] } = O[ 2 5,‘]»

2 S = k=1 j=1

where
P P p
S; = [le aj,‘b{""] LZI ajk(b,i'"’)g] +k2; au(B™P (j=1,..., m)
Since _
6™ | = h(B,)(u*u)"'2,

therefore

.i" isj' = S(Bm)(u*u)s.fz_
i=1

According to the assumption (6) and the expressions (4) and (5),
% 1
lim {log g,,,(u)+3 u*r,u} =0

and this is the statement of our Theorem 1.
As an important special case of the Theorem 1 is the following Theorem:
x
Theorem 2. Let B,,,:[m-l—] s :z:-—-;- and let the elements of the matrix-

sequence {C,}m-, bounded. Then

r

1
lim g,,(u]e-‘éu =1, ucR,.

Proor. Let C=(cjp’). Since {C,}w-, is bounded, we see that ;};S{le is

S(B,) = [71]]3&5(6,,,) -0 [[;11]3'_1] \

that is the assumption (6) is satisfied.
If C,=B (m=1,2,...), then the sequence {C,}n-; is bounded obviously.
We obtain therefore the following Corollary:

Corollary 1. If

also bounded, hence

B, = [—I]IB(m — 3 R T W

= rank B=r = p,

1
3 ’
then

 —7

I -
anl g,,,(u)eiu =1, uER..
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Theorem 3. Let B,,,=;,l= C,,. Assume that the limits
m

lim C, =B=(by), rankB =r,
oo

®) limay=a (k=1...p Ja-=1
exist. Then
® lim g0 = 7", ek,
where I’ = BGB*, with
a ... (0) a,
G=]-coere —aa®, a=
©)... g, a,

Proor. Using (8) we get

P . L R
lim — di=a lim — Baln =0l
B B J_;: Jk by B J_gl ki k4

Applying the notation

bk =321'bm‘u3 (kzl,...,p)

the relations
r

} 1 m . P v
lim — > > au(bi™)? =k2; ay b; .

m—-s= M j=1 k=1

lim — 3 [ 3 a, b,i""]zz Lé a, .e>,‘]2

m—=co M j=1 k=1

hold and thus in according to our statement

P P 2
lim w*l,u= 2 a,b{ —[Z a,‘bk] =uTu.
k=1

As a consequence of the Theorem 3, we obtain following in the literature well-
known Corollary:

Corollary 2. If

5= L_B(m =12..), tankB=r
ym
and
ajkzak (J'=l°2<- k=la°-<)p)a

then the limit (9) holds.

3. We consider now the following important special case of Theorem 2.
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Theorem 4. Suppose that the elements of the matrix A satisfy the conditions
(10) O<b=ay, (j=12..:k=1,..,p)
Let B, = --1= C,, where
Im

(11) C. = denrdiinngs (m=1,2,..)
1
0) . ——
: Vo
with
H=— Say m=1,2.;k=1,..,p)
=1
Then
lim g, (u)e? i 3,
with
m P
2 apdj
r,=I-|——————e—— .
l/ Z djx Z aj
j=1 j=1 k,l=1

where J is the unit matrix of p-th order.

Proor. It follows from the assumption (10) that the sequence {C,}m-; is
bounded, thus the Theorem 2 is applicable. We can derive the expression of I,
easily from (4) and (5) respectively.

Theorem 5. Let the elements of the matrix A be positive numbers and let
(12) lima,=a,=0 (k=1,...,p).

_'-.uu

If B,,,=',—I_ C,, and the sequence {C,)m-, is defined by (11), then
m

1
(13) lim g, (u) =€ 2", ueR,

with I'=J—bb~, where the components of the vector beR, are one after another
Va, (k=1, ....,p) and rank I'=p—1.

Proor. It follows from the assumption of the Theorem 5 that the condition (10)
is satisfied, thus the Theorem 4 is applicable. If we use (11) and we take in considera-
tion that the limit (12) holds, then in accordance to our statement

. R [y
lim w*Tu = u*(6y— Vaya)i - u,

me>cc

where &, is the Kronecker symbol.
The following special case of Theorem 5 is a well-known statement in the literatur.



On the asymptotic behaviour of the generalized multinomial distributions 169

Corollary 3. Suppose that the elements of the matrix A satisfy the conditions
a'jt=ak:"'0 (j=l,2,...; k—_—l,...,p).

Let B,,,=—~|l= Cn> Where

m

1

— ... (0)

Vay

C,=1|-rvv-mve- (m=12.))

1

0 ..—

©) rs

Then the limit (13) holds.

We can express Theorem 5 in the following form also:
Let the elements of the matrix 4 be positive numbers, which satisfy the condi-

tion (12). Let B,,,*—*VL,__ C,, and let the elements of the sequence {C,}m-; be defined
m

by (11). Then
B, (1n—E@,)) = N(0, I—bb*), m — o=

and the rank of the matrix J—bb* is equal to p—1.
If we use Theorem 3.4.2. of the monograph [2], we obtain the following result:
Theorem 6. Let the elements of the matrix A be positive numbers which satisfy
1
the conditions (12). Let B, =——C,, and let the elements of the sequence {C,}m-1 be

Ym
defined by (11). Then the sequence of the random variables

j=1

m
k=1

2 ap

j=1 m=1

g - Faf|

converges weakly to the Chi-square distribution with degrees of freedom p—1.

This Theorem give a possibility to generalize the Chisquare test in the following
way:
Let the independent experiments with mutually exclusive and exhaustive events
E,. ..., E, of the probability space (2, o/, P) be given. Then the H, hipothesis is
the following:

In the j-th experiment

P(Ek)=ajk}0 (k=l,29~-,P§ f=],2,)
and
limay=a>0 (k=1,..,p).
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4. Assume that the matrix-sequence {A4,};_, satisfies the conditions
A, = (@), aP =0, Z ap =

(B Y i i Ty 105 e 1, 00)
Let n,£R, be the generalized multinomial random vector variable generated by the
matrix A4,. We see from (2) that the corresponding characteristic function is equal to

(14) on(t) = [T (@feis+...+aets). t = (t)ER,.

j=l

Suppose that the random vector-variable

LA

11

21

22

v, i
t ¢ Y

vml ‘:m2 new fmm

5

satisfy the following conditions: ¢, ;=(, &) €R, and the random variable é,ﬁf,‘ has
the values 0, 1, namely

PR =1, &9=0 (@=1,..,p: azk) =al
k=) ....p: =1, ....m:m=1,2...)

and the random vector-variables belong to the same row are independent. Then on
accordance to (3)

'Lu = éml+---+‘fnm'

Let n,’ €R,-, be the generalized marginal multinomial random vector-variable
generated by the matrix A,. Substituting 7,=0 in (14) we get the characteristic
function @ (¢), t=(t,)¢R,_, of the random vector-variable n® . Thus

(15) “”(!)-H[l+a"’"(e"t D+ ... +am (er-1—1)].

Theorem 7. The sequence of the random vector-variables {ny }m-1 converges
weakly if and only if to a p—1 variate distribution with independent Poissonian com-
ponents, when the conditions

m

(16) lim _Za P=l E=L...,p-1)
(17 lim ‘ (I ajp’)?=0

.f'
are satisfied.



On the asymptotic behaviour of the generalized multinomial distributions 171

Proor. It follows from (15) that

(18) log @2 (t) = Z (e"k-l) F’ a""‘+0(5 (1)).
where
S.(t) = _2 [af’ (e —=1)+ ... +a7  (efs-1 =1)]%

In consideration of

(19) | ()] = ,2_‘ 2_: eits —1)(es — 1) 2 amalp| = 4 Z(I_Qrm
a=1 f=1

and since in (19) is an equality if
=(2k,+Dn (@=1,...,p-1)

with arbitrary integers k,, we see from (18) that the conditions (16) and (17) are
necessary and sufficient to the existence of the relation

Jim P(1) = exp (e —1)+...+ 4, (e"-1—1)}.
If
(20) a =af™, maf®=4>0 (k=1,...,p-1; m=1,2,..),
then simultaneously
I o T

afp =1L (F =1, 520y ),
thus
m IR S Y
S-apy=tatetbl Gy,
j=1 m

that is the conditions (16) and (17) are satisfied.
We use now Theorem 7 to obtain the following well-konown result:

Coroliary 4. Let n\’€R,_, be the generalized marginal multinomial random
vector-variable generated by the matrix A,,. If the sequence {A,}m-1 satisfies the
condition (20) then the sequence {n\ )., converges weakly to a p—1 variate dis-
tribution with independent Poissonian components.
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