Functional equations on ordered fields

By Z. DAROCZY—K. LAJKO—L. SZEKELYHIDI (Debrecen)

0. Introduction

Let G be a multiplicative Abelian group and let 4 be an additive Abelian
group. Let f:G—A be an arbitrary function and denote

(1) 4,f(x) = f(xy)—f(x) (x£G),

where y is a fixed element of G. N. G. pe BrunN [2] was the first to deal with the
following type of problem: Let H be a set of functions g:G—~A4 having a given
property. If f:G A is such a function that 4, f:G—~A4 belongs to H for every y€G
then one can ask whether there exists /"¢ H such that f—f* is a homomorphism
of G into A. In the affirmative case the property which defines the set H is said
to be a difference-property. N. G. de Bruijn’s investigations [2] are based upon the
Haar-measure defined on topological groups (see F. W. CArroLL [3] and F. W.
CArRrROLL—F. S. KoOEHL [4]) hence they are said to be analytic investigations. At the
same time to our knowledge the algebraic character of this problem has not been
investigated yet. Presumably the reason is the difficulty to characterize a diffe-
rence-property in a purely algebraic way. In this paper we give such a property where
the group G is the multiplicative group of the positive elements of an ordered field.
With the help of our result we give the general solution of Vajzovié's functional
equation of which only the measurable solution has been known so far (see F.
Vaszovic [8], K. LAIKO [7)).

1. Jensen-property
Let F be an ordered field and denote by P the set of positive elements in F.

Furthermore let A4 be an additive Abelian group.
The function «:P—+A is a Jensen-function if

x+y
(2) 2a[ 3

} = a(x) +a(y)

is valid for all x, y€ P. Denote J(P—~A) the class of Jensen-functions.
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Theorem 1. Let f:P—~A be an arbitrary function for which the following property
is valid: The function A, f(x)=f(xy)—f(x) (x£P) is a Jensen-function for every
fixed vEP. Then there exists a function acJ(P—A) such that the function m(x)=
=f(x)—ux(x) (xEP) is a homomorphism, i.e. m(xy)=m(x)+m(y) for all x, y€P.

Proor. (i) If BcJ(P—~A) then

3) B(2x)—2B(x) = B(2)—2B(1) (x€P).
Indeed from (2) we have
4) P(2x) = 2B(x+1)—F(2) (xEP).

On the other hand from (2) it follows that
fo )

p+1+0) =26 (5 +1)

and
pe)+p@) = 28(3+1),
and so we have
(5) Bx+1)—B(x) = B(2)—B(1) (x<P).
Using the equations (4) and (5)
B2x)—2B(x) = 2p(x+1)— B(2)—2B(x) = 2[B(2) - B(D] - B(2) = B(2)- 2B(1),
i.e. (3) is valid.
(i1) Let y€ P be arbitrary. Then 4, f:P—~A belongs to J(P—~A) and so because

of (3) we have
(6) 4,f(2x)—=24,f(x) = 4,f(2)—-24,f(1) = y(»)
where y:P—-A4 is an unknown function. On the other hand with the notation

¢(x) = f(2x)-2f(x) (xcP)
we get
Q) 4, f(2x) =24, f(x) = f(2xp) —f(2x) = 2f (xp) + 2/ (x) = @ (xy)— @(x)
and so because of (6) there follows

(8) e(xy) = o(x)+70)
for all x, y€P. Nowlet x=1 in (8) and let c=¢(1)¢ A4, then
10) = oe(y)—c

for all y¢P. Substituting this into (8) one gets
p(xy) = e(x)+ o) —c
m(x) = e(x)—c¢ (x<P)

we see that m:P—A is a homomorphism.

for all x, y€ P. Putting
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By hypothesis
a(x) = f(2x)—f(x)+¢ (x<P)

belongs to J(P—~A). Hence
2(x) —f(x) = f(2x) = 2f(x) — ¢ = ¢(x)—c = m(x)

i.e. «—f is a homomorphism. Therefore it follows obviously that f—a is a homo-
morphism too.

Remark. Theorem 1. can be formulated according to the terminology mentioned
in the Introduction in the following way: If P is the multiplicative group of positive
elements of an ordered field then the Jensen-property is a difference-property.

Here the function «:P—~A has the Jensen-property if x€J(P—A).

2. On the Vajzovit-equation

Let F=R where R is the (ordered) field of the real numbers. Then P=R_
where R. 1s the set of positive real numbers. F. VaizoviC [§] dealt with the follo-
wing problem: Let f:R.—-R be an unknown function, which satisfies the
functional equation

©) 2f[ ] = f[ﬂr_c]‘f[lic]_f[llc]

forall 7. c£R.. F. VaizoviC [8] proved that if /:R. —~R is measurable and satisfies
(9) then it has the form

(10) fx) = alogx+b,\'+alog2—% (x€R.),

where a, bR are arbitrary constants. For this result K. LAIKOG [7] gave an elemen-
tary proof based on the following lemma which he established in the case P=R.
and A=R.

Lemma 1. Let P be the set of positive elements of an ordered field and let A be
an additive Abelian group. Let f:P—A be an unknown function which satisfies the
Junctional equation (9) for all t, c€ P. Then the function A, f(x)=f(xy)—f(x) (x€P)
is a Jensen-function for all fixed y¢cP.

PROOF. Let x,, x,€ P arbitrary and

(ll) l = Xy +x2, c = ;—u

In(11) r and ¢ belong to P. therefore from (9) we infer for the unknown function
f:P—+A the functional equation

(12) 2f[ﬂ] S(x1) +1(x2) "f[x F 2 ] f[x,-f—x,]
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for all x,;, x,P. Now let y<P fixed then (12) implies

2Ayf[x,+32] ¥ zf[31+x2 ] 2f[x1+x2] _

= f(x1y) +f(x2)) _f[x,;-li—J;'gy ] _f[n;iyxﬁ] -

] + f[ X ] = 4,f(x) + 4, f(x)

Xy + Xg

—f ) £ (x) +f[ =

i.e. 4,f€J(P—~A). Hence the lemma is proved.
From this lemma there follows the following

Theorem 2. Let P be the set of positive elements of an ordered field and let A
be an additive Abelian group. Let f:P—-A be an unknown function which satisfies
the functional equation (9) for all t, c€P. Then there exist functions o:P—+A and
m:P—A such that

(13) f(x) = a(x)+m(x) (xeP)
holds, where a<J(P—A) and m:P— A is a homomorphism with 2[0: [%—] +m [%]l =4
PrOOF. By the lemma 4, f€J(P—A) for arbitrary y€P. Hence on the basis ol

Theorem 1. there exists a€J(P—-A) such that m=f—a is a homomorphism, i.c.
(13) holds, where « is a Jensen-function and m is a homomorphism. Substituting

(13) into (9) we get that 2[0: [%)-}-m [%]]:0 Hence the theorem 2. is proved.

In case P=R. we can give the general form of Jensen-functions by means of
the general solution of the Cauchy-functional equation

(14) A(x+y) = AX) +AQ),

where x, y€R.
There holds the following

Lemma 2. If the function «:R,—R satisfies the Jensen-functional equation
(2) for all x, ycR,, then x has the form

(15) a(x) = A(x)+C (x€R,),

where A satisfies the functional equation (14) for all x, yéR and C is an arbitrary
constant.

PROOF. Putting x—+x+X,, y=y+X, in (2) we get

(16) h[x;y +xn] = a(x+Xo) +a(P+Xxp), X,y = —X,.
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Putting x—~x+y, y—0 in (16) we obtain

(17) 20 [XTH%-.\:.,] = a(xX+y+x) +a(xy), X+y=—X,.

From (16) and (17) we obtain the functional equation

(18) a(x+y+xp)+a(xe) = a(x+x) +2(y +xp)

for all (x,y)eD={(x,y)\x, y=—x,, x+y=>—xo}. From (18) we infer that the
function A defined by

(19) A(x) = a(x+x0)—2(xe); A:(—Xp,=)—=R

is additive on D. Hence from results of Z. Daiéezy—L. Losonczi [5] there follows
that A has one and only one extension 4 which is additive on R and A(x)=A4(x)
for all x€(—x,, =) and so from (19) we obtain that

2(x) = A(x—x))+2(x) (xER,)

which gives (15) with C=ua(x,) — A (x,).
Now it is easy to prove the following

Theorem 3. Let f:R, —~R be an unknown function which satisfies the functional
equation (9) for all t, ceR . then f has the form

(20) f(x)= 4 [x > %] +m(2x) (x€R,),

where A satisfies the functional equation (14) for all x, yeR and m satisfies the
Sfunctional equation

(21) m(xy) = m(x)+m(y) (x,vER,).

Proor. Using theorem 2. in case P=R, and lemma 2. we have

f(¥) = A +mx)+C  (xeR,),

where A [—;] +C+m [%—]:0. thatis C=—4 [—_l,-] —m (%] and so (20) follows.

From our general result there follows

Theorem 4. Let f:R, —~R be an unknown function which satisfies the functional
equation (9) for all t,ceR .. In this case the following conditions are equivalent:
a) There exists xR, such that f is continuous at the points x, and 2x,;
b) The function f is measurable;
¢) There exists ¢€R. such that f is bounded on the interval (0, ¢).
Further from any of these conditions there follows that f has the form (10), where
a and b are constants.

12 D
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Proor. It will be sufficient to show that f has the form (10) in all three cases.
a) We obtain from theorem 3.

(22) f(2x)—f(x)= A4 (Z)L ——%-] +m(4x)— A [x— —;] —m(2x) = A(x)+m(2).

If f is continuous at the points x,, 2x, then the function A is continuous at the
point x, too, thus A4 is continuous on R (see [1]), and so

(23) A(x) = bx (x€R,)
follows.
On the other hand
f2x)—-2f(x) = A [21 -%] +m(4x) —2A4 | x —%] —2m(2x) =
(24)

=4 [—;—] —m(2)—m(x)

holds. From (24) there follows that m is continuous at x, and therefore f is
continuous on R, (see [1]) and so m has the form

(25) m(x) = alogx (x€R,).

Using (23) and (25) there follows from (20) that f has the form (10).

b) If / is measurable then there follows from (22) and (24) that the functions
A and m are measurable too, thus 4 and m are of the form (23) and (25) res-
pectively (see [1])., i.e. f has the form (10).

¢) If f is bounded on (0, &) then there follows from (22) that 4 is bounded on

[0, %] and so A has the form (23) (see [1]).
From (24) there follows that m is bounded on (0, &) and so m has the form

(25) (see [1]). Thus f has the form (10).
3. Further applications

Let P be the set of positive elements of an ordered field and let 4 be an additive
Abelian group. Let 4: P2~ A4 satisfy the following equations:

(26) A(x,y) = 4(3, %) (x,y€P),
(27 A, y)+4(xy,z) = A(x,y2)+4(y,2) (x,)y, z€P),
(28) 24 [—‘—“—}* z] = 4(x,2)+4(72) (x,,z€P).

The following theorem is valid:
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Theorem 5. Let A be adivisible Abelian group. If A:P*—A satisfies the function-
al equations (26), (27) and (28), then there exists a function a€J(P—~A) such that

(29) A(x,y) = a(xy) —o(x)—a(y)
holds for all x, ycP.

Proor. If 4:P*— A satisfies equations (26) and (27), then by the divisible
property of A, according to the result of JESSEN—KARPF—THORUP [6], there exists
a function f:P—A such that

(30) 4(x,y) = fxp)—f(x)—f»)

holds for all x, y¢ P. On the other hand because of (28) we obtain from (30) for all
fixed y€P and for arbitrary x,, x,€P

:A,,f[x‘;"*] =24 [x‘;x‘ : y] +2f(y) =

e A{x,,y)+d(xg,y)+2f(y) =
= f( ) =f(x) = f () +f(x20) = f(x2) = [ () + 2/ () = 4, f(x;) + 4, f(x),

that is 4, f(x) (x€P) is a Jensen-function. Then according to theorem 1. there
exists a function acJ(P—-A) such that m(x)=f(x)—a(x) is a homomorphism.
But from (30) we have

A(x,p) = f(xp)=f(x)=f(¥) = a(xy) + m(xy) — a(x) = m(x) = a(y) —m(y) =
= a(xy)—a(x)—-a(y),

thus the theorem is proved.
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