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Bitopologies and quasi-uniformities on spaces of
continuous functions II

By SALVADOR ROMAGUERA (Valencia) and
MARCOS RUIZ-GOMEZ (Valencia)

Abstract. We introduce a bitopological notion of pointwise convergence on spa-
ces of continuous functions and show that this notion permits us to extend several
classical theorems on function spaces to the bitopological case. In particular, neces-
sary and sufficient conditions for (bicomplete) quasi-metrizability of the bitopology of
pointwise convergence are obtained.

1. Introduction

In a recent paper [13] we introduced and investigated bitopological no-
tions of compact convergence and (quasi-)uniform compact convergence on
spaces of continuous functions, obtaining several generalizations of classical
results on compact convergence and uniform convergence. Almost simul-
taneously, Papadopoulos [11], [12], and Künzi [6] have also generalized
some fundamental results on uniform convergence to the quasi-uniform
case from a topological point of view obtaining, among other results, gen-
eralizitions of the Ascoli theorem.

We here continue the research begun in [13], introducing and studying
the notion of the bitopology of pointwise convergence.

In the following the letters R, Q and N will denote the set of real
numbers, rational numbers and positive integers, respectively. If τ is a
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topology on a set X and A ⊆ X, then τ clA (τ intA) will denote the
closure (interior) of A in the topological space (X, τ).

A bitopology on a set X is a pair (τ1, τ2) such that each τi, i = 1, 2, is
a topology on X. A bitopological space [5] is an ordered triple (X, τ1, τ2)
such that X is a set and τ1 and τ2 are topologies on X. We say that
two bitopologies (τ1, τ2) and (τ ′1, τ

′
2) coincide if τi = τ ′i , i = 1, 2. Given

a bitopology (τ1, τ2) we denote by τ1 ∨ τ2 the supremum topology of τ1

and τ2.
A bitopological space (X, τ1, τ2) is called:
(i) 2Hausdorff [15] if (X, τ1,∨τ2) is a Hausdorff space.
(ii) pairwise Hausdorff [5] if for x 6= y there is a τi-neighborhood of

x and a disjoint τj-neighborhood of y; i, j = 1, 2; i 6= j.
(iii) pairwise regular [5] if for each x the τj-closed τi-neighborhoods

of x form a base for the τi-neighborhoods of x; i, j = 1, 2; i 6= j.
(iv) pairwise completely regular [7] if for each x and each τi-open set

U with x ∈ U there is a τi-lower semicontinuous and τj-upper
semicontinuous function f : X → [0, 1] such that f(x) = 1 and
f(X \ U) = 0; i, j = 1, 2; i 6= j.

(v) 2compact [15] if (X, τ1 ∨ τ2) is compact.
A quasi-uniformity on a set X is a filter U on X ×X such that:

(i) for each U ∈ U , ∆ = {(x, x) : x ∈ X} ⊆ U and (ii) for each U ∈ U
there is V ∈ U such that V 2 ⊆ U where V 2 = V ◦ V .

If U is a quasi-uniformity on X, then T (U) = {A ⊆ X : if x ∈ A
there is U ∈ U with U(x) ⊆ A} is a topology on X, where U(x) = {y ∈
X : (x, y) ∈ U}. On the other hand, for each U ∈ U we can define
U−1 = {(x, y) : (y, x) ∈ U}. Then U−1 = {U−1 : U ∈ U} is also a quasi-
uniformity on X called the conjugate of U . The coarsest uniformity finer
than both U and U−1 is denoted by U∗. Thus, a basis for U∗ consists of
the entourages U∗ = U ∩ U−1 with U ∈ U . The quasi-uniformity U is
called bicomplete [3] if U∗ is a complete uniformity.

We say that a quasi-uniformity U on X is compatible with a bitopol-
ogy (τ1, τ2) on X if T (U) = τ1 and T (U−1) = τ2. A bitopological space
(X, τ1, τ2) is said to be quasi-uniformizable if there is a quasi-uniformity U
on X compatible with (τ1, τ2). Let us recall [7] that a bitopological space
is quasi-unifomizable if and only if it is pairwise completely regular.

A quasi-pseudometric on a set X is a nonnegative real-valued function
d on X ×X such that for all x, y, z ∈ X : (i) d(x, x) = 0 and (ii) d(x, y) ≤
d(x, z) + d(z, y). d is called separating if d(x, y) + d(y, x) > 0 whenever
x 6= y and is called a quasi-metric if d(x, y) > 0 whenever x 6= y [15].
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Each quasi-(pseudo)metric d on X generates a topology T (d) on X
which has as a base the family of d-balls {Bd(x, r) : x ∈ X, r > 0} where
Bd(x, r) = {y ∈ X : d(x, y) < r}. Note that the conjugate of d, d−1,
given by d−1(x, y) = d(y, x), is also a quasi-(pseudo)metric on X. Thus, a
quasi-(pseudo)metric d on X is called compatible with a bitopology (τ1, τ2)
on X if T (d) = τ1 and T (d−1) = τ2. A bitopological space (X, τ1, τ2) is
called (separated) quasi-(pseudo)metrizable if there is a (separating) quasi-
(pseudo)metric on X compatible with (τ1, τ2).

Note that a quasi-pseudometric d on X is separating if and only if
(X,T (d), T (d−1)) is a 2Hausdorff space. Similarly, d is a quasi-metric if
and only if (X, T (d), T (d−1)) is pairwise Hausdorff.

If d is a separating quasi-pseudometric on X, then d∗ defined by
d∗(x, y) = max{d(x, y), d(y, x)}, is a metric on X. Furthermore, d is called
bicomplete [14] if d∗ is complete metric.

Let d be the separating quasi-pseudometric defined on R by d(x, y) =
max{y−x, 0}. Then, basic T (d)-open sets are of the form ]−∞, a[, a ∈ R,
and basic T (d−1)-open sets are of the form ]a,+∞[, a ∈ R. Note that d∗ is
the usual metric on R. Therefore d is bicomplete. In the rest of the paper
u and ` will denote the above topologies T (d) and T (d−1), respectively.
Note that (R, u, `) is 2Hausdorff but not pairwise Hausdorff. Note also
that ([0, 1], u, `) is 2compact.

2. The bitopology of pointwise convergence

Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological spaces. A function

f from X into Y is called bicontinuous if it is continuous from (X, τi) into
(Y, τ ′i) for i = 1, 2. Then we shall write that f : (X, τ1, τ2) → (Y, τ ′1, τ

′
2) is

bicontinuous.
Following [13] we denote by Y X the set for all continuous functions

from (X, τ1 ∨ τ2) into (Y, τ1
′ ∨ τ2

′) and by BY X the subset of Y X which
consists of all bicontinuous functions from (X, τ1, τ2) into (Y, τ ′1, τ

′
2). In

particular, BY [0,1] will denote the set of all bicontinuous functions from
([0, 1], u, `) into (Y, τ ′1, τ

′
2) and B[0, 1]X the set of all bicontinuous functions

from (X, τ1, τ2) into ([0, 1], u, `). Similarly we define BY R and BRX . By
RX we denote the set of all continuous functions from (X, τ1 ∨ τ2) into R
with its usual topology u ∨ `.

A topological space (X, τ) contains a nontrivial path provided that
there is a continuous function p : ([0, 1], u ∨ `) → (X, τ) such that p(0) 6=
p(1). In the following by “path” we mean a nontrivial path. We say that
a bitopological space (Y, τ ′1, τ

′
2) contains a pairwise path [13] provided that
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there is a bicontinuous function p : ([0, 1], u, `) → (Y, τ ′1, τ
′
2) such that

p(0) ∈ Y \ τ ′1 cl p(1) and p(1) ∈ Y \ τ ′2 cl p(0).
We say that (Y, τ ′1, τ

′
2) contains a 2path provided that there is a path

p : ([0, 1], u ∨ `) → (Y, τ ′1 ∨ τ ′2). It is clear that every pairwise path is a
2path.

Given two bitopological spaces (X, τ1, τ2) and (Y, τ ′1, τ
′
2) let K = {K ⊆

X : K is τ1 ∨ τ2-compact}. For each K ∈ K and each Gi ∈ τ ′i , i = 1, 2,
consider the set

[K, Gi] = {f ∈ Y X : f(K) ⊆ Gi}
Then {[K, Gi] : K ∈ K and Gi ∈ τ ′i} is a subbase for a topology T i

k,
i = 1, 2, on Y X . By analogy wih the topological case, (T 1

k , T 2
k ) will be

called the 2compact open bitopology (on Y X) [13]. In the following that
bitopology will be called the bitopology of 2compact convergence (on Y X).

Now let F be the subset of K which consists of all (nonempty) finite
subsets of X. Then {[F, Gi] : F ∈ F and Gi ∈ τ ′i} is a subbase for a
topology T i

p, i = 1, 2, on Y X . The bitopology (T 1
p , T 2

p ) will be called
the bitopology of pointwise convergence (on Y X). The subset BY X of
Y X endowed with the restriction of this bitopology will be denoted by
(BY X , T 1

p , T 2
p ).

Remark 1. [13, Example 2] shows that in general the topologies T 1
p

and T 2
p are not comparable.

Remark 2. Given the bitopological spaces (Y X , T 1
k , T 2

k ) and
(Y X , T 1

p , T 2
p ), then T i

p ⊆ T i
k, i = 1, 2.

Remark 3. It is shown in [13, Remark 2] that BRX is dense in
(RX , T i

k), i = 1, 2. It follows from Remark 2, that BRX is also dense
in (RX , T i

p), i = 1, 2.

Related to Remark 1 we may state the two following results on com-
parison of topologies. With the notation introduced above, we have:

Proposition 1. Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological

spaces. Then, τ ′1 ⊆ τ ′2 if and only if T 1
k ⊆ T 2

k .

Proof. Suppose τ ′1 ⊆ τ ′2. Each subbasic open set [K, G] of T 1
k (with

K ∈ K and G ∈ τ ′1) is also open in T 2
k because G ∈ τ ′2. Thus T 1

k ⊆ T 2
k .

Conversely, let y ∈ Y and let G be a τ ′1-open neighborhood of y. Define
fy : X → Y by fy(x) = y for all x ∈ X. Fix x0 ∈ X. Then fy ∈ [x0, G] ∈
T 1

k . Hence, there exist τ ′1 ∨ τ ′2-compact non-void sets K1, . . . , Kn, and τ ′2
-open sets G1, . . . , Gn, such that fy ∈

⋂{[Ki, Gi] : i = 1, . . . , n} ⊆ [x0, G].
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Then it is easy to see that y ∈ ⋂{Gi : i = 1, 2, . . . , n} ⊆ G. (If z ∈ ⋂{Gi :
i = 1, 2, . . . , n}, then fz ∈

⋂{[Ki, Gi] : i = 1, 2, . . . , n}, so that z ∈ G.)
We conclude that τ ′1 ⊆ τ ′2.

If in the proof of the preceding result, τ1∨τ2-compact sets are replaced
by singletons, we obtain the following

Propsition 2. Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological

spaces. Then, τ ′1 ⊆ τ ′2 if and only if T 1
p ⊆ T 2

p .

The next result will be useful in Sections 3 and 4 (compare with [13,
Lemma 3]).

Lemma 1. Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological spaces.

If we denote by T ∗p the topology of pointwise convergence on Y X relative

to (X, τ1 ∨ τ2) and (Y, τ ′1 ∨ τ ′2), then T ∗p = T 1
p ∨ T 2

p .

Proof. Let f ∈ Y X , F a (nonempty) finite subset of X and W a
τ ′1 ∨ τ ′2-open subset of Y such that f ∈ [F, W ]. For each a ∈ F there exist
a τ ′1-open set Ga and a τ ′2-open set Ha with f(a) ∈ Ga ∩ Ha ⊆ W . Set
Fa = F ∩f−1(Ga∩Ha) whenever a ∈ F . Putting L =

⋂{[Fa, Ga] : a ∈ F}
and M =

⋂{[Fa,Ha] : a ∈ F} we have that L ∈ T 1
p , M ∈ T 2

p and
f ∈ L ∩M . Since L ∩M ⊆ [F,W ], T ∗p ⊆ T 1

p ∨ T 2
p . Finally, the inclusion

T 1
p ∨ T 2

p ⊆ T ∗p is obvious.

It is well-known that if (X, τ) and (Y, τ ′) are two topological spaces,
then the topology of pointwise convergence coincides with the topology of
a subspace of the Cartesian product

∏
x∈X

Yx where Yx = Y for all x ∈ X.

Similarly, we obtain the following bitopological generalization.

Proposition 3. Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological spa-

ces. Then the bitopology of pointwise convergence coincides with the

bitopology of a subspace of the product space
( ∏

x∈X

Yx,
∏

x∈X

(τ ′1)x,
∏

x∈X

(τ ′2)x

)
,

where Yx = Y , (τ ′1)x = τ ′1 and (τ ′2)x = τ ′2 for all x ∈ X.

From the above result and [16, Theorems 1.3, 1.4 and 1.5] we deduce
the following corollary.

Corollary. Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological spaces.

Then:

(a) (Y X , T 1
p , T 2

p ) is 2Hausdorff if and only if (Y, τ1, τ2) is 2Hausdorff.

(b) (Y X , T 1
p , T 2

p ) is pairwise Hausdorff if and only if (Y, τ1
′, τ2

′) is
pairwise Hausdorff.
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(c) (Y X , T 1
p , T 2

p ) is pairwise regular if and only if (Y, τ ′1, τ
′
2) is pairwise

regular.

(d) (Y X , T 1
p , T 2

p ) is quasi-uniformizable if and only if (Y, τ ′1, τ
′
2) is

quasi-uniformizable.

3. The bitopology of quasi-uniform pointwise convergence

Let (X, τ1, τ2) and (Y, τ ′1, τ
′
2) be two bitopological spaces such that

(Y, τ ′1, τ
′
2) is quasi-uniformizable and let U be a quasi-uniformity on Y

compatible with (τ ′1, τ
′
2). Then the collection of sets of the form (K,U) =

{(f, g) ∈ Y X × Y X : (f(x), g(x)) ∈ U for all x ∈ K}, where K ∈ K
and U ∈ U , is a base for a quasi-uniformity Uk on Y X called the quasi-
uniformity of quasi-uniform convergence (of U) on 2compacta [13] (see also
[9] and [11]). The bitopology (T (Uk), T (U−1

k )) is said to be the bitopology
of quasi-uniform convergence (of U) on 2compacta [13].

Similarly, the collection of sets of the form (X, U)={(f, g) ∈ Y X×Y X :
(f(x), g(x)) ∈ U for all x ∈ X}, where U ∈ U , is a base for a quasi-
uniformity UX on Y X called the quasi-uniformity of quasi-uniform conver-
gence (of U) [13] (see also [9] and [12]). The bitopology (T (UX), T (U−1

X ))
is said to be the bitopology of quasi-uniform convergence (of U) [13].

Now consider the collection of sets of the form

(x,U) = {(f, g) ∈ Y X × Y X : (f(x), g(x)) ∈ U}

where x ∈ X and U ∈ U . Then, this collection is a subbase for a quasi-
uniformity Up on Y X called the quasi-uniformity of pointwise convergence
(of U) (see [11]). The bitopology (T (Up), T (U−1

p )) is said to be the bitopol-
ogy of quasi-uniform pointwise convergence (of U).

Remark 4. The following inclusions are evident: Up ⊆ Uk ⊆ UX .

It is shown in [13] that if the quasi-unifomity U is bicomplete, then
UX is bicomplete. If, in addition, (X, τ1 ∨ τ2) is a k-space, then Uk is
also bicomplete ([13, Lemma 1] and [4, Chapter 7, Theorem 12]). Now we
obtain the corresponding result on bicompleteness of the quasi-uniformity
of pointwise convergence.
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Proposition 4. Let (X, τ1, τ2) be a bitopological space such that τ1∨τ2

is the discrete topology on X and let (Y, τ ′1, τ
′
2) be a quasi-uniformizable

space. If (τ ′1, τ
′
2) has a compatible bicomplete quasi-uniformity U , then Up

is bicomplete.

Proof. Since each function f : X → Y is in Y X , the quasi-uniform
space (Y X ,Up) coincides with the quasi-uniform product

∏
x

(Y,U). The
latter is bicomplete since (Y,U) is bicomplete.

Our next results generalize several fundamental facts on the topology
of pointwise convergence to the bitopological case.

Lemma 2. Let (X, τ1, τ2) be a bitopological space and (Y, τ ′1, τ
′
2) a

quasi-uniformizable space. Then for each quasi-uniformity on Y compat-
ible with (τ ′1, τ

′
2), the bitopology of quasi-uniform pointwise convergence

coincides with the bitopology of pointwise convergence.

Proof. Let U be a quasi-uniformity on Y compatible with (τ ′1, τ
′
2).

We first show that T 1
p ⊆ T (Up). Let f ∈ Y X , F a (nonempty) finite subset

of X and G ∈ τ ′1 such that f ∈ [F, G]. Then there is U ∈ U such that
U(f(x)) ⊆ G for all x ∈ F . Set V =

⋂{(x, U) : x ∈ F}. Then V ∈ Up and
V (f) ⊆ [F, G]. Thus T 1

p ⊆ T (Up). Similarly we show that T 2
p ⊆ T (U−1

p ).

Conversely, let f ∈ Y X , x0 ∈ X and U ∈ U , then f ∈ [x0, G] ⊆ (x0, U)(f)
where G = τ ′1 intU(f(x0)), so that T (Up) ⊆ T 1

p . Similarly we show that

T (U−1
p ) ⊆ T 2

p .

Theorem 1. Let (X, τ1, τ2) be a 2Hausdorff quasi-uniformizable space
and (Y, τ ′1, τ

′
2) a quasi-uniformizable space containing a pairwise path.

Then:

(a) The bitopology of 2compact convergence coincides with the bito-
pology of pointwise convergence if and only if every τ1 ∨ τ2-
compact subset of X is finite.

(b) For each quasi-uniformity on Y compatible with (τ ′1, τ
′
2), the bito-

pology of quasi-uniform convergence coincides with the bitopol-
ogy of pointwise convergence if and only if X is a finite set.

Proof. (a) Suppose that the bitopology of 2compact convergence
coincides with the bitopology of pointwise convergence. By Lemma 1 and
[13, Lemma 3], the topology of compact convergence and the topology of
pointwise convergence (relative to (X, τ1 ∨ τ2) and (Y, τ ′1 ∨ τ ′2)) coincide.
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Hence every τ1∨τ2-compact subset of X is finite (see [8, proof of Theorem
1.1.1] and [8, Theorem 1.1.4]). The converse is obvious.

(b) Suppose that X is a finite set. Then, it is clear that for each quasi-
uniformity on Y compatible wih (τ ′1, τ

′
2) the bitopology of quasi-uniform

convergence coincides with the bitopology of quasi-uniform pointwise con-
vergence and, by Lemma 2, it coincides wih the bitopology of pointwise
convergence. Conversely, let U be a quasi-uniformity on Y compatible
with (τ ′1, τ

′
2). Assume that the bitopology of quasi-uniform convergence

coincides with the bitopology of pointwise convergence. It follows from
Remark 4 and [13, Lemma 2] that the bitopology of qasi-uniform con-
vergence coincides with the bitopology of 2compact convergence. By the
proof of [13, Theorem 2], (X, τ1, τ2) is 2compact. Since the bitopology of
2compact covergence also coincides with the bitopology of pointwise con-
vergence, every τ1 ∨ τ2-compact subset of X is finite by (a). Therefore X

is finite.

The following examples illustrate the results established in the above
theorem.

Example 1. Let X = N, τ1 the cofinite topology on X and τ2 the dis-
crete topology on X, and let Y = R, τ ′1 = u and τ ′2 = `. Then the bitopol-
ogy of pointwise convergence coincides with the bitopology of 2compact
convergence by Theorem 1 (a).

Example 2. Let X = {0, 1}, τ1 the Sierpinski topology (i.e., τ1 =
{∅, {1}, X}) and τ2 = {∅, {0}, X}, and let Y = R, τ ′1 = u and τ ′2 = `. By
Theorem 1 (b) for each quasi-uniformity on Y compatible with (u, `), the
bitopology of quasi-uniform convergence coincides with the bitopology of
pointwise convergence.

4. Quasi-pseudometrizability of the bitopology
of pointwise convergence

It is well-known (see, for instance, [8]) that if (X, τ) is a Tychonoff
space and (Y, τ ′) is a space containing a path, then the following theorems
hold:

Theorem A. The topology of compact convergence is metrizable if

and only if (X, τ) is hemicompact and (Y, τ ′) is metrizable.
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Theorem B. The topology of compact convergence is completely met-
rizable if and only if (X, τ) is a hemicompact k-space and (Y, τ ′) is com-
pletely metrizable.

Therem C. The topology of pointwise convergence is metrizable if
and only if X is countable and (Y, τ ′) is metrizable.

Theorem D. The topology of pointwise convergence is completely
metrizable if and only if (X, τ) is countable and discrete and (Y, τ ′) is
completely metrizable.

In [13] we prove the following bitopological generalizations of The-
orems A and B, respectively:

Theorem A’. Let (X, τ1, τ2) be a 2Hausdorff quasi-uniformizable
space and (Y, τ ′1, τ

′
2) a bitopological space containing a pairwise path. Then

the bitopology of 2compact convergence is separated quasi-pseudometri-
zable if and only if (X, τ1 ∨ τ2) is a hemicompact space and (Y, τ ′1, τ

′
2) is

separated quasi-pseudometrizable.

Theorem B’. Let (X, τ1, τ2) be a 2Hausdorff quasi-uniformizable
space and (Y, τ ′1, τ

′
2) a bitopological space containing a pairwise path. Then

the bitopology of 2compact convergence is bicompletely separated quasi-
pseudometrizable if and only if (X, τ1 ∨ τ2) is a hemicompact k-space and
(Y, τ ′1, τ

′
2) is a bicompletely separated quasi-pseudometrizable space.

Remark 5. Note that Theorems A’ and B’ remain true if “pairwise
path” is replaced by “2path”. Note also [13, Remark 4] that such a con-
dition is only used in the proof of the forward implications.

Now, we shall extend the results on (complete) metrizability of the
topology of pointwise convergence (Theorems C and D) to the bitopological
case.

Let us recall that a bitopological space is said to be bicompletely (sep-
arated) quasi-(pseudo)metrizable if it has a compatible bicomplete (sepa-
rating) quasi-(pseudo)metric.

Theorem 2. Let (X, τ1, τ2) be a 2Hausdorff quasi-uniformizable space
and (Y, τ ′1, τ

′
2) a bitopological space containing a 2path. Then the bitopol-

ogy of pointwise convergence is separated quasi-pseudometrizable if and
only if X is countable and (Y, τ ′1, τ

′
2) is separated quasi-pseudometrizable.

Proof. Necessity. Let d be a separating quasi-pseudometric on Y X

compatible with (T 1
p , T 2

p ). For each y ∈ Y let fy : X → Y be defined
by fy(x) = y for all x ∈ X. Then fy ∈ Y X . Now define for each
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y, z ∈ Y , ρ(y, z) = d(fy, fz). It is easily seen that ρ is a separating quasi-
pseudometric on Y compatible wih (τ ′1, τ

′
2). Since d∗ is a metric on Y X

compatible with T 1
p ∨ T 2

p , it follows from Lemma 1 and Theorem C that
X is countable.

Sufficiency. Since (Y, τ ′1, τ
′
2) is quasi-pseudometrizable and the count-

able product of (separated) quasi-pseudometrizable bitopological spaces
is (separated) quasi-pseudometrizable, it follows from Proposition 3 that
(Y X , T 1

p , T 2
p ) is a subspace of a separated quasi-pseudometrizable bitopo-

logical space, hence it is separated qasi-pseudometrizable.

Lemma 3 [14, Theorem 2.1]. A quasi-pseudometrizable bitopologi-

cal space (X, τ1, τ2) is bicompletely quasi-pseudometrizable if and only if

(X, τ1 ∨ τ2) is completely pseudometrizable.

Theorem 3. Let (X, τ1, τ2) be a 2Hausdorff quasi-uniformizable space

and (Y, τ ′1, τ
′
2) a bitopological space containing a 2path. Then the bitopol-

ogy of pointwise convergence is bicompletely separated quasi-pseudometri-

zable if and only if (X, τ1 ∨ τ2) is countabe and discrete and (Y, τ ′1, τ
′
2) is

bicompletely separated quasi-pseudometrizable.

Proof. Necessity. By Theorem 2, X is countable and (Y, τ ′1, τ
′
2) is

separated quasi-pseudometrizable. Since T 1
p ∨ T 2

p is a completely metriz-
able topology and, by Lemma 1, that topology is exactly the topology of
pointwise convergence relative to (X, τ1∨τ2) and (Y, τ ′1∨τ ′2), it follows from
Theorem D that (X, τ1∨τ2) is discrete and (Y, τ ′1∨τ ′2) is completely metriz-
able, so that (Y, τ ′1, τ

′
2) is bicompletely separated quasi-pseudometrizable

by Lemma 3.

Sufficiency. Since (X, τ1∨τ2) is countable and discrete and (Y, τ ′1∨τ ′2)
is completely metrizable, it follows from Theorem D and Lemma 1 that
(Y X , T 1

p ∨T 2
p ) is completely metrizable. Since, by Theorem 2, (Y X , T 1

p , T 2
p )

is separated quasi-pseudometrizable, we obtain the result applying Lem-
ma 3.

Remark 6. Note that in Theorems 2 and 3, the condition that
(Y, τ ′1, τ

′
2) contains a 2path is only used in the proof of the forward im-

plication.
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Example 3. Let Y be the set of all nonnegative reals, let τ ′1 be the
usual topology on Y and let τ ′2 = {∅}∪ {G∪ ]x, +∞[ : G ∈ τ ′1 and x ∈ Y }.
Then τ ′2 ⊂ τ ′1, τ ′2 6= τ ′1 and (Y, τ ′1, τ

′
2) is a pairwise Hausdorff pairwise

compact space (see [2, Example 4]). By [2, Theorem 12] it is pairwise reg-
ular. Since both τ ′1 and τ ′2 have a countable base and (Y, τ ′1) is completely
metrizable it follows from [5, Theorem 2.8] and Lemma 3 that (Y, τ ′1, τ

′
2) is

bicompletely quasi-metrizable. Furthermore, it contains a 2path but not
a pairwise path because both τ ′1 and τ ′2 are T1 topologies (in fact, it is
easy to show that if a bitopological space (Y, τ ′1, τ

′
2) contains a pairwise

path then τ ′i is not a T1 topology, i = 1, 2). Now let X = Y and τ1 = τ2

the usual topology on Y . By Theorem B’ and Remark 5, the bitopology
(T 1

k , T 2
k ) of 2compact convergence is bicompletely quasi-metrizable. Note

that, by Proposition 1, T 1
k ⊂ T 2

k and T 1
k 6= T 2

k and, by Theorem 2, the
bitopology of pointwise convergence is not quasi-metrizable.

If now we put X = Y ∩Q and τ1 = τ2 the usual topology on X with
again (Y, τ ′1, τ

′
2) as above, then the bitopology of 2compact convergence is

bicompletely quasi-metrizable and the bitopology of pointwise convergence
is quasi-metrizable but not bicompletely quasi-metrizable. Again we have
T 1

k ⊂ T 2
k , T 1

p ⊂ T 2
p , T 1

k 6= T 2
k and T 1

p 6= T 2
p .

It is clear that if (Y X , T 1
p , T 2

p ) is separated quasi-pseudometrizable, so
is (BY X , T 1

p , T 2
p ). We do not know if the converse holds. However, that

converse holds whenever (X, τ1, τ2) is pairwise Hausdorff.

Proposition 5. Let (X, τ1, τ2) be a pairwise Hausdorff quasi-unifor-
mizable space and (Y, τ ′1, τ

′
2) a bitopological space containing a pairwise

path. Then the following are equivalent:

(1) X is countable and (Y, τ ′1, τ
′
2) is separated quasi-pseudometrizable.

(2) (Y X , T 1
p , T 2

p ) is separated quasi-pseudometrizable.

(3) (BY X , T 1
p , T 2

p ) is separated quasi-pseudometrizable.

Proof. (1) =⇒ (2). Theorem 2.
(2) =⇒ (3). Obvious.
(3) =⇒ (1). Let d be a separating quasi-pseudometric on BY X com-

patible with (T 1
p , T 2

p ). For each y ∈ Y define fy : X → Y by fy(x) = y

for all x ∈ X. Since fy ∈ BY X , it easily follows that the real valued
function ρ defined on Y × Y by ρ(y, z) = d(fy, fz) is a separating quasi-
pseudometric compatible with (τ ′1, τ

′
2). It remains to show that X is a

countable set. To this end, let p be a pairwise path for (Y, τ ′1, τ
′
2). Define

f : X → Y by f(x) = p(0) for all x ∈ X. Clearly, f ∈ BY X . Since f is
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a constant function, for each n ∈ N there is a finite set Fn ⊆ X and a τ ′1-
open set Gn such that f ∈ [Fn, Gn] ⊆ Bd(f, 2−n). We want to show that
X =

⋃{Fn : n ∈ N}. Suppose that there exists x0 ∈ X \⋃{Fn : n ∈ N}.
Since (Y, τ ′1, τ

′
2) is pairwise completely regular and τ2 is a T1 topology,

then for each n ∈ N there is gn ∈ B[0, 1]X such that gn(Fn) = 0 and
gn(x0) = 1− (1/(n +1)). Thus, p ◦ gn ∈ BY X for all n ∈ N. Furthermore,
p ◦ gn ∈ [Fn, Gn] ⊆ Bd(f, 2−n) for all n ∈ N, so that sequence 〈p ◦ gn〉
converges to f with respect to T 1

p . On the other hand, since p is a pairwise
path, there is a τ ′1-open neighborhood G of p(0) such that p(1) ∈ Y \ G.
Therefore the u-open set p−1(G) is of the form [0, δ[ for some δ such that
0 < δ < 1. Thus, there is k ∈ N such that p ◦ gn ∈ BY X \ [x0, G] for all
n ≥ k. Since f ∈ [x0, G] ∈ T 1

p , we conclude that the sequence 〈p ◦ gn〉 does
not converge to f with respect to T 1

p . This contradiction concludes the
proof.

Problem. In view of the above result the following open question may
be of some interest in this context: Can one replace “pairwise path” by
“2path” in the statement of Proposition 5?

We conclude this section with some more examples on (bicomplete)
quasi-metrizability of the bitopology of pointwise convergence.

Example 4. Let X = Q, τ1 the Sorgenfrey topology on Q (τ1-basic
open sets are of the form [x, y[ inQ, x < y) and τ2 the Sorgenfrey conjugate
topology on Q (τ2-basic open sets are of the form ]x, y] in Q, x < y). Let
Y = R, τ ′1 = u and τ ′2 = `. Then the bitopology of pointwise convergence
is bicompletely separated quasi-pseudometrizable as Theorem 3 shows.

Example 5. Let X + Q, τ1 = U | Q and τ2 = ` | Q. Let Y = R,
τ ′1 = u and τ ′2 = `. Then the bitopology of pointwise convergence is
separated quasi-pseudometrizable but not bicompletely (separated) quasi-
pseudometrizable as Theorems 2 and 3 show.

Example 6. Let X be a countable set, τ1 any T1 topology on X and
τ2 the discrete topology on X. Let Y = R, τ ′1 the Sorgenfrey topology
on R and τ ′2 the Sorgenfrey conjugate topology. Then the bitopology of
pointwise convergence is bicompletely quasi-metrizable by Theorem 3 and
Remark 6.
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5. Quasi-pseudometrizability of bitopologies on RX

In this section we shall apply the above results to obtain quasi-pseudo-
metrization theorems in the special and interesting case that the space of
continuous functions is RX .

Let us recall that if (X, τ1, τ2) is any bitopological space, RX consists
of all continuous functions from the topological space (X, τ1 ∨ τ2) into R
with its usual topology u ∨ `. (Note that the embedding ([0, 1], u, `) →
(R, u, `) is a pairwise path, hence a 2path.)

Theorem 4. For a 2Hausdorff quasi-uniformizable space (X, τ1, τ2)
the following are equivalent:

(1) (RX , T 1
k , T 2

k ) is separated quasi-pseudometrizable.

(2) (RX , T i
k) is first countable for some i = 1, 2.

(3) (X, τ1 ∨ τ2) is hemicompact.

Proof. (1) =⇒ (2). Obvious.
(2) =⇒ (3). Suppose, for instance, that (RX , T 1

k ) is first countable.
Consider the function f : X → R such that f(x) = 0 for all x ∈ X. Then
f ∈ RX . Let {Un : n ∈ N} be a base of T 1

k -open neighborhoods of f .
Then, there are a sequence 〈Kn〉 of τ1 ∨ τ2-compact subsets of X and a
descreasing sequence 〈δn〉 of positive real numbers such that δn → 0 and
f ∈ [Kn, (−∞, δn)] ⊆ Un. Given K ∈ K set A = [K, (−∞, 1)]. Hence,
there is Un such that f ∈ Un ⊆ A. We shall show that K ⊆ Kn. Assume
the contrary. Then, there is x ∈ K \Kn, so that there is Φ ∈ [0, 1]X such
that Φ(x) = 1 and Φ(Kn) = 0. Thus Φ ∈ [Kn, (−∞, δn)] ⊆ Un ⊆ A, but
Φ(x) = 1 implies Φ ∈ RX \A, a contradiction.

(3) =⇒ (1). Apply Theorem A’.

Theorem 5. For a 2Hausdorff quasi-uniformizable space (X, τ1, τ2)
the following are equivalent:

(1) (RX , T 1
k , T 2

k ) is bicompletely separated quasi-pseudometri-
zable.

(2) (RX , T 1
k ∨ T 2

k ) is Čech complete.

(3) (X, τ1 ∨ τ2) is a hemicompact k-space.

Proof. (1) =⇒ (2). (RX , T 1
k ∨ T 2

k ) is completely metrizable and,
hence, Čech complete.

(2) =⇒ (3). Apply [13, Lemma 3] and [8, Corollary 5.2.2].
(3) =⇒ (1). Apply Theorem B’.
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Theorem 6. For a 2Hausdorff quasi-uniformizable space (X, τ1, τ2)
the following are equivalent:

(1) (RX , T 1
p , T 2

p ) is separated quasi-pseudometrizable.

(2) (RX , T i
p) is first countable for some i = 1, 2.

(3) X is countable.

(4) (RX , T 1
p ∨ T 2

p ) is second countable.

(5) (RX , T i
p) is second countable for some i = 1, 2.

Proof. (1) =⇒ (2). Obvious.
(2) =⇒ (3). Suppose, for instance, that (RX , T 1

p ) is first countable.
Consider the function f : X → R such that f(x) = 0 for all x ∈ X. Then
a slight modification of the proof of Proposition 5 permits us to conclude
that X is countable.

(3) =⇒ (1). Apply Theorem 2.
(3) =⇒ (4). Apply Lemma 1 and [1, Theorem I.3.7.].
(4) =⇒ (5). If (RX , T 1

p ∨ T 2
p ) is second countable, then it has a co-

untable dense subset {fn : n ∈ N}. Furthermore, X is countable by
Lemma 1 and Theorem C. It follows from Theorem 2 that (RX , T 1

p , T 2
p ) is

a separated quasi-pseudometrizable space. Let d be a quasi-pseudometric
on RX compatible with (T 1

p , T 2
p ). It is easily seen that {Bd(fn, 2−m) :

n,m ∈ N} is a base for T 1
p . (Similarly, {B−1

d (fn, 2−m) : n,m ∈ N} is base
for T 2

p .)
(5) =⇒ (2). Obvious.

Theorem 7. For a 2Hausdorff quasi-unifomizable space (X, τ1, τ2) the
following are equivalent:

(1) (RX , T 1
p , T 2

p ) is bicompletely separated quasi-pseudometri-
zable.

(2) (X, τ1 ∨ τ2) is countable and discrete.

(3) (RX , T 1
p ∨ T 2

P ) is Čech complete.

Proof. (1) ⇐⇒ (2). Apply Teorem 3.
(2) ⇐⇒ (3). Apply Lemma 1 and [1, Corollary I.3.3].

The authors are very grateful to the referees for their many valuable
comments and suggestions.
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