A class of maps acting on semigroups

By M. SATYANARAYANA (Bowling Green, Ohio)

In this note we shall introduce a new class of maps called vector maps and show
that the structure and the existence of vector maps can be used to characterize some
types of semigroups, especially idempotent semigroups and left or right zero semi-
group.*)

A single valued function F from a semigroup S to S is called a vector map
if (xy)F=(xF)y,x,y€S and (xF)F=(xF)(xF) for every x¢§S. If a semigroup
S has a zero then the map which sends every element into zero is clearly a vector
map. The identity map on idempotent semigroup is a vector map. But infinite cyclic
semigroups and the multiplicative semigroup of real numbers without 0 do not
possess vector maps. Now we shall prove the existence of vector maps is equivalent to
the presence if a zero in case the semigroup has a unique idempotent. This result
is not true if the semigroup has more than one idempotent. The structure and the
existence of vector maps can be used to characterize some types of semigroups,
especially idempotent semigroups and right or left zero semigroups. The results we
prove in this direction supplement the results of TAMURA, one of which states a
semigroup is a right zero semigroup iff the only left translation is the identity map
[2]. We refer the reader to the concepts undefined here to Clifford’s book [1]. A single
valued function F is called an inner left translation of a semigroup S if F:x-—ax,
x€S and we shall denote this by g;.

1. Inner left translations

Evidently vector maps are left translations by virtue of our definition. But the
identity map on an infinite cyclic semigroup is a left translation but not a vector
map, which can be seen in the following basic result.

1.1 Lemma. If F is a vector map on a semigroup S and xF=y then y*=)*
and hence y* is an idempotent.

*) AMS 1970 subject classification: 20M15.
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Zero semigroups.
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PrROOF. Since (xF)F=(xF)?, yF=)?. So y*F=(yF)y=)®. Thus y"F=)**}
for every natural number n. Hence y*=(yF)*=(yF)F=)*F=)%. Clearly )* is
an idempotent.

An easy verification yields the following

1.2 Theorem. For a semigroup S the following are equivalent:
1. § is an idempotent semigroup.
2. Identity map is a vector map.

In this case every left translation is vector map.

All the three conditions in 1.2 are equivalent if the semigroup has an identity
since the identity map is an inner left translation in the presence of an identity.
However if the semigroup has no identity it need not be an idempotent semigroup
though every inner left translation is a vector map. The semigroup S={x, x: x*=x3%}
provides the necessary example.

1.3 Theorem. In a semigroup S every inner left translation is a vector map iff
x*a=(xa)* and a*x=(ax)* for every a and x in S. Also if xS, x* is an idem-
potent and x*=x* and the set E of all idempotents is a right ideal. Furthermore S
is an extension of SE by a semigroup in which every element is nilpotent of index 3.
In particular if S is commutative, then S is an extension of an idempotent semigroup
by a semigroup in which every element is nilpotent of index 3.

Proor. Let x€S. If x; is a vector map and if a€S. then a(x,0x;)=(ax)*
and so x*a=(xa)*. Set x=a. Then x*=x* for every x¢S. Thus x* is an idem-
potent. Also if x is an idempotent, then xa=(xa)* for every acS. Hence E is a
right ideal. Let x4 SE. Since x*¢E, x3=x'¢ SE. Hence S in an extension of SE
by a semigroup in which every element is nilpotent of index 3. In commutative
case clearly SE=E. Thus the last result follows.

However the converse of 1.3 is not true. Let § be a commutative semigroup
generated by e, x and y subject to the conditions e=xe; e=ye; x3=x1; ¥ =4,
xly=x3y® and »*x=)3x%. x; is not a vector map since y(x;0x;)=(yx)>.

It can be easily verified that an identity map on a semigroup S is an inner left
translation iff § has a left identity. Under composition the set I(S) of all inner
left translations on a semigroup S is again a semigroup. /(S) may have an identity
but this might not necessarily be the identity map. For, the semigroup S= {x, x*: x*=
=x3}, x; is the identity of /(S) but not an identity map. Now we shall characterize
those semigroups with 7(S) being a group or having an identity.

1.4 Proposition. If I(S) has an identity t,, then for every a,Xxt€S, alx=
=tax=ax and t*=1t* in particular. t, is a right identity of I(S) iff t is a left
identity of S provided S=S* or S is a right cancellative semigroup.

Proo¥. The first part is easy to verify. It is also easy to show that if 7 is a left
identity of S, then 7, is a right identity of /(S). Now suppose f, is a right identity.
Then x(ayot)=xa, for every x,acS and so tax=ax. Thus ¢ is a left identity
of S§2. If §=82, clearly ¢ is a left identity of S. If S is right cancellative, then
tax=ax implies ra=1t and hence 7 is a left identity of S.

1.5 Theorem. Let S be a semigroup. Then I(S) is a group under composition
with the identity map i as an identity iff S is an union of groups in which every
idempotent is a left identity.
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Proor. If I(S) is a group, then for any a, x¢S, there exists b such that
x(a,0b))=xi=x(b0oa;) and so

(%) bax = x = abx.

By setting x=a ‘n (+) we have ba*=aba. Thus S is left regular and regular.
Hence by theorem 4.3 of [I], S is an union of groups. Now if ¢ and f are idem-
potents in S, then by setting x=f and a=e in («) we have f=ebf and so f=
=e(ebf)=ef. If x€G,, the group with e as an identity, then evidently ex=x.
If x4 G,, then x€G,, a group with an identity / and e=f. Since ef=/f. we have
efx=fx and ex=x. Thus every idempotent is a left identity. Conversely, let §
be an union of groups such that every idempotent is a left identity. Let a; be a left
translation and x¢S. Then x€G,, a group with an identity f. Consider a<G,.
Then there exists b such that ba=e=ab and abx=bax=ex=x. Thus x(bjoa)=
=x(a,0b;))=x and hence I(S) is a group.

In 1.5 the condition that every idempotent is a left identity is necessary. The
semigroup S={a, b, ab: ab=ba; a*=a; b*=>b} is an union of groups. But the set
of all inner left translations is not a group since for x=f and a=e, () is not sol-
vable.

2. Vector maps.
By 1.1 semigroups having no idempotents do not possess vector maps. Fur-
thermore we have

2.1 Theorem. Let S be a semigroup with |S|=1. Then S has no vector maps if
any one of the following conditions is satisfied:
1) S has no idempotents except identity.
i) S isa group.
i) S is a left cancellative semigroup with unique idempotent.
iv) S is a commutative cancellative semigroup.

PROOF. Suppose S has a vector map F.

To prove (i): If xS and xF=y, then »*=)' by 1.1. But by hypothesis we
must have y*=1. Then y=1.y=)'=1. Thus xF=1 for every x€S and so
l1=x*F=(xF)x=ux. This implies |S|=1, which is a contradiction.

To prove (iii): If x¢éS and xF=y, then »*=yp*, which implies y=)® by
cancellative condition. Since S has a unique idempotent, say y, xF=y for every
x€S. Now for €S, (yF)t=(yt)F. Hence yr=y. Since idempotents are left
identities in left cancellative semigroups yr=t. Thus 7=y and so |S|=1. (i)
and (iv) are now evident.

2.2 Theorem. Let S be a semigroup containing an unique idempotent e. Then
S has vector maps iff e is the zero of S.

ProoF. Let F be a vector map on S. Suppose x¢S and xF=y. Then
by 1.1, y*=y* and so y*=e. Then ey=)3.-y=y3=e. Since (yx) F=(yF)x=)%x,
as before we must have ey*x=e. This implies ex=e¢ and so xe is an idempotent,
which is e itself. Thus e is a zero of S. If e is a zero of S, then the map carrying
every element into e is a vector map.

It a semigroup has more than one idempotent, then 2.2 need not be true as can
be seen in an idempotent semigroup without 0, which has the identity map as
a vector map.
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3. Right or left zero semigroups.

3.1 Lemma. If T is a vector map on a left cancellative semigroup, then the image
of every element under T is an idempotent and the image of an idempotent is itself.

Proor. If aT=b, then b*=b* by 1.1 and so b=b* by left cancellative condi-
tion. If e is an idempotent and if e7'=/, then [/ is an idempotent from the above.
Since eT=(eT)e;l=le. Then [=e by left cancellative condition.

3.2 Theorem. For a semigroup S the following are equivalent:
i) S is aright zero semigroup.

ii) S is a right group with vector maps.

iii) S is a left cancellative semigroup with identity map as a vector map.

iv) S is an idempotent semigroup in which the set of vector maps form a group
under composition with identity map *‘i” as an identity such that every vector map is
its own inverse.

v) S is a left cancellative semigroup in which every inner left translation is a vector
map. Furthermore the right zero semigroup has only one vector map, which is the
identity map.

PROOF. (ii)=>(i): Let a€S. Since vector maps exist by hypothesis, S has
idempotents by 1.1. If e is an idempotent, then e is a left identity since S is a left
cancellative semigroup. Then a=ea. If T is a vector map, then aT=(eT)a=ea
by 3.1 and hence aT=a. Thus the only vector map is an identity map. Hence by 1.2
S is an idempotent semigroup. Thus (i) is evident.

(iii)=> (i): By 1.2 since identity map is a vector map, § is an idempotent
semigroup. Hence follows from the definition.

(iv) = (i): Let x€S. Then for every a€S, x(gq0aq)=xi and so ax=a.
Thus every element is a left identity. Since S is an idempotent semigtoup, the con-
clusion follows.

(v) => (i): Let x£S. Since x; is a vector map by hypothesis, a(x,ox))=(ax,)*
for every acS and so x*a=(xa)®. By setting a=x, we have x*=x*. Then by
left cancellative condition x=x2*. Thus S is an idempotent semigroup. Hence §
1s a right zero semigroup.

The converse and the latter part are evident from the above.

In conclusion we shall provide another characterization of right zero semigroups,
which can be patterned similar to the following result. For this we need.

Definition. A semigroup S is said to be V-irreducible ‘ff S has vector maps
and xV=3S for every x€8, where V is the set of all vector maps on S.

&/ 3.3 Theorem. A semigroup S is a left zero semigroup iff S is V-irreducible.

ProOOF. Let § be V-irreducible. If x€S, then there exists a vector map F
such that xF=x. Since x(FoF)=(xF)?, we must have x=x2. Thus § is an
idempotent semigroup. Let a<S. Then for any b S, there exists an G€V such
that b=aG. So b=aG=(aG)a. Thus S=Sa. Hence § is left simple. Combining
the facts S is left simple and S is an idempotent semigroup, we have that S is
a left zero semigroup. Conversely if § is a left zero semigroup, then for any b S,
the map carrying every element into b is a vector map. Thus aV=S§ for acS§.
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