Absolute total-effective Norlund method
By H. P. DIKSHIT (Jabalpur)

1. Introduction and the main result

Let {p,} be a sequence of real numbers such that P, or P,,=Zﬂ' P =0 and
k=0

P)= > P,+#0. The Norlund method (N, p,) is associated with the series to sequence
k=0
transformation which transforms a series X a, to the sequence {+7(a)} defined by

l n

h(a) = P oPn—kat'

A sequence {s,}<BV, if 2‘ |Sp—Sp—1l=e=; and {s,}¢B, if {s,} is a bounded
n=]

sequence.

The object of the present paper is to improve the theorem proved in [3] and we
shall throughout use the definitions and notations contained therein. We shall prove
the following.

Theorem. If the sequence {p,} is such that

W) Ry = {0+ DpPYeBY and sp={p 30

\es

n

Writing P} = 3 |P,|, Pf or P¥*= 3 |p/| and {R}}={(n+1)P,/P}}, the
k=0 k=0

above result under the additional conditions viz.,

(1.2) P'=0(P)), j=0,1 and {RYeBY,

then the (N, P,) method is absolute total-effective.

was proved in [3]. From the theorem proved here we shall deduce in the last section
the following which includes inter alia some earlier results and provides a shorter
alternative proof of them (see e.g. [2]).

Corollary. The (C,1)(N,p,) method is absolute total-effective, if P,=0
and (1.1) holds.



216 H. P. Dikshit

2. Some preliminary results

Lemma 1. Let {a,}) be a given sequence, then for any x, we have

(1-x) Jax*=— J day_1x*+a,_;x"—a,x"*1,
k=m

k=m

where m, n are integers such that 0=m=n and Aa,=a,— ay.,.
The proof of Lemma 1 is direct.

Lemma 2. If {R,)¢B and {S:)¢B, then P;=K|P,), {I/R}}¢B,

(2.1) Ktk=0,1,2,..),

1P 2(n+1)rP,,| "‘
and |P,|- s, as n-»os.

Proor. That P)=K|P,| follows directly from the hypotheses, when we observe
that

Py S

.t-v

= K[P,].

Using this result and observmg that

Pl = 3P = (n+1)P; = K(n+1)|Py)

k=0

we prove that {I /R‘}GB For the proof of (2.1) reference may be made to ([4]»
pp. 13—14). Finally, since P, =K|P,|, the convergence of the series in (2.1) leads to
the result that |P,| <, as n-»co,

Lemma 3. If p,=o(P,) and |P,|—~<, as n—<s, then PY*=K|P}| for all n.

PRrooF. Since p,=o(P,), for a given positive ¢<=1, we have a positive integer
N, such that —e<p,/P,<e, whenever n>N. Writing P,_,/P,=1-—p,/P,, we
observe that for n=N,0<1—¢g<P,_,/P,<1+¢ (cf. proof of Lemma 2 in [6])
and this implies that Py, Py.,,..., are all positive or all negative. Since N is
fixed and P! =0, we have P*=K|P}l|,for 0=k=N.If k=N, P*=Py* +3(P}—P}),
where 0=—1 or +1, accordingas Py.,. Py.», ..., are all negative or all positive.
Thus, Pi*<=K+K|P}| and the result of the lemma follows, when we observe that
P} #0 forall n, and the sequence {P,} is ultimately a positive sequence or a negative
sequence and by hypothesis |P,|+c as n- oo,

Lemma 4. If P)*=K|P} for all n, and {R,}¢B, then {R.}¢B. Further (2.1)
implies the following, whenever {R}}¢ B,

2.2) P> I:‘J = Kk =01,2 ..):
n=k n
Proor. We write

. n " 'n
(n+1DP, =— ZA{kPy_}+Py= 5 Py_1+'2 RPy+ P,
k=0 k=0 k=10
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and, therefore, since {R,}<B,
(n+1)|P,| = KP}* = K|P}|,

by virtue of the hypothesis that P}*=K|P}|. Thus {Rl}€B. The remaining part of
the lemma follows, when we write

= ] |R}|
2P = AGFDE

(W1

Lemma 5. If Py=K|P,| for all n, then uniformly in 0<t=n

exp ik!l = Kt-2|P.

Lemma 4 is essentially the same as Lemma 3 in [4].

Lemma 6. Let ¢,=0,0,= > g, and d,= D q.c,/Q,, then if the sequence
k=0 k=0

le.}e BV, the sequence {d,}<BV.
Lemma 6 is due to MOHANTY ([5], Lemma 4).

Lemma 7. If {R,}¢B and Py*=K|P}|, then N, p,/C|N, P,|, i.e. every series
summable |N, p,| is also summable |N, P,|.

Proor. We first observe that {1/P;}}cBV. For,

- I = |P| [ ]
§P}.1 71| =K 27, KZP.}*FP“ -

since P,*=K|P,| and {P,*}is positive and monotonic increasing.

Since the hypothesis {R,}€B, implies that p,=o(P,), n—<=, it follows from
the proof of Lemma 3 that there exists a positive integer N such that Py, Py.q, ...,
are all positive or all negative. We now write n-th (N, P,) mean of Xa, as
(cf. [11, p. 360)

N—1 kZ")Panﬁﬂ(a) PL_,
. y@ = P il (a)+ — [1—"]:
+x(9) n+N kél; K1k (@) Py in—Py_4 Pyin
@ (1- 3
= +u,(a) |1 -
Pli+'\' g ( ) n+N

say. Since {1/P,}€BV, in order to prove that {t (a)}€ BV, it is sufficient to show
that {u,(a)}¢BV. However, if X a, is summable |N,p,|, then {#f(a)}cBV and
by Lemma 6, {u,(a)}cBV, since Py, Py.,,..., are all positive or all negative.
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Lemma 8. If 0(1)eBV (0, n) and (1.1) holds then the series

Z‘fo(t)cosmdr
oo

is summable |N,p,|.
Lemma 8 follows from the proof of Theorem C in [4], when we appeal to the
Lemma 2 of the present paper.

3. Proof of the Theorem

Integrating by parts, we have for the Fourier series L(x) (cf. [3])

® T t
= f o(f)cosktdr = f{tcosk:—fcoskudu}dq;l(:) =
o 0 0

- f tcoskrdqol(t)+fqpl(r)cosktdt = Uy + Uy,
0 0

say. Since x is |Fj|-regular, ¢,(1)éBV (0,n) and > v, is summable [N,p,|
by Lemma 8. The |N, P,| summability of 3 v, now fgllows, when we appeal to

Lemma 7. Considering the series > u,, we onbserve that (cf. [3])

W) —17_y(u) = f { PP k;; (PP, —P}P,) cos (n—k)t} d o, ().
Since f \d ¢,(1)|=K, in order to show that {+F(u)}€ BV, it is sufficient to demon-

0
strate that uniformly in O=r=n

PlPl e QS(fnfn I%}%)expfk4;§ K.

G.1) 2’

By virtue of Lemma 1, we have

n n
S'(P!P,— P,P})exp ikt = (1 —expit)~! > (P}P,— P,p,) expikt.
k=0 k=0

Thus,
I=t Z; PlPI 1 Z|P‘Pk P, P!+
(3.2) - il
4_KT zil_P P a3 .2?i}2pk })}£L+
P .
+K 2;1 P‘ ;2 P,‘_pl exp:kt|=£,+£2+23,
n=g n—1Kkm=¢
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say. Since by Lemma 3, P}*=K |P}|, we have

T 1 -
5, =t 1 Z Z Y=
n=1 lP ——l| k= =0
(3.3)
T Pnl I T ’
= Kt J|=—|+Kt J|R}| =K.
n=1 Pn-ll n=1

by virtue of Lemmas 2—4.
Again using the result that P}*=K |P}|, we have from Lemma 4,

o 1 oo =1
(3.4 S A Rk PR Z'Pk =
n=e4l 1Pn—1' nmg+l Pn k=0

o vl WG
= K+KT Pt—l 2 1 = K
n=r41 |P|| l|
since P,y =K |P,|, by virtue of Lemma 2.
Applying Abel’s transformation, we write

oo 1 n-1 k A
Esf_—:K Z mk;: [k+l] ;’P,expn'f +

n=t41

o 1 n
+K 2 pi [p?:_ ﬁ'{]vg:ﬂexpfw =

LEZZD REN T |

. "‘1{|AR,‘1 [Ry 1l }
= K P
T 2 TP B T RG+ s Pt
= 1RRl |Ry Ry,
35 K + K=z =
( ) % Tn=%:-l(n'f'l)a nﬂér-l ("+”2
AR s 1
R
k=« n=k+1 an—ll
- 1
+ Kt +K =

2@y, 2.
=K S|ARJ+K =K,
k=t

by virtue of Lemmas 2—5 and the hypothesis that {R,}<BV, which implies that
P,/P,_,—~1, as n—oo,
Combining (3.2)-(3.5), we prove (3.1) and thus > u, is summable [N, P,

This completes the proof of the |F;|-effectiveness part of the theorem,
The rest of the theorem follows from the foregoing proof of the |F,|-effectiveness,
when we refer to section 5 of [3].
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4. Proof of the Corollary

We need he following additional lemma.

Lemma 9. If P,=0, P,—~=, {R}}¢B and {1/R:}¢B, then the |N, P,| method
is equivalent to the |(C, 1) (N, p,)| method.

Lemma 9 follows directly from Theorems 1 and 2 of [1]. Now we see thatif P,=0
and (1.1) holds then by virtue of Lemmas 2 and 4 of the present paper, the hypotheses
of Lemma 9 are satisfied and in conclusion we obtain the result of the Corollary
from the theorem already proved.
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