Absolute total-effective Nörlund method

By H. P. DIKSHIT (Jabalpur)

1. Introduction and the main result

Let $\{p_n\}$ be a sequence of real numbers such that P_n^0 or $P_n = \sum_{k=0}^n p_k \neq 0$ and $P_n^1 = \sum_{k=0}^n P_k \neq 0$. The Nörlund method (N, p_n) is associated with the series to sequence transformation which transforms a series Σa_n to the sequence $\{t_n^p(a)\}$ defined by

$$t_n^p(a) = \frac{1}{P_n} \sum_{k=0}^n P_{n-k} a_k.$$

A sequence $\{s_n\}\in BV$, if $\sum_{n=1}^{\infty}|s_n-s_{n-1}|<\infty$; and $\{s_n\}\in B$, if $\{s_n\}$ is a bounded sequence.

The object of the present paper is to improve the theorem proved in [3] and we shall throughout use the definitions and notations contained therein. We shall prove the following.

Theorem. If the sequence $\{p_n\}$ is such that

$$\{R_n\} \equiv \{(n+1)p_n/P_n\} \in BV \quad and \quad S_n^* = \left\{\frac{1}{P_n} \sum_{k=0}^n \frac{|P_k|}{k+1}\right\} \in B,$$

then the (N, P_n) method is absolute total-effective.

Writing $P_n^{1*} = \sum_{k=0}^n |P_k|$, P_n^* or $P_n^{0*} = \sum_{k=0}^n |p_k|$ and $\{R_n^1\} \equiv \{(n+1)P_n/P_n^1\}$, the above result under the additional conditions viz.,

(1.2)
$$P_n^{j*} = O(|P_n^j|), \quad j = 0, 1 \text{ and } \{R_n^1\} \in BV,$$

was proved in [3]. From the theorem proved here we shall deduce in the last section the following which includes *inter alia* some earlier results and provides a shorter alternative proof of them (see e.g. [2]).

Corollary. The $(C, 1)(N, p_n)$ method is absolute total-effective, if $P_n > 0$ and (1.1) holds.

2. Some preliminary results

Lemma 1. Let $\{a_k\}$ be a given sequence, then for any x, we have

$$(1-x)\sum_{k=m}^{n}a_{k}x^{k}=-\sum_{k=m}^{n}\Delta a_{k-1}x^{k}+a_{m-1}x^{m}-a_{n}x^{n+1},$$

where m, n are integers such that $0 \le m \le n$ and $\Delta a_k = a_k - a_{k+1}$. The proof of Lemma 1 is direct.

Lemma 2. If $\{R_n\} \in B$ and $\{S_n^*\} \in B$, then $P_n^* \leq K|P_n|$, $\{1/R_n^1\} \in B$,

(2.1)
$$|P_k| \sum_{n=k}^{\infty} \frac{1}{(n+1)|P_n|} \le K(k=0,1,2,\ldots),$$

and $|P_n| \to \infty$, as $n \to \infty$.

PROOF. That $P_n^* \leq K|P_n|$ follows directly from the hypotheses, when we observe that

$$P_n^* = \sum_{k=0}^n |R_k| \frac{|P_k|}{k+1} \le K \sum_{k=0}^n \frac{|P_k|}{k+1} \le K |P_n|.$$

Using this result and observing that

$$|P_n^1| \le \sum_{k=0}^n P_k^* \le (n+1)P_n^* \le K(n+1)|P_n|,$$

we prove that $\{1/R_n^1\} \in B$. For the proof of (2.1) reference may be made to ([4], pp. 13—14). Finally, since $P_n^* \leq K|P_n|$, the convergence of the series in (2.1) leads to the result that $|P_n| \to \infty$, as $n \to \infty$.

Lemma 3. If $p_n = o(P_n)$ and $|P_n| \to \infty$, as $n \to \infty$, then $P_n^{1*} \le K|P_n^1|$ for all n.

PROOF. Since $p_n = o(P_n)$, for a given positive $\varepsilon < 1$, we have a positive integer N, such that $-\varepsilon < p_n/P_n < \varepsilon$, whenever n > N. Writing $P_{n-1}/P_n = 1 - p_n/P_n$, we observe that for n > N, $0 < 1 - \varepsilon < P_{n-1}/P_n < 1 + \varepsilon$ (cf. proof of Lemma 2 in [6]) and this implies that P_N, P_{N+1}, \ldots , are all positive or all negative. Since N is fixed and $P_n^1 \neq 0$, we have $P_k^{1*} \leq K|P_k^1|$, for $0 \leq k \leq N$. If k > N, $P_k^{1*} = P_N^{1*} + \delta(P_k^1 - P_N^1)$, where $\delta = -1$ or +1, according as P_{N+1}, P_{N+2}, \ldots , are all negative or all positive. Thus, $P_k^{1*} < K + K|P_k^1|$ and the result of the lemma follows, when we observe that $P_n^1 \neq 0$ for all n, and the sequence $\{P_n\}$ is ultimately a positive sequence or a negative sequence and by hypothesis $|P_n| \to \infty$ as $n \to \infty$.

Lemma 4. If $P_n^{1*} \leq K|P_n^1|$ for all n, and $\{R_n\} \in B$, then $\{R_n^1\} \in B$. Further (2.1) implies the following, whenever $\{R_n^1\} \in B$,

(2.2)
$$|P_k| \sum_{n=k}^{\infty} \frac{1}{|P_n^1|} \le K(k=0,1,2,\ldots).$$

PROOF. We write

$$(n+1)P_n = -\sum_{k=0}^n \Delta \{kP_{k-1}\} + P_0 = \sum_{k=0}^n P_{k-1} + \sum_{k=0}^n R_k P_k + P_0$$

and, therefore, since $\{R_n\} \in B$,

$$(n+1)|P_n| \le KP_n^{1*} \le K|P_n^1|,$$

by virtue of the hypothesis that $P_n^{1*} \leq K|P_n^1|$. Thus $\{R_n^1\} \in B$. The remaining part of the lemma follows, when we write

$$\sum_{n=k}^{\infty} \frac{1}{|P_n^1|} = \sum_{n=k}^{\infty} \frac{|R_n^1|}{(n+1)|P_n^1|}.$$

Lemma 5. If $P_n^* \leq K|P_n|$ for all n, then uniformly in $0 < t \leq \pi$

$$\left| \sum_{k=0}^{n} P_k \exp ikt \right| \le Kt^{-1} |P_n|.$$

Lemma 4 is essentially the same as Lemma 3 in [4].

Lemma 6. Let $q_n > 0$, $Q_n = \sum_{k=0}^n q_k$ and $d_n = \sum_{k=0}^n q_k c_k / Q_n$, then if the sequence $\{c_n\}\in BV$, the sequence $\{d_n\}\in BV$

Lemma 6 is due to MOHANTY ([5], Lemma 4).

Lemma 7. If $\{R_n\} \in B$ and $P_n^{1*} \leq K|P_n^1|$, then $|N, p_n| \subset |N, P_n|$, i.e. every series summable $|N, p_n|$ is also summable $|N, P_n|$.

PROOF. We first observe that $\{1/P_n^1\} \in BV$. For,

$$\sum_{n=1}^{\infty} \left| \frac{1}{P_{n-1}^{1}} - \frac{1}{P_{n}^{1}} \right| \le K \sum_{n=1}^{\infty} \frac{|P_{n}|}{P_{n}^{1*} P_{n-1}^{*}} = K \sum_{n=1}^{\infty} \left(\frac{1}{P_{n-1}^{1*}} - \frac{1}{P_{n}^{1*}} \right) \le K,$$

since $P_n^{1*} \leq K|P_n^1|$ and $\{P_n^{1*}\}$ is positive and monotonic increasing. Since the hypothesis $\{R_n\} \in B$, implies that $p_n = o(P_n)$, $n \to \infty$, it follows from the proof of Lemma 3 that there exists a positive integer N such that P_N , P_{N+1} , ..., are all positive or all negative. We now write n-th (N, P_n) mean of Σ a_n as (cf. [1], p. 360)

$$t_{n+N}^{P}(a) = \frac{1}{P_{n+N}^{1}} \sum_{k=0}^{N-1} P_k t_k^{P}(a) + \frac{\sum_{k=0}^{n} P_{N+k} t_{N+k}^{P}(a)}{P_{N+n}^{1} - P_{N-1}^{1}} \left(1 - \frac{P_{N-1}^{1}}{P_{N+n}^{1}} \right) =$$

$$= \frac{K}{P_{n+N}^{1}} + \mu_n(a) \left(1 - \frac{P_{N-1}^{1}}{P_{n+N}^{1}} \right)$$

say. Since $\{1/P_n^1\}\in BV$, in order to prove that $\{t_n^P(a)\}\in BV$, it is sufficient to show that $\{\mu_n(a)\}\in BV$. However, if Σa_n is summable $[N, p_n]$, then $\{t_n^P(a)\}\in BV$ and by Lemma 6, $\{\mu_n(a)\}\in BV$, since $P_N, P_{N+1}, ...$, are all positive or all negative.

Lemma 8. If $\theta(t) \in BV(0, \pi)$ and (1.1) holds then the series

$$\sum_{n} \int_{0}^{\pi} \Theta(t) \cos nt \, dt$$

is summable $|N, p_n|$.

Lemma 8 follows from the proof of Theorem C in [4], when we appeal to the Lemma 2 of the present paper.

3. Proof of the Theorem

Integrating by parts, we have for the Fourier series L(x) (cf. [3])

$$\frac{\pi}{2} a_k = \int_0^{\pi} \varphi(t) \cos kt \, dt = \int_0^{\pi} \{t \cos kt - \int_0^t \cos ku \, du\} \, d\varphi_1(t) =$$

$$= \int_0^{\pi} t \cos kt \, d\varphi_1(t) + \int_0^{\pi} \varphi_1(t) \cos kt \, dt = u_k + v_k,$$

say. Since x is $|F_1|$ -regular, $\varphi_1(t) \in BV(0, \pi)$ and $\sum_n v_n$ is summable $|N, p_n|$ by Lemma 8. The $|N, P_n|$ summability of $\sum_n v_n$ now follows, when we appeal to Lemma 7. Considering the series $\sum_n u_n$, we observe that (cf. [3])

$$t_n^P(u) - t_{n-1}^P(u) = \int_0^{\pi} \left\{ \frac{t}{P_n^1 P_{n-1}^1} \sum_{k=0}^n (P_n^1 P_k - P_k^1 P_n) \cos(n-k) t \right\} d\varphi_1(t).$$

Since $\int_0^{\pi} |d \varphi_1(t)| \le K$, in order to show that $\{t_n^P(u)\} \in BV$, it is sufficient to demonstrate that uniformly in $0 < t \le \pi$

(3.1)
$$\Sigma = t \sum_{n=1}^{\infty} \left| \frac{1}{P_n^1 P_{n-1}^1} \sum_{k=0}^{n} (P_n^1 P_k - P_k^1 P_n) \exp ikt \right| \le K.$$

By virtue of Lemma 1, we have

$$\sum_{k=0}^{n} (P_n^1 P_k - P_n P_k^1) \exp ikt = (1 - \exp it)^{-1} \sum_{k=0}^{n} (P_n^1 P_k - P_n P_k) \exp ikt.$$

Thus,

(3.2)
$$\Sigma \leq t \sum_{n=1}^{\tau} \left| \frac{1}{P_n^1 P_{n-1}^1} \right| \sum_{k=0}^{n} |P_n^1 P_k - P_n P_k^1| + K \sum_{n=\tau+1}^{\infty} \left| \frac{1}{P_n P_{n-1}} \right| \sum_{k=0}^{\tau-1} |P_n^1 P_k - P_n P_k| + K \sum_{n=\tau+1}^{\infty} \left| \frac{1}{P_{n-1}^1} \sum_{k=\tau}^{n} \left(\frac{p_k}{P_k} - \frac{P_n}{P_n^1} \right) P_k \exp ikt \right| = \Sigma_1 + \Sigma_2 + \Sigma_3,$$

say. Since by Lemma 3, $P_n^{1*} \leq K |P_n^1|$, we have

(3.3)
$$\Sigma_{1} \leq t \sum_{n=1}^{\tau} \frac{1}{|P_{n-1}^{1}|} \sum_{k=0}^{n} |P_{k}| + t \sum_{n=1}^{\tau} \left| \frac{P_{n}}{P_{n}^{1} P_{n-1}^{1}} \right| \sum_{k=0}^{n-1} P_{k}^{1*} \leq Kt \sum_{n=1}^{\tau} \left| \frac{P_{n}^{1}}{P_{n-1}^{1}} \right| + Kt \sum_{n=1}^{\tau} |R_{n}^{1}| \leq K.$$

by virtue of Lemmas 2-4.

Again using the result that $P_n^{1*} \leq K |P_n^1|$, we have from Lemma 4,

(3.4)
$$\Sigma_{2} \leq K|P_{\tau-1}| \sum_{n=\tau+1}^{\infty} \frac{1}{|P_{n-1}^{1}|} + K \sum_{n=\tau+1}^{\infty} \left| \frac{P_{n}}{P_{n}^{1} P_{n-1}^{1}} \right| \sum_{k=0}^{\tau-1} P_{k}^{*} \leq K + K\tau P_{\tau-1}^{*} \sum_{n=\tau+1}^{\infty} \frac{|R_{n}^{1}|}{n |P_{n-1}^{1}|} \leq K,$$

since $P_n^* \leq K |P_n|$, by virtue of Lemma 2. Applying Abel's transformation, we write

$$\Sigma_{3} \leq K \sum_{n=\tau+1}^{\infty} \left| \frac{1}{P_{n-1}^{1}} \sum_{k=\tau}^{n-1} \Delta \left(\frac{R_{k}}{k+1} \right) \sum_{v=\tau}^{k} P_{v} \exp iv t \right| + \\
+ K \sum_{n=\tau+1}^{\infty} \left| \frac{1}{P_{n-1}^{1}} \left(\frac{p_{n}}{P_{n}} - \frac{P_{n}}{P_{n}^{1}} \right) \sum_{v=\tau}^{n} P_{v} \exp iv t \right| \leq \\
\leq K\tau \sum_{n=\tau+1}^{\infty} \frac{1}{|P_{n-1}^{1}|} \sum_{k=\tau}^{n-1} \left\{ \frac{|\Delta R_{k}|}{k+1} + \frac{|R_{k+1}|}{k(k+1)} \right\} |P_{k}| + \\
+ K\tau \sum_{n=\tau+1}^{\infty} \frac{|R_{n}R_{n}^{1}|}{(n+1)^{2}} + K\tau \sum_{n=\tau+1}^{\infty} \frac{|R_{n}^{1}R_{n-1}^{1}|}{(n+1)^{2}} \leq \\
\leq K\tau \sum_{k=\tau}^{\infty} \frac{|\Delta R_{k}|}{k} |P_{k}| \sum_{n=k+1}^{\infty} \frac{1}{|P_{n-1}^{1}|} + \\
+ K\tau \sum_{k=\tau}^{\infty} \frac{1}{k(k+1)} |P_{k}| \sum_{n=k+1}^{\infty} \frac{1}{|P_{n-1}^{1}|} + K \leq \\
\leq K \sum_{k=\tau}^{\infty} |\Delta R_{k}| + K \leq K,$$

by virtue of Lemmas 2-5 and the hypothesis that $\{R_n\}\in BV$, which implies that

 $P_n/P_{n-1} \to 1$, as $n \to \infty$. Combining (3.2)-(3.5), we prove (3.1) and thus $\sum_n u_n$ is summable $|N, P_n|$.

This completes the proof of the $|F_1|$ -effectiveness part of the theorem.

The rest of the theorem follows from the foregoing proof of the $|F_1|$ -effectiveness, when we refer to section 5 of [3].

4. Proof of the Corollary

We need he following additional lemma.

Lemma 9. If $P_n > 0$, $P_n \to \infty$, $\{R_n^1\} \in B$ and $\{1/R_n^1\} \in B$, then the $|N, P_n|$ method

is equivalent to the $|(C, 1)(N, p_n)|$ method.

Lemma 9 follows directly from Theorems 1 and 2 of [1]. Now we see that if $P_n > 0$ and (1.1) holds then by virtue of Lemmas 2 and 4 of the present paper, the hypotheses of Lemma 9 are satisfied and in conclusion we obtain the result of the Corollary from the theorem already proved.

References

- [1] G. Das, Tauberian theorems for absolute Nörlund summability, *Proc. London Math. Soc.* (3) 19 (1969), 357—384.
- [2] H. P. Dikshit, Absolute (C, 1) (N, p_n) summability of a Fourier series and its conjugate series, *Pacific J. Math.* 26 (1968), 245—256.
- [3] H. P. Dikshit, Absolute total-effective triangular matrix method, Math. Ann. 186 (1970), 101—114.
- [4] H. P. Dikshit, Absolute summability of some series related to a Fourier series, *J. Australian Math. Soc.* 13 (1971), 7—14.
- [5] R. MOHANTY, A criterion for the absolute convergence of a Fourier series, Proc. London Math. Soc. 41 (1949), 186—196.
- [6] A. PEYERIMHOFF, On convergence fields of Nörlund means, Proc. Amer. Math. Soc. 7 (1956), 335—347.

DEPARTMENT OF POST-GRADUATE STUDIES AND RESEARCH IN MATHEMATICS, UNIVERSITY OF JABALPUR, JABALPUR (INDIA).

(Received September 26, 1974; revised form January 17, 1976.)