## Integrability conditions of a structure $f_{\lambda}$ satisfying $f^3 - \lambda^2 f = 0$

By M. D. UPADHYAY and V. C. GUPTA (Lucknow)

Summary: Yano [2] has obtained certain results on a structure defined by a tensor field  $f(f \neq 0)$  of type (1,1) satisfying  $f^3+f=0$ . Ishihara and Yano [1] have obtained its integrability conditions. Now we propose to obtain integrability conditions of a structure  $f_{\lambda}$  satisfying  $f^3-\lambda^2 f=0$ , where  $\lambda$  is a complex number not equal to zero.

In section 2, we have studied the Nijenhuis tensor of  $f_{\lambda}$ —structure and deduced some of its properties. In sections 3 and 4, we have obtained the conditions of partial integrability and integrability of this structure in terms of its Nijenhuis tensor.

**1.** Preliminaries: Let  $M^n$  be an *n*-dimensional differentiable manifold of class  $C^{\infty}$  and let there be given a (1,1) tensor field f  $(f\neq 0)$  of class  $C^{\infty}$  satisfying:

$$(1.1) f^3 - \lambda^2 f = 0,$$

where  $\lambda$  is a complex number not equal to zero.

Let us define the operators s and t by

(1.2) 
$$s = \left(\frac{f}{\lambda}\right)^2, \quad t = I - \left(\frac{f}{\lambda}\right)^2,$$

I denoting the identity operator. Then we have

**Theorem (1.1).** For a tensor field  $f \neq 0$  satisfying (1.1), the operators s and t defined by (1.2) and applied to the tangent space at a point of the manifold are complementary projection operators.

PROOF. By virtue of (1.1) and (1.2), we have

$$s+t = I.$$

$$s^{2} = \left(\frac{f}{\lambda}\right)^{4} = \frac{\lambda^{2} f^{2}}{\lambda^{4}} = \left(\frac{f}{\lambda}\right)^{2} = s.$$

$$t^{2} = I + \left(\frac{f}{\lambda}\right)^{4} - 2\left(\frac{f}{\lambda}\right)^{2} = 1 - \left(\frac{f}{\lambda}\right)^{2} = t.$$

$$st = ts = \left(\frac{f}{\lambda}\right)^{2} - \left(\frac{f}{\lambda}\right)^{4} = 0.$$

Which proves the theorem.

Let S and T be the complementary distributions corresponding to the projection operators s and t respectively. If f is of constant rank r, then the dimensions of S and T are r and (n-r) respectively. We call such a structure a  $f_{\lambda}$ -structure of rank r and the manifold  $M^n$  with this structure a  $f_{\lambda}$ -manifold.

**Theorem (1.2).** For a tensor field  $f \neq 0$  satisfying (1.1) and the operators s and t defined by (1.2), we have

(1.3) 
$$fs = sf = f, \quad ft = tf = 0.$$
$$f^2s = \lambda^2s, \quad f^2t = tf^2 = 0.$$

i.e. f acts on S as a  $\pi$ -structure operator and on T as a null operator.

PROOF. By virtue of (1.1) and (1.2), we have

$$fs = sf = f\left(\frac{f}{\lambda}\right)^2 = \frac{f^3}{\lambda^2} = f.$$

$$f^2s = f(fs) = f^2 = \lambda^2 s.$$

$$ft = tf = f - f\left(\frac{f}{\lambda}\right)^2 = 0.$$

$$f^2t = tf^2 = f(ft) = 0.$$

Hence the result.

Corollary (1.1): The  $f_{\lambda}$ -structure of maximal rank is a  $\pi$ -structure.

PROOF. If the rank of f=n, then dim T=0 and dim S=n. In this case, t=0 and s=I.

Hence f satisfies:

$$I - (f/\lambda)^2 = 0,$$

i.e.

$$f^2 - \lambda^2 I = 0.$$

Hence the result.

2. Nijenhuis tensor of f,-structure:

For convenience henceforth, we will write f in place of  $f_{\lambda}$ -structure. Then the Nijenhuis tensor N(X, Y) of f is

(2.1) 
$$N(X,Y) = [fX, fY] - f[fX, Y] - f[X, fY] + f^{2}[X, Y],$$

i.e.

(2.2) 
$$N(X,Y) = [fX, fY] - f[fX, Y] - f[X, fY] + \lambda^2 s[X, Y],$$

in consequence of (1.2).

Equation (2.1) can also be written in the form

(2.3) 
$$N(X,Y) = N(sX,sY) + N(sX,tY) + N(tX,sY) + N(tX,tY),$$
in consequence of (1.3).

Theorem (2.1). We have the following identities:

$$(2.4) N(tX, tY) = s \cdot N(tX, tY) = \lambda^2 s[tX, tY],$$

$$(2.5) t \cdot N(X,Y) = t \cdot [fX, fY],$$

$$(2.6) t \cdot N(sX, sY) = t \cdot [fX, fY],$$

$$(2.7) t \cdot N(fX, fY) = \lambda^4 t \cdot [sX, sY].$$

PROOF. The proofs of (2.4) to (2.7) follow by virtue of the equations (1.2), (1.3) and (2.2).

**Theorem (2.2).** For any vector fields X and Y, the following conditions are equivalent:

(i) 
$$t \cdot N(X, Y) = 0$$
,

(ii) 
$$t \cdot N(sX, sY) = 0$$
,

(iii) 
$$t \cdot N(fX, fY) = 0$$
.

PROOF. In consequence of (1.2), (1.3) and (2.2), it can be easily proved that

$$N(sX, sY) = 0$$
 if and only if  $N(fX, fY) = 0$ ,

for all vector fields X and Y.

Thus, by virtue of (2.5) and (2.6), the conditions (i), (ii) and (iii) are equivalent to each other.

The Lie derivative  $L_Y f$  of the tensor field f with respect to a vector field Y is, by definition, a tensor field of the same type as f given by

$$(2.8) (L_Y f)X = f[X, Y] - [fX, Y].$$

Then by virtue of (1.3), (2.1) and (2.8), we have

(2.9) 
$$N(sX, tY) = f(L_{tY} f) sX = f\{s(L_{tY} f) sX\},$$

i.e.

$$(2.10) f \cdot N(sX, tY) = \lambda^2 s(L_{tY} f) sX,$$

in consequence of (1.2).

3. Integrability conditions:

**Theorem (3.1).** For any two vector fields X and Y, the distribution T is integrable if and only if

$$(3.1) N(tX, tY) = 0,$$

which is equivalent to

$$(3.2) s \cdot N(tX, tY) = 0.$$

PROOF. The distribution T is integrable if and only if

$$s \cdot [tX, tY] = 0,$$

for any two vector fields X and Y. Thus, by virtue of (2.4), the theorem follows.

**Theorem (3.2).** The distribution S is integrable if and only if any one of the conditions of theorem (2.2) is satisfied.

PROOF. The distribution S is integrable if and only if

$$t \cdot [sX, sY] = 0,$$

for any two vector fields X and Y. Therefore, by virtue of (2.7), the theorem follows.

**Theorem (3.3).** For any two vector fields X and Y, the distributions S and T are both integrable if and only if

(3.3) 
$$N(X,Y) = s \cdot N(sX, sY) + N(sX, tY) + N(tX, sY).$$

PROOF. By virtue of s+t=I, equation (2.3) can also be written as

(3.4) 
$$N(X,Y) = s \cdot N(sX,sY) + t \cdot N(sX,sY) + N(sX,tY) + N(tX,sY) + N(tX,tY).$$

Thus by virtue of (3.1), (3.4) and theorem (3.2), we get the result.

Now suppose that the distribution S is integrable and take an arbitrary vector field  $X_1$  tangent to an integral manifold of S. Let us define the operator  $f_*$  as follows:

$$f_{*}X_{1}=fX_{1}$$
.

Thus by virtue of theorem (1.2), the induced structure  $f_*$  is a  $\pi$ -structure on each integral manifold of S.

Let us denote by  $N_*$   $(X_1, Y_1)$  the vector valued 2-form corresponding to the Nijenhuis tensor of the  $\pi$ -structure induced from  $f_{\lambda}$ -structure on each integral manifold of S and for any two vector fields  $X_1$  and  $Y_1$  tangent to an integral manifold of S. Then we have

(3.5) 
$$N_*(X_1, Y_1) = [f_*X_1, f_*Y_1] - f_*[f_*X_1, Y_1] - f_*[X_1, f_*Y_1] + \lambda^2[X_1, Y_1];$$

from which in view of (2.1), it follows that

$$(3.6) N(sX, sY) = N_*(sX, sY)$$

for any two vector fields X and Y in the manifold.

Definition (3.1): We say that the  $f_{\lambda}$ -structure is partially integrable if the distribution S is integrable and the  $\pi$ -structure  $f_{*}$  induced from f on each integral manifold of S is also integrable.

**Theorem (3.4).** For any two vector fields X and Y, a necessary and sufficient condition for the  $f_{\lambda}$ -structure to be partially integrable is that

$$(3.7) N(sX, sY) = 0,$$

which is equivalent to

$$(3.8) N(fX, fY) = 0.$$

PROOF. For any two vector fields X and Y, N(sX, sY) = 0 if and only if N(fX, fY) = 0. Therefore, by virtue of (3.6) and theorem (3.2), we obtain the result.

**Theorem (3.5).** For any two vector fields X and Y, a necessary and sufficient condition for the distribution T to be integrable and the  $f_{\lambda}$ -structure to be partially integrable is that

(3.9) 
$$N(X, Y) = N(sX, tY) + N(tX, sY).$$

PROOF. The proof of the theorem follows by virtue of the equations (2.3), (3.1) and (3.7).

4. The condition N(sX, tY) = 0.

**Theorem (4.1).** The tensor field  $s(L_{tY} f)s$  vanishes identically for any vector field Y if and only if

$$(4.1) N(sX, tY) = 0,$$

for any two vector fields X and Y.

PROOF. The proof of the theorem follows by virtue of the equations (2.9) and (2.10).

When both distributions S and T are integrable, we can choose a local coordinate system such that all S are represented by putting (n-r) local coordinates constant and all T by putting the other r coordinates constant. Such a coordinate system will be called an 'adapted coordinate system'.

It can be supposed that in an adapted coordinate system, the projection operators s and t have the components of the form:

$$(4.2) s = \begin{pmatrix} I_r & 0 \\ 0 & 0 \end{pmatrix}, \quad t = \begin{pmatrix} 0 & 0 \\ 0 & I_{n-r} \end{pmatrix}$$

respectively, where  $I_r$  is a unit matrix of order r and  $I_{n-r}$  is of order (n-r). Since f satisfies: fs=sf=f and ft=tf=0, the tensor f has the components of the form

$$(4.3) f = \begin{pmatrix} f_r & 0 \\ 0 & 0 \end{pmatrix}$$

in an adapted coordinate system, where  $f_r$  is a square matrix of order  $r \times r$ .

Thus, the Lie derivative  $L_{tY}f$  has components of the form

$$(4.4) L_{tY} f = \begin{pmatrix} L' & 0 \\ 0 & 0 \end{pmatrix}$$

for any vector field tY in T.

**Theorem (4.2).** For both distributions S and T being integrable, the local components of the  $f_{\lambda}$ -structure are functions independent of the coordinates which are constant along the integral manifold of S in an adapted coordinate system if and only if, for any two vector fields X and Y

$$(4.5) N(sX, tY) = 0.$$

PROOF. Let us assume that N(sX, tY) = 0 for any two vector fields X and Y. Then from theorem (4.1), the tensor field  $s(L_{tY}f)s$  vanishes identically for any vector field Y. Hence we have

$$L_{tY} f = 0$$
, and therefore  $L' = 0$ .

Which implies that the components of f are independent of the coordinates which are constant along the integral manifold of the distribution S in an adapted coordinate system.

Conversely, if the components of f are independent of these coordinates, then L'=0. Therefore the tensor field  $s(L_{tY}f)s$  vanishes identically for any vector field Y. Hence N(sX, tY)=0 for any two vector fields X and Y.

**Theorem (4.3).** Suppose that the distributions S and T are both integrable and that an adapted coordinate system has been chosen. Then the components of f are independent of the coordinates which are constant along the integral manifold of S if and only if

$$(4.6) N(X,Y) = s \cdot N(sX,sY),$$

for any two vector fields X and Y.

PROOF. The proof of the theorem follows by virtue of (3.3) and theorem (4.2).

Definition (4.1) We say that the  $f_{\lambda}$ -structure is 'integrable' if

(i) the structure  $f_{\lambda}$  is partially integrable: i.e.,

$$N(sX, sY) = 0;$$

(ii) the distribution T is integrable: i.e.,

$$N(tX, tY) = 0$$
; and

(iii) the components of the  $f_{\lambda}$ -structure are independent of the coordinates which are constant along the integral manifolds of S in an adapted coordinate system.

**Theorem (4.4).** A necessary and sufficient condition for the structure  $f_{\lambda}$  to be integrable is that

$$(4.7) N(X,Y) = 0,$$

for any two vector fields X and Y.

PROOF. The proof of the theorem follows from the theorems (3.1), (3.4) and (4.3).

## References

[1] S. ISHIHARA and K. YANO, On integrability conditions of a structure f satisfying  $f^3+f=0$ , Quart. J. Math., Oxford, 15 (1964), 217—222.

[2] K. Yano, On a structure defined by a tensor field f of type (1,1) satisfying  $f^3+f=0$ , Tensor, N. S, 14 (1963), 99—109.

DEPARTMENT OF MATHEMATICS, LUCKNOW UNIVERSITY, LUCKNOW, INDIA.

(Received October 24, 1974.)