On some functional equations in Banach algebras

By B. NAGY (Budapest)

Let R denote the field of real numbers, B a complex Banach algebra, f, g functions mapping R into B. The purpose of this note is to study the solutions of the functional equations

(1)
$$f(\xi + \eta) + f(\xi - \eta) = 2f(\xi)g(\eta)$$

(cf. e.g. [1], [7]) and

(2)
$$f(\xi + \eta) \cdot f(\xi - \eta) = f(\xi)^2 - f(\eta)^2$$

(see. e.g. [1], [5], [6]) under certain measurability and continuity conditions. We stipulate that φ_e and φ_0 denote the even and odd parts, respectively, of the function φ throughout.

Lemma 1. If f and g satisfy (1) and are strongly measurable, then f is strongly continuous. Let $A_r(H)$ denote the right annihilator of $H = \{f(\xi); \xi \in R\}$, and suppose $A_r(H) = \{0\}$. Then g is continuous, even and satisfies

(3)
$$g(\xi + \eta) + g(\xi - \eta) = 2g(\xi)g(\eta).$$

PROOF. Since (1) can be written as $f(\eta) = 2f\left(\frac{\xi + \eta}{2}\right)g\left(\frac{-\xi + \eta}{2}\right) - f(\xi)$, the first statement follows at once from [2], Theorem 2. From (1) we get $f(\xi)g(\eta) = f(\xi)g(\eta)$, which implies $f(\xi)g_0(\eta) = 0$.

Then, by assumption, $g_0(\eta) = 0$ for $\eta \in R$, thus g is even. From (1) we obtain for $\alpha, \xi, \eta \in R$

(4)
$$f(\alpha)\{g(\xi+\eta)+g(\xi-\eta)\} = \frac{1}{2}\{f(\alpha+\xi+\eta)+f(\alpha-\xi-\eta)+f(\alpha+\xi-\eta)+f(\alpha-\xi+\eta)\} =$$
$$=\{f(\alpha+\xi)+f(\alpha-\xi)\}g(\eta) = 2f(\alpha)g(\xi)g(\eta).$$

This, by assumption, implies (3) and, by the measurability of g, that g is continuous.

Moreover, we have

258 B. Nagy

Theorem 1. Suppose f, g are continuous and satisfy (1), and g satisfies (3) with g(0)=j. Then j is idempotent and there exist uniquely determined elements a, b, c, $d \in B$ such that a=aj, b=bj=jb, c=cj, jc=0, d=dj and

(5)
$$f(\xi) = a \left(j + b \frac{\xi^2}{2!} + b^2 \frac{\xi^4}{4!} + \dots \right) + d \left(j \xi + b \frac{\xi^3}{3!} + b^2 \frac{\xi^5}{5!} + \dots \right),$$
(6)
$$g(\xi) = \left(j + b \frac{\xi^2}{2!} + b^2 \frac{\xi^4}{4!} + \dots \right) + c \left(j \xi + b \frac{\xi^3}{3!} + b^2 \frac{\xi^5}{5!} + \dots \right).$$

The converse is also true.

PROOF. Since g satisfies (3), the statements concerning g, j, b and c follow from [3]. Moreover, $f(\xi)g_0(\eta)=0$ implies

(7)
$$f_{e}(\xi + \eta) + f_{e}(\xi - \eta) + f_{0}(\xi + \eta) + f_{0}(\xi - \eta) = 2\{f_{e}(\xi) + f_{0}(\xi)\} g_{e}(\eta)$$

and thus

(8)
$$f_e(\xi + \eta) + f_e(\xi - \eta) = 2f_e(\xi)g_e(\eta) = 2f_e(\eta)g_e(\xi).$$

From (8) we get $f_e(\xi) = f_e(\xi)j = f_e(0)g_e(\xi)$, which gives with $f_e(0) = a$ that

(9)
$$a = aj \text{ and } f_e(\xi) = a \cdot \left(j + b \frac{\xi^2}{2!} + b^2 \frac{\xi^4}{4!} + \dots \right).$$

From (7) and (8) we obtain

(10)
$$f_0(\xi + \eta) + f_0(\xi - \eta) = 2f_0(\xi)g_e(\eta).$$

Since $jg_e(\eta) = g_e(\eta)j = g_e(\eta)$ for $\eta \in R$, thus $g_e(\eta)$ belongs to the closed subalgebra $\mathbf{B}_j = \{x \in \mathbf{B} : xj = x = jx\}$ with unit j (cf. e.g. [3]), and for some sufficiently small $\varepsilon > 0$ there exists the inverse r in \mathbf{B}_j of $\int_0^\varepsilon g_e(\eta) d\eta$. Integrating (10) we get, by (10) with $\eta = 0$,

(11)
$$f_0(\xi) = f_0(\xi) \cdot j = \frac{1}{2} \cdot \int_{\xi - \varepsilon}^{\xi + \varepsilon} f_0(\tau) d\tau \cdot r$$

thus f_0 has continuous derivatives of any order on R. Differentiating (10) twice we get $f_0''(\xi+\eta)+f_0''(\xi-\eta)=2f_0(\xi)g_e''(\eta)$, which gives

$$f_0''(\xi) = f_0(\xi) \cdot b$$

with $f_0(0)=0$ and, in view of (11), $d=f_0'(0)=d\cdot j$. The solution of (12) under these conditions can be obtained as in [3], and is $f_0(\xi)=d\left(j\xi+b\frac{\xi^3}{3!}+b^2\frac{\xi^5}{5!}+\ldots\right)$. Thus we get (5), and since the converse is straightforward, the proof is complete.

Corollary. If f, g are strongly measurable, satisfy (1), and $A_r(H) = \{0\}$, then the conclusions of Theorem 1 hold with c = 0.

The general measurable solutions of (1) can be somewhat pathological, and in the case of a commutative Banach algebra can be described as follows.

Theorem 2. Suppose **B** is a commutative Banach algebra, f, g are strongly measurable and satisfy (1), further N denotes the annihilator of $H = \{f(\xi); \xi \in R\}$. Then there exist uniquely determined elements j, a, $d \in \mathbf{B}$ with $j^2 - j \in N$, aj = a, dj = d and $b \in \mathbf{B}$ determined modulo N with $bj - b \in N$ such that

(13)
$$f(\xi) = a\left(j + b\frac{\xi^2}{2!} + b^2\frac{\xi^4}{4!} + \dots\right) + d\left(j\xi + b\frac{\xi^3}{3!} + b^2\frac{\xi^5}{5!} + \dots\right)$$

(14)
$$g(\xi) = \left(j + b \frac{\xi^2}{2!} + b^2 \frac{\xi^4}{4!} + \dots\right) + r(\xi; b)$$

with r(0; b)=0, where r is a stongly measurable map of R into N. Conversely, if $j, b, a, d \in \mathbf{B}$ with aj=a, dj=d, N is the annihilator of $\{a\} \cup \{d\}$, r is a map of R into N, and f, g are given by (13) and (14), then f, g satisfy (1).

PROOF. By assumption, N is a closed ideal in \mathbf{B} . From (4) we see that $g(\xi+\eta)+g(\xi-\eta)-2g(\xi)g(\eta)\in N$ for $\xi,\eta\in R$. Let \mathbf{B}/N denote the quotient algebra with norm $\|X\|=\inf\{\|x\|;x\in X\}$ and Q the quotient map of \mathbf{B} onto \mathbf{B}/N . Then \mathbf{B}/N is also a commutative Banach algebra and the map $G=Q\circ g$ of R into \mathbf{B}/N is strongly measurable and satisfies (3). According to [3] there exist uniquely determined elements $J,B\in \mathbf{B}/N$ such that $G(\xi)=J+B\frac{\xi^2}{2!}+B^2\frac{\xi^4}{4!}+\dots$ with $J^2=J$, BJ=B. If we put $g(0)=j\in J$, and choose an element $b\in B$, we have $j^2-j\in N$, $bj-b\in N$ and that $r(\xi;b)=g(\xi)-\left(j+b\frac{\xi^2}{2!}+b^2\frac{\xi^4}{4!}+\dots\right)\in N$, where r is strongly measurable with r(0;b)=0. Introducing the notation $g_d(\xi)=j+b\frac{\xi^2}{2!}+b^2\frac{\xi^4}{4!}+\dots$, we get from (1) as in the proof of Theorem 1 $f_e(\xi)=f(0)g_d(\xi)=f_e(\xi)j$, which gives with f(0)=a a=aj and $f_e(\xi)=a\left(j+b\frac{\xi^2}{2!}+b^2\frac{\xi^4}{4!}+\dots\right)$. Similarly, we obtain

(15)
$$f_0(\xi + \eta) + f_0(\xi - \eta) = 2f_0(\xi)g_d(\eta)$$

and hence

(16)
$$\frac{1}{2} \cdot \int_{\xi-\varepsilon}^{\xi+\varepsilon} f_0(\tau) d\tau = f_0(\xi) \cdot \int_0^{\varepsilon} g_d(\eta) d\eta \quad (\varepsilon > 0).$$

With the notation $x(\varepsilon) = \frac{1}{\varepsilon} \int_0^\varepsilon g_d(\eta) d\eta$ we have $\lim_{\varepsilon \to 0} x(\varepsilon) = j$, thus with $X(\varepsilon) = Qx(\varepsilon)$ we get $\lim_{\varepsilon \to 0} X(\varepsilon) = J$. If $\mathbf{B}_J = \{X \in \mathbf{B}/N : XJ = X\}$, then \mathbf{B}_J is a closed commutative subalgebra of \mathbf{B}/N with unit J. Since $g_d(\eta) \cdot j = j + m + (b+n) \frac{\eta^2}{2!} + b(b+n) \frac{\eta^4}{4!} + \frac{\eta^4}{4!}$

260 B. Nagy

 $+b^{2}(b+n)\frac{\eta^{6}}{6!}+...=g_{d}(\eta)+p(\eta)$, where $m=j^{2}-j\in N$, $n=bj-b\in N$, $p(\eta)\in N$ for $\eta \in R$, we have $x(\varepsilon) \cdot j = \frac{1}{\varepsilon} \int_{\varepsilon}^{\varepsilon} g_d(\eta) \cdot j \, d\eta = x(\varepsilon) + \frac{1}{\varepsilon} \int_{\varepsilon}^{\varepsilon} p(\eta) \, d\eta \in X(\varepsilon)$, for N is closed. Thus $X(\varepsilon) \in \mathbf{B}_I$ for every $\varepsilon > 0$, and for some $\varepsilon > 0$ there exists a $Y(\varepsilon) \in \mathbf{B}_I$ with $X(\varepsilon) Y(\varepsilon) = J$, consequently there exists a $y(\varepsilon) \in \mathbf{B}$ with $x(\varepsilon) y(\varepsilon) - j = q \in \mathbb{N}$. It follows that $\int_{-\varepsilon}^{\varepsilon} g_d(\eta) d\eta \cdot \frac{1}{\varepsilon} y(\varepsilon) = j + q$, and (15) and the definition of N give $f_0(\xi)$. $\cdot (j+q) = f_0(\xi)$. Thus (16) implies $f_0(\xi) = \frac{1}{2\varepsilon} y(\varepsilon) \int_{-\infty}^{\xi+\varepsilon} f_0(\tau) d\tau$, consequently f_0 has derivatives of every order on R. A similar argument as in the proof of Theorem 1

yields that with $d=f_0'(0)=f_0'(0)j=dj$ we have

$$f_0(\xi) = d\left(j\xi + b\frac{\xi^3}{3!} + b^2\frac{\xi^5}{5!} + \ldots\right),$$

while the converse part of the theorem can be proved by straightforward calculation. In what follows we deal with the equation (2). We always assume that **B** is an algebra with unit e and, to avoid pathological phenomena (cf. [5]) that $f(\alpha)$ is regular for some $\alpha \in R$.

Lemma 2. Suppose **B** is an algebra with unit $e, f: R \rightarrow B$ satisfies (2) and for some $\alpha \in R$ $f(\alpha)^{-1}$ exists. Then f is odd, $g(\xi) = \frac{1}{2} f(\alpha)^{-1} \{ f(\xi + \alpha) - f(\xi - \alpha) \}$ satisfies (3) with g(0) = e, and f, g satisfy (1).

PROOF. If we put (η, ξ) instead of (ξ, η) in (2), we get $f(\alpha)\{f(\xi)+f(-\xi)\}=0$ for $\xi \in R$. Thus f is odd, and this implies that $f(\xi)$, $f(\eta)$ commute for ξ , $\eta \in R$ (cf. [5]). Consequently, $f(\alpha)^{-1}$ also commutes with $f(\xi)$ for every $\xi \in R$, and the calculation in [1], p. 137 applies and gives that g satisfies (3) with g(0) = e. Moreover, a calculation similar to that in [1], p. 138 yields that f, g satisfy (1), and the lemma is proved.

The following theorem generalizes some results of S. Kurepa (cf. [5]).

Theorem 3. Suppose **B** is a Banach algebra with unit $e, f: R \rightarrow B$ satisfies (2) and is strongly measurable on a set $P \subset R$ of positive Lebesgue measure, further $f(\alpha)$ is regular for some $\alpha \in \mathbb{R}$. Then there exist uniquely determined elements $b, d \in \mathbb{B}$ with bd=db such that $f(\xi)=d\left\{e\xi+b\frac{\xi^3}{3!}+b^2\frac{\xi^5}{5!}+\ldots\right\}$. Conversely, if f is of the above form with bd=db, then f satisfies (2).

PROOF. We first show that under these conditions 0 is in the closure of the set $H = \{\xi \in R : f(\xi) \text{ regular}\}$. Indeed, according to Lemma 2 we have for every $\xi \in R$ $f(2\xi) = 2f(\xi)g(\xi)$, where $f(\xi)$ and $g(\xi)$ commute. If we assume that $f(\xi)$ is singular for $|\xi| < \varepsilon$ with $\varepsilon > 0$, then it follows that $f(\xi)$ is singular also for $|\xi| < 2\varepsilon$ and thus for every $\xi \in R$, which contradicts the assumptions of the theorem.

Moreover, according to [4] the map $\varphi: \mathbb{R}^2 \to [0, \infty), \varphi(\xi_1, \xi_2) = m\{(P + \xi_1) \cap \{0, \infty\}\}$ $\cap (P + \xi_2)$ (m denotes Lebesgue measure) is continuous with $\varphi(0, 0) = m(P) > 0$. By the above reasoning, for some $\alpha \in H$ we have $m(P_{\alpha}) = m\{(P+\alpha) \cap (P-\alpha)\} > 0$. $\xi \in P_{\alpha}$ implies $\xi + \alpha$, $\xi - \alpha \in P$, consequently $g(\xi) = \frac{1}{2} f(\alpha)^{-1} \{ f(\xi + \alpha) - f(\xi - \alpha) \}$ is measurable on P_{α} and [3], Corollary to Prop. 2. ensures the continuity of g. Moreover, there exists a compact $K \subset P$ such that m(K) > 0, and the restriction of f to K is uniformly continuous (cf. e.g. [2]), while the restriction of g to K is also uniformly continuous.

Suppose $\varepsilon > 0$ and find a $\delta > 0$ such that $|\eta| < \delta$ implies $L_{\eta} = K \cap (K + \eta) \cap (K - \eta) \neq \emptyset$ and that $||f(\xi) - f(\xi + \eta)|| < \varepsilon$ and $||g(\xi) - g(\xi + \eta)|| < \varepsilon$ whenever ξ , $\xi + \eta \in K$. Since f, g satisfy (1), for $\xi, \eta \in R$ we have $f(2\eta) = 2f(\xi + \eta)g(\xi - \eta) - f(2\xi)$

and, applying again (1)

(17)
$$f(2\eta) = 2f(\xi + \eta)g(\xi - \eta) - 2f(\xi)g(\xi) \quad (\xi, \eta \in R).$$

If $|\eta| < \delta$, then there exists a $\xi \in L_{\eta}$, for which we have $\xi, \xi - \eta, \xi + \eta \in K$ and, putting $S = \max\{\|f(\xi)\|, \|g(\xi)\| : \xi \in K\}$ we obtain by (17)

$$\frac{1}{2} \|f(2\eta)\| \le \|f(\xi+\eta)\| \cdot \|g(\xi-\eta) - g(\xi)\| + \|f(\xi+\eta) - f(\xi)\| \cdot \|g(\xi)\| \le 2S\varepsilon,$$

thus f is continuous at 0. Since f is odd, we get

$$f(\xi + \eta) - f(\xi) = f(\xi + \eta) + f(-\xi) =$$

= $2f(\eta/2)g(\xi + \eta/2) \quad (\xi, \eta \in R)$

and the continuity of g implies the continuity of f on R.

Now we apply Theorem 1 and establish by (5) that $f(\xi) = d\left(e\xi + b\frac{\xi^3}{3!} + b^2\frac{\xi^5}{5!} + ...\right)$

with d=f'(0). Moreover, since $f(\xi)$ and $g(\eta)$ commute for $\xi, \eta \in R$ we also obtain $f'(\xi) \cdot g''(\eta) = g''(\eta) \cdot f'(\xi)$ and, putting $\xi = \eta = 0$, db = bd. The converse can be obtained by direct calculation, thus the theorem is proved.

References

- [1] J. Aczél, Lectures on functional equations and their applications, New York, 1966.
- [2] J. Baker, Regularity properties of functional equations, Aeq. Math. 6 1971, 243-248.
- [3] J. Baker, D'Alembert's functional equation in Banach algebras. Acta. Sci. Math. 32 1971, 225—234.
- [4] J. H. B. Kemperman, A general functional equation, Trans. Am. Math. Soc. 86 1957, 28—56. [5] S. Kurepa, Functional equation $F(x+y)F(x-y)=F^2(x)-F^2(y)$ in n-dimensional vector space,
- Monatsh. Math. 64 1960, 321—329.
 [6] S. Kurepa, On one-parameter family of operators in Banach space, Arch. Math. 11 1960, 427—430.
- [7] E. VINCZE, A d'Alembert-Poisson függvényegyenlet egyik általánosítása, Mat. Lapok, 12 1961, 18—31. Hungarian.

TECHNICAL UNIVERSITY, BUDAPEST ADDRESS: B. NAGY, 1204 BUDAPEST, PESTERZSÉBET, VÉCSEY U. LTP. 28/A. I. 5. HUNGARY.

(Received November 20, 1974.)