On some functional equations in Banach algebras

By B. NAGY (Budapest)

Let R denote the field of real numbers, B a complex Banach algebra, f, g
functions mapping R into B. The purpose of this note is to study the solutions of
the functional equations

() SEHM+LE—=n =2 e
(cf. e.g. [1], [7]) and
(2) JE+n)-fE—n) =f&*—f()*

(see. e.g. [1], [5], [6]) under certain measurability and continuity conditions. We
stipulate that ¢, and ¢, denote the even and odd parts, respectively, of the function
¢ throughout.

Lemma 1. If f and g satisfy (1) and are strongly measurable, then f is strongly
continuous. Let A,(H) denote the right annihilator of H=/{f(¢); (€ R}, and suppose
A, (H)={0}. Then g is continuous, even and satisfies

3 gl+n+gc—n) = 2g()gM).

Proor. Since (1) can be written as f{n)=2f[;-2’_q]g[gg;q]—f(g’), the
first statement follows at once from [2], Theorem 2. From (1) we get f(&)g(n) =
=f(&)+g(—n). which implies f(&)g,(n)=0.

Then, by assumption, g,()=0 for n€R, thus g is even. From (1) we obtain
for a, ¢, nER

? g 1
(4) S@{gC&+m+g&—n} = 5{f(u+¢‘+:ﬂ +

+f@=¢é=m+fla+i—n+fl@a—¢+n)} =
= {f+ )+ la—}e) = 2f ()& g
This, by assumption, implies (3) and, by the measurability of g, that g is
continuous.

Moreover, we have
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Theorem 1. Suppose f, g are continuous and satisfy (1), and g satisfies (3) with
g(0)=j. Then j is idempotent and there exist uniquely determined elements a, b, c,
dc B such that a=aj, b=>bj=jb, c=cj, je=0, d=dj and :

(5) 1@ =aljbi 45 St )+
+d[jc+béa b ;: ]
®) 6@ = (j+bs+B 5. )+

g "5
+c[;g+b +b25| ]

The converse is also true.

PRrOOF. Since g satisfies (3), the statements concerning g, 7, & and ¢ follow
from [3]. Moreover, f({)g,(n)=0 implies

(7 fe@+m+LE—n)+LE+M+L(E—n)=
= 2{£e(O) +/o(O)} g.(n)
and thus
(®) Je(€+m) +Le(E—n) = 2£(5) & (1) = 2fc(n) 8e(E).
From (8) we get £,(&)=£,(&)j=/.(0)g.(&), which gives with f,(0)=a that
2 4
©) a=q and [,Q)=a-(j+brpit.).
From (7) and (8) we obtain
(10) JSoC€+m+L(E—n) = 2£,(5) 8. (1)-

Since je.(m)=g.(M)Jj=g.(n) for neR, thus g.(y) belongs to the closed subalgebra
B;={xcB:xj=x=jx} with unit j (cf. e.g. [3]), and for some sufficiently small

¢=>0 there exists the inverse r in B; of fg,(q)dn. Integrating (10) we get, by
0
(10) with =0,
e+e
(11) fo©@) =f@)-j= f foD)dz-r
thus f, has continuous derivatives of any order on R. Differentiating (10) twice
we get fy' (E+n) +f5 (E—n)=2/,(S)ge (), which gives
(12) Jo @) =/o(8)-b
with f£;,(0)=0 and, in view of (11), d=f; (0)=d-j. The solutlon of (12) under these
conditions can be obtained as in [3], and is fj({) =d [ch-!—b +b°—+ ] Thus

we get (5), and since the converse is straightforward, the proof is complete
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Corollary. If f, g are strongly measurable, satisfy (1), and A,(H)={0},
then the conclusions of Theorem 1 hold with ¢=0.

The general measurable solutions of (1) can be somewhat pathological, and in
the case of a commutative Banach algebra can be described as follows.

Theorem 2. Suppose B is a commutative Banach algebra, f,g are strongly
measurable and satisfy (1), further N denotes the annihilator of H={f(£); ££R}.
Then there exist uniquely determined elements j,a,dcB with j*—jEN, aj=a,
dj=d and beB determined modulo N with bj—beN such that

(13) r@=ali+bs +b¥f‘+ Jrd(ierr S+

én‘l

(14) 8@ = (J+b 5y +b 5+ ) +rE b)

with r(0; b)=0, where r is a stongly measurable map of R into N. Conversely,
if j.b,a,deB with aj=a,dj=d, N is the annihilator of {a}J{d}, r is a map
of R into N, and f, g are given by (13) and (14), then f, g satisfy (1).

Proor. By assumption, N isaclosed ideal in B. From (4) we see that g(+n)+
+g(E—n)—2g()gmeN for ¢, neR. Let B/N denote the quotient algebra with
norm | X[ = inf {|x|;x€X} and Q the quotient map of B onto B/N. Then
B/N is also a commutative Banach algebra and the map G=Qocg of R into B/N
is strongly measurable and satisfies (3). According to [3] there exist uniquely deter-
mined elements J, BEB/N such that G(c}—J+B—26—,—+ Bz—g-,-+ with J*=J,
BJ=B. If we put g(0)=jcJ, and choose an element b€B, we have j*—jEN,

2 z4
—beN and that r(¢; b)= g(ﬁ)—[]+bc +1!:»gg .]EN, where r is strongly

4
measurable with r(0; b)=0. Introducing the notation g,,(c,"')=_)r'+a§»—+.!';26

we get from (1) as in the proof of Theorem 1 fe(©) —f(O)gd(g) -f,(f) JA whlch gives
with f(0)=a a=aj and f,(&)= a[j-l-b J.':2 C ) Similarly, we obtain

21
(15) SoC+m)+f(E—n =2 £(8) &i(n)
and hence
E+s [
(16) 1 [ 2@d=£@)- [samdn @= 0.
é—¢ 0

£
With the notation x(a)=% f g.(n)dn we havclin& x(g)=j, thus with X(g)=0x(e)
0 =
we get limX(s)=.I. If B,={X<B/N:XJ=X}, then B, is a closed commutative

subalgebra of B/N with unit J. Since g,(n) ;—J+m+{b+n) +b(b+n) q
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6
+b2(b+n)%+...=g,,(q)+p(q), where m=j*—jeN, n=bj—beN, p(n)eN for

neER, we have x(g) -j=—l—fg,,(q)-jdq=x(a) +-% fp(q)quX(s), for N is closed.
0 o

Thus X(e)¢B, for every &£=0, and for some &=0 there exists a Y(¢)€B, with

X(e) Y(e)=J, consequently there exists a y(g)éB with x(g)y(e)—j=¢¢<N. It fol-

lows that fg,(q)dq-%y(s)=j+q, and (15) and the definition of N give f,()-
0

" i \ ) l g+3
«(J+q)=/y(). Thus (16) implies j},(c)=zy(s) f fo(r)dr, consequently f, has
§—¢
derivatives of every order on R. A similar argument as in the proof of Theorem 1
yields that with d=£, (0)=/; (0)j=dj we have

3 £5
f@=d(je+b S

while the converse part of the theorem can be proved by straightforward calculation.

In what follows we deal with the equation (2). We always assume that B is an
algebra with unit e and, to avoid pathological phenomena (cf. [5]) that f(x) is
regular for some «€R.

Lemma 2. Suppose B is an algebra with unit e, f:R—~B satisfies (2) and for
some o€R f(a)™' exists. Then f is odd, g(é):%f(st)‘l{f(§+a)~f(g"—a)}
satisfies (3) with g(0)=e, and f, g satisfy (1).

Proor. If we put (n, £) instead of (&, n) in (2), we get f(2){f(&)+/(—&)}=0
for £€R. Thus f is odd, and this implies that f(¢), f(y) commute for &, néR
(cf. [5]). Consequently, f(x) ' also commutes with f({) for every £€R, and the
calculation in [1], p. 137 applies and gives that g satisfies (3) with g(0)=e. More-
over, a calculation similar to that in [1], p. 138 yields that f, g satisfy (1), and the
lemma is proved.

The following theorem generalizes some results of S. Kurera (cf. [5]).

Theorem 3. Suppose B is a Banach algebra with unit e, f:R—~B satisfies (2)
and is strongly measurable on a set PC R of positive Lebesgue measure, further
f(x) is regular for some o€ R. Then there exist uniquely determined elements b, dcB

3 =0
with bd=db such that f{é)=d[e§+b%—l—b2-§—?+...}. Conversely, if f is of the
above form with bd=db, then f satisfies (2).

Proor. We first show that under these conditions 0 is in the closure of the set
H={(ER: f({) regular}. Indeed, according to Lemma 2 we have for every <R
S(2O)=2f(&)g(&), where f(¢) and g(&) commute. If we assume that f(¢) is sin-
gular for |£|=g with £=0, then it follows that f(&) is singular also for |¢|=2e
and thus for every € R, which contradicts the assumptions of the theorem.

Moreover, according to [4] the map ¢@:R*—[0, =), @ (&, E)=m{(P+E&)N
(P+Ey)) (m denotes Lebesgue measure) is continuous with ¢(0, 0)=m(P)=0.
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By the above reasoning, for some ¢ H we have m(P,)=m {(P+a)(P—x)}=0.
: ] . 2 ' R | '
EeP, implies ¢+o, —a€P, consequently g(g)=-—2—f(a)“{f(§+oc)—f(é-a)} is

measurable on P, and [3], Corollary to Prop. 2. ensures the continuity of g. More-
over, there exists a compact KC P such that m(K)=0, and the restriction of f
to K is uniformly continuous (cf. e.g. [2]), while the restriction of g to K is also
uniformly continuous.

Suppose £=0 and find a =0 such that |y|<d implies L,=KMN(K+n)N
((K—n)#0 and that |f(&)—f(E+n)l<e and ||g(&)—g(l+n)l <& whenever ¢,
E+neK. Since f, g satisfy (1), for &, n€R we have f(2n)=2f(¢+n)g(&—n)—f(28)
and, applying again (1)

(17) S@2n) =2 CE+mnegE—m-2((egl) (EneR).

If |p|<é, then there exists a £€L,, for which we have ¢, ¢—n,{+n€K and,
putting S=max {||f($)|, |g(E): £EK} we obtain by (17)

SUFCNI = 1 E+n)l- I8C -~ @)l +
FIFE ) —F @1+ 18] = 2S¢,

thus f is continuous at 0. Since f is odd, we get
FCE+m—fQ) =fE+m+f(=¢) =
=2f(n/2)g(E+n/2) (& nER)
and the continuity of g implies the continuity of f on R. g "
Now we apply Theorem 1 and establish by (5) that £() =d(eé +b 3 +b2§ +. ]

with d=f"(0). Moreover, since f(¢) and g(y) commute for ¢, n€ R we also obtain
1 (&)-g"m=g"(n)-f’ (&) and, putting ¢=n=0, db=bd. The converse can be
obtained by direct calculation, thus the theorem is proved.
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