Full modules over semifirs
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In memoriam Andor Kertész

1. Let R be a principal ideal domain (not necessarily commutative), then
every finitely generated R-module M has a presentation

(1) 0—R"~R"—M~0.

Here n=m. with equality if and only if M is a torsion module. All this holds
more generally for any finitely presented module over a Bezout domain, ie. an
integral domain in which finitely generated left or right ideals are principal.

By a right fir (=free ideal ring) we understand a ring in which all right ideals
are free, of unique rank; /eft firs are defined similarly, and a fir is a left and right fir.
Firs form a natural extension of the class of principal ideal domains, in the sense
that many properties of principal ideal domains can be generalized to firs; thus
firs themselves in the commutative case are just principal ideal domains. In particular
it is possible to develop a theory of torsion modules over firs, which generalizes
the usual notion of torsion module over a principal ideal domain (cf. [I, 2, 3, 4]).
The corresponding generalization of a Bezout domain is a semifir, i.e. a ring in
which every finitely generated right ideal is free, of unique rank; this notion turns
out to be left-right symmetric (in contrast to firs). Much of the theory of torsion
modules actually applies to semifirs, when restricted to finitely presented modules.

Our object in this note is to examine the class of all finitely presented modules
over a semifir. Of course we cannot expect the same neat classification as for modules
over a principal ideal domain, where every finitely generated module is a direct
sum of cyclic modules, but we shall find a subclass, the ful/l modules, which shows
good behaviour and from which the other modules can be built up.

2. Throughout, all rings are associative, with a unit-element 1, which is inherited
by subrings, preserved by homomorphisms and acts unitally on modules. The
modules are usually right modules when nothing is said to the contrary. If R is
a ring, the set of all mXn matrices over R isdenoted by "R": any exponent equal
to 1 is often omitted, thus we write ™R for ™R' (the set of columns of length m)
and R" for 'R" (the set of rows of length n).

Let R be any ring and A€™R", then the least integer r such that 4=PQ,
where P is mXr and Q is rXn is called the inner rank of A. An nXn matrix
is said to be full if its inner rank is n. Over a semifir, the inner rank of a matrix A4
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1s the largest order of any full submatrix formed from the rows and columns of A4
(cf. [5]).

Given a ring R, we recall that any A<€™R" gives rise to a finitely presented
R-module M, obtained as the cokernel of the mapping « defined by A4:

(2) "REMR—+M 0.

We note that M =0 if and only if AB=1 for some B<"R™. When z in (2)
is injective, i.e. when A4 is a left non-zerodivisor, we can write the presentation

of M as
(3) 0+"RE"R—+M 0.

In this case we shall call 4 a presenting matrix for M. In particular, when R
is a semifir, any finitely presented R-module M has a presentation (3), for the
image of a« is then a finitely generated submodule of a free module, and this is
necessarily free. In that case we call m —n the characteristic of M and write y(M)=
=m—n. An application of Schanuel's lemma shows that x(M) does not depend
on the presentation used.

3. Given a module M over a semifir R, with presentation (3), let us dualize
and write M *=Hom (M, R) for short. We obtain the exact sequence

(4) 0—+M*—~R"—~ R"—Exth(M, R)—0.

This shows that 4 is a right non-zerodivisor precisely when M*=0, ie. M is
bound in the terminology of [3].

Definition. A module M over a semifir R is said to be full if it is bound,
with a presentation (3) such that the presenting matrix has inner rank min {m, n}.

A full module will show different behaviour according to the sign of its charac-
teristic. Let us call an R-module M positive, negative or torsion if M is full and
2(M) is =0, =0 or 0 respectively. This agrees with the definition of torsion
module given in Ch. 5 of [3]. The corresponding classes of right R-modules are
denoted by Posg, Negg, Torg and the left modules by zPos, xkNeg and ;Tor.

Clearly we have

(5) Torg = Posg N Negg.

Moreover, the duality for finitely presented bound modules of projective dimension
at most 1 ([3], Prop. 5.2.1) shows the truth of

Theorem 1. Let R be a semifir, then the functor Exth(—., R) provides a duality
between the class of finitely presented bound right R-modules and the corresponding
class of left R-modules, under which Posy corresponds to zNeg.

Over a principal ideal domain (commutative or not) or even a Bezout domain,
every full module is positive, essentially because then any finitely generated sub-
module of "R has rank at most n, and so XZ(M)=0. But in general it is easy to
construct full modules of arbitrary negative characteristic. E.g. the free algebra
F=k=x,y> is a fir, and the elements x'y (i=0, 1,....n) freely generate a right
ideal a of rank n+1, hence y(Fl/a)= —n.
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4. Consider a short exact sequence of R-modules
(6) 0-M -M-M" —0.

If M can be generated by m elements, then so can M”, and resolving M, M”
in a corresponding way we obtain a commutative diagram

(7 0 0
g1 3

0-"R—+"R-~ 0

o

0—+-"R-+"R-M"=-0
' ' '
O-M-M-M -0
' v '
0 0 0

with exact rows and columns. Here we can always arrange matters so that the map
in the top row is the identity. If the presenting matrices of M’, M, M” are C, A, B
respectively, then we have

(8) A = BC,

and it is easy to establish the additivity of the characteristic from the diagram (7)
(cf. [3]):
(M) = g(M")+ x(M7).

Conversely, any equation (8) between matrices which are left non-zerodivisors
can be realized by a diagram (7) giving tise to a short exact sequence (6). This leads
to the following invariant description of full modules:

Theorem 2. Let R be a semifir and M a finitely presented R-module, then (i)
M is positive if and only if M is bound and y(M')=0 for all submodules M’ of M,
(i) M is negative if and only if y(M")=0 for all quotients M" of M.

For the proof we need only observe that any module satisfying (ii) is neces-
sarily bound: if M *=0, then by Prop. 5.1.1 of [3], M=N®R, hence R is a
quotient of M, but z(R)=1=0.

The next result tells us when submodules or extensions of full modules are full.
Since every full module is either positive or negative, it is convenient to treat these
cases separately:

Theorem 3. Let R be a semifir and (6) a short exact sequence of R-modules.
If M', M" are both positive, then so is M; conversely, if M is positive, so is every
bound submodule, but not every quotient. If M’, M" are both negative, then so is M;
conversely, if M is negative, then so is every quotient, but not necessarily every sub-
module. -

ProoF. From (6) we obtain the exact sequence
O-M*-M*"-M™,
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hence if M’, M” are bound, then so is M.' Assume further that M’, M” are
positive, and let NS M. Then (N M’')=0 and

NINN M) = (N+M) M S M/M =M,

hence x(N/(NMNM’)=0, therefore x(N)=x(N/(NOM"))+x(NNM")=0, and
this shows M to be positive. If M is positive, then any submodule N of M’
satisfies y(N)=0, hence any bound submodule M’ of M is positive.

However. M” need not be positive, e.g. if 3(M)=0, x(M’)=0, then y(M”")=0.
Likewise not every submodule of a positive module is bound. As an example for
both these cases we can again take F=k<x, y=>: here M= F/xF is torsion, but
it has the submodule (xF+ yF)/xF= yF/(xF(yF)=F, with quotient F/(xF+ yF)
of characteristic — 1.

The corresponding result for negative modules follows by duality.

Corollary 1. In any finitely presented module M over a semifir, the sum N of
all negative submodules is itself negative, and the quotient M|/N has no non-zero
negative submodules. Moreover, N is the submodule for which y(N) is least and it is
the largest submodule subject to this condition.

Proor. Let N,, N, be negative submodules of M, then N,+N,, as homo-
morphic image of N,® N, is again negative. Now any submodule M’ of a module
M with presentation (3) satisfies

(9) Z{M') = ~1

hence the characteristics of submodules of M are bounded below. Let N be the
union of all the negative submodules of M, then by (9) N must be finitely related,
and hence it is the direct sum of a free module and a finitely presented module.
But any finitely generated submodule of N is negative, so the free component is
zero, N is itself finitely generated and hence negative. If M/N had a non-zero
negative submodule AM’/N, then M’ as an extension of negative modules would
be negative, but this contradicts the choice of N. Hence M/N has no non-zero
negative submodules, as claimed.

Finally let N” be a submodule of M such that x(N’) is least, then any sub-
module N, of N’ satisfies x(N,)=x(N’), hence x(N’/N,)=0, therefore N’ is
negative and so NS N. Moreover, x(N)=x(N) by the choice of N’, and here
equality holds because N is negative. Thus N is indeed the largest submodule
with the least characteristic in M. This completes the proof.

Of course an extension of full modules need not be full, in fact we shall soon
see that every bound module can be written as an extension of full modules.

From the definitions we have the

Corollary 2. Let f:M—~N be a homomorphism, where M, N are negative
modules over a semifir, then coker f is also negative.

The dual of this result is false: the kernel of a mapping between positive modules
need not be positive (because it need not be bound). E.g. let 4 be a full »#>Xn matrix
and A’ the nx(n—1) matrix consisting of the first n—1 columns of A, then

A=A [3] and if (6) is the exact sequence corresponding to this factorization,
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then M is the positive module defined by 4", M” is the torsion module defined
by 4 and M’ is defined by [(’)], the latter is clearly not bound. Of course the

kernel of a mapping between negative modules need not be negative (Th. 3), nor the
cokernel of a mapping between positive modules positive. Neither need an endo-
morphism of a negative module have a negative kernel, as the following remark of
G. M. Bergman shows: let f:M—~N be any homomorphism between negative

modules whose kernel is not negative and consider the endomorphism (0 0] of
MSN. 0f

5. Finally we have the following description of arbitrary finitely presented
modules in terms of full modules. We first make a reduction to bound modules.

Theorem 4. Let M be a finitely generated module over a semifir R, then M=
=N®@"R, where N is a bound module.

PROOF. Let M be generated by m elements, then every homomorphic image
of M can be generated by m eclements. If M is not bound, then M *=Hom-
«(M, R)#0. The image of M in R under a homomorphism is a finitely generated
right ideal of R, hence free, and so a direct summand of M. Thus we can write

(10) M = N&"R,

where n=0, unless M is bound. Moreover, n=m, for "R is a homomorphic

image of M and cannot be genereted by fewer than n elements (because R is

,weakly finite*, cf. [3]). If we choose n as large as possible in (10), then N does

not have R as a direct summand, and hence is bound. This completes the proof.
Next we express bound modules in terms of full modules.

Theorem 5. Let R be a semifir and M any finitely presented bound R-module.
If x(M)=0, then M has a unique greatest negative submodule with positive quotient;
if x(M)=0, M has a unique least negative submodule with positive quotient.

PRrROOF. Suppose first that x(M)=0 and let N be the maximal negative sub-
module which exists by Th. 3, Cor.l. Put P=M/N, then y(P)=x(M)—x(N)=0.
By the description of N, x(M')=x(N) for any submodule M’ of M, hence if
M’ 2N, then x(M’/N)=0, ie. all submodules of P have positive characteristic.
Moreover, P is bound, as homomorphic image of a bound module, therefore P is
positive.

Now the second assertion follows by duality, using Th .1.

Combining Th. 4 and 5, we obtain the

Corollary. Every finitely presented module over a semifir is a direct sum of a free
module and an extension of a negative by a positive module.
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